
Weikeng Chen

Metal
A Metadata-Hiding File-Sharing System

Raluca Ada Popa

UC Berkeley

End-to-end encrypted file sharing

Academia:
DepSky, M-Aegis, Mylar, Plutus,
ShadowCrypt, Sieve, SiRiUS

Industry:

Encryption is not enough: Metadata still leaks

• User identities: who read or wrote a file

• File access patterns: which file is being read or written

Doctor

#1 #2 #3

The attacker sees:

Doctor

#1

• The doctor is accessing a file

• The file is #1

• #1’s access control list

ACL:
Doctor, Alice

Encryption is not enough: Metadata still leaks

An attack using file access patterns

Doctor

#1 #2 #3
Cancer Diabetes Heart

Filenames are also encrypted

An attack using file access patterns

Doctor

#1 #2 #3
Cancer Diabetes Heart

Patient

Read diabetes treatment

1

See counts of file access

An attack using file access patterns

Doctor

#1 #2 #3

Patient

Read cancer treatment

See counts of file access

11

Cancer Diabetes Heart

An attack using file access patterns

Doctor

#1 #2 #3

37239
Cancer Diabetes Heart

2.49‰ 0.39‰ 8.61‰

877

Public database on
disease incidence rate

Cancer Diabetes Heart

An attack using file access patterns

Doctor

#1 #2 #3
Cancer Diabetes Heart

Filenames inferred
Cancer Diabetes Heart

Reveal a patient’s disease

Doctor

#1 #2 #3
Cancer Diabetes Heart

I saw Alice in the waiting room

Alice

Read a treatment

Cancer Diabetes Heart

Reveal a patient’s disease

Doctor

#1 #2 #3
Diabetes Heart

Alice

Read a treatment

Diabetes Heart

Alice has cancer

Cancer

Cancer

Encryption is not enough: Metadata still leaks

• User identities: who read/wrote a file

• File access patterns: which file is being read/written

Single-server, secure against malicious users

Scan all the files

Example:
Access a 64KB file in a million-file storage
PIR-MCORAM’s amortized time > "# min

Lower bound: Single-server construction has
linear server computation in # of files

Existing solution: PIR-MCORAM [MMRS17]

Server 1

Server 2
Expensive zero-knowledge proofs

Assumes two semi-honest servers that do not collude

Logarithmic overhead

Does not support file sharing

Existing solution: Anonymous RAM [BHKP16]

Much faster

Assumes two semi-honest servers that do not collude

Support file sharing

Server 1

Server 2

500× faster than PIR-MCORAM and 20× faster than AnonRAM

Logarithmic overhead

Metal

Metal’s three components

Anonymous access control

Oblivious storage
with malicious users

Permission sharing
See paper

Metal’s threat model

Some users
can be malicious

Server 1

Server 2

Metal’s goals

Privacy

Efficiency

Any given access should be oblivious among all the files
accessible by the honest users

Metal’s file layout

secret-shared between
the two servers

Decryption key:Server 1

Server 2

Input
!"

Secure two-party computation (S2PC) [Yao86]

S2PC
#1, #2 = ((!1, !2)

Security guarantee:
Each server only learns its own
input and output

Input
!+

Output
#"

Output
#+

Our S2PC uses reactive Yao’s protocol

Stateful S2PC

…

…
The S2PC is a continuous service,
rather than a one-time computation

Strawman 1: All files in S2PC

Read #1

#1 #2 #3

Security goal:
• No server sees the file

#1 #2 #3

Read #1

#1

S2PC Security goal:
• No server sees the file

Strawman 1: All files in S2PC

#1 #2 #3

Read #1

#1

S2PC Problem:
Very large S2PC circuit

256 bits

each bit

Strawman 1: All files in S2PC

Oblivious RAM [Goldreich86, Ostrovsky90]

ORAM Server

Access a file in a way that hides which file and is efficient

ORAM Client

Read/write a file

I don’t know which file

The ORAM server only accesses log(N) files

ORAM protocol

Strawman 2: S2PC + ORAM

S2PC

ORAM Server
ORAM
Client

ORAM Client?

Strawman 2: S2PC + ORAM

S2PC

ORAM Server
ORAM
Client

ORAM protocol

Read #1

Read #1.
Problem:
Still very large S2PC circuit
(e.g., 75 s per access)

Technique: Synchronized inside-outside ORAM
Observation: For efficiency, data should be outside S2PC

ORAM IndexORAM

Small indices

DataORAM

Accessed by
Yao’s protocol

Accessed by
public-key protocols

Big file data

Challenge: Synchronizing IndexORAM and DataORAM

Synchronize

Encryption in DataORAM

DataORAM

• Use ElGamal encryption

• One can rerandomize a ciphertext using the public key

Can be leveraged in designing oblivious protocols

ORAM access

ORAM Server

In ORAM, access to a file downloads data on a path

ORAM Client

Path !

Synchronized ORAM access in Metal

ORAM Client

Path !

IndexORAM

Synchronized ORAM access in Metal

ORAM Client

Path !

IndexORAM

Pos = 2
Pos(1)

To Server 1

Pos(2)

To Server 2

Secret-share the position

The desired file

Synchronized ORAM access in Metal

DataORAM

Pos(1)

Pos(2)

Challenge:
Obtains the data obliviously

Synchronized ORAM access in Metal

DataORAM

Pos(1)

Pos(2)

Challenge:
Obtains the data obliviously

Uses secret-shared
doubly oblivious transfer

A rerandomized ciphertext
of the file

Synchronized ORAM access in Metal

DataORAM

Pos(1)

Pos(2)

Challenge:
Obtains the data obliviously

The two servers then run
threshold decryption to
return the plaintext data.

Only the user sees
the data

ORAM update

ORAM Server

The client updates the ORAM by reorganizing the files

ORAM Client

Path !1, !2

Synchronized ORAM update in Metal

IndexORAM
ORAM Client

Path !1, !2

Challenge: securely apply the same update on DataORAM

Technique: Tracking and permutation generation

IndexORAM
ORAM Client

Path !1, !2

the ORAM update can be
expressed as a permutation

σ

Old A B C --- ---
New A --- B --- C

Synchronized ORAM update in Metal

IndexORAM
ORAM Client

Path !1, !2

σσ(1)
To Server 1

σ(2)
To Server 2

Secret-share the permutation

Synchronized ORAM update in Metal

DataORAM

σ(1)

σ(2)

Challenge:
Applies the permutation,
but hides the permutation

Each server performs a secret
share of permutation in turn

Synchronized ORAM update in Metal

DataORAM

σ(1)

σ(2)

Challenge:
Applies the permutation,
but hides the permutation

Each server performs a secret
share of permutation in turn

Applied σ(1)

Applied σ(2)

Ciphertexts are rerandomized
during the permutation.

Synchronized IndexORAM and DataORAM

IndexORAM DataORAM

Synchronize

The two techniques improve over S2PC + ORAM by 20×

Evaluation setup

Metal is implemented in C/C++ using the Obliv-C platform [ZE15]

Evaluation setup:

• Two servers, one in Northern California, one in Oregon

• One client, in Canada

Metal’s file access latency

The file access latency is within a few seconds

500× faster than PIR-MCORAM and 20× faster than AnonRAM

www.oblivious.app

Thank you!

Metal
A Metadata-Hiding File-Sharing System

