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Advanced Persistent Threats
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Actions on Objectives

Command & Control
Give Remote Instructions to Victim

Installation
Install Backdoor or Malware

Exploitation
Victim Triggers Vulnerability

Delivery
Deliver the Weapon

Weaponize
Design Backdoor & Penetration Plan

Reconnaissance
Identify Target & Explore Vulnerabilities

Diverse Attack Vectors

Zero-Day Exploits

Long Duration

Ø Active Scanning
Ø Passive Scanning

Ø Malware
Ø Scripting

Ø Spearphishing
Ø Supply-chain Attack

Ø Application Shimming
Ø Job Scheduling

Ø Hooking
Ø Dylib Hijacking

Ø Connection Proxy
Ø Domain Fronting

Low-and-Slow Attack Patterns



Whole-System Data Provenance
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Full historical context of a system from a 
single, connected whole-system graph

Process D

Causal relationships among system 
subjects (e.g., process) and objects

Low-and-Slow Attack Patterns
We use whole-system data 

provenance instead of traditional 
system call or log-adjacent system 

event analysis.



Previous Provenance-Based Approaches
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Exfiltration
Rule Rule-based approaches 

require expert knowledge 
& susceptible to 0-day

Single-hop graph exploration 
constrains contextual analysis 

Snapshot static modeling lacks 
flexibility while runtime dynamic 
model update is unsuitable for 
low-and-slow attack patterns



Unicorn Goals

We formalize system-wide intrusion detection problem in APT 
campaigns as a real-time, graph-based anomaly detection problem on 
large, attributed, streaming whole-system provenance graphs.
ØContinuously analyze provenance graph with space and time 

efficiency while leveraging its rich historical context and system-wide 
causality relationships

ØConsider the entire duration of system execution without making 
assumptions of attack behavior

ØLearn only normal system behavior changes but not those directed by 
the attackers 
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Unicorn Overview
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1. Takes as input a labeled, streaming provenance graph
2. Builds at runtime an in-memory graph histogram
3. Computes a fixed-size graph sketch periodically
4. Clusters sketches into a system model

Execution Tim
eline



Graph Histogram
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Iterative, vertex-centric, 
Weisfeiler-Lehman label update:

new_label = Hash(3, 1A2B)
histogram[new_label] += 1
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Within the same iteration, every 
vertex is updated in parallel

In the next iteration, each vertex is 
updated again, exploring larger 

neighborhood:
new_label = Hash(7, 16)
histogram[new_label] += 1

After R iterations:
v Each vertex explored R-hop 

neighborhood
v Rich execution context

v histogram contains entire graph 
statistics
v Full historical context

Efficient streaming variant:
v Leverage partial ordering 

guarantee from the provenance 
capture system



Discount Histogram for Concept Drift
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We model and monitor long-term system behavior, which often 
changes over time.
ØSuch changes result in changes in the underlying statistical properties 

of the histogram. This phenomenon is called concept drift.
ØWe use exponential weight decay to gradually forget outdated data.

ØUnicorn focuses on current system execution as well as elements that are 
causally related to current execution even if they are temporally distant.

ØUnicorn maintains fading “memory” of the past.
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Exponential decay:
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/ (decay factor) controls the 
rate of forgetting



Graph Sketch
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Execution Tim
eline

In a streaming setting, # of histogram 
elements changes continuously

We want to measure based on the 
underlying distribution of graph 

features, instead of absolute counts

Similarity-Preserving
Data Sketching

We employs HistoSketch:
v Hash histograms to compact, 

fixed-size sketch vectors
v Approximate histograms based on 

normalized Jaccard similarity
v Constant time algorithm to 

support real-time streaming
v Sketch size |S| controls tradeoffs 

between information loss and 
computation efficiency



Evolutionary Model
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Execution Tim
eline

Periodic data sketching 
during model building

Clustering temporally-
ordered sketches based on 

Jaccard similarity

Each cluster represents a ”meta-
state” of system execution. We use 

those clusters and their statistics 
(e.g., diameter) to construct 

evolutionary model.
v With evolutionary modeling, 

Unicorn learns system 
behavior at many points in 
time during a single training 
execution trace.

v With gradually forgetting 
scheme, Unicorn focuses 
on the most relevant 
activities at each time point.



Anomaly Detection
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An evolutionary sub-model 
generated during training Runtime provenance graphRuntime graph sketching

Execution Tim
eline

Online model fitting



Evaluation Datasets
vStreamSpot dataset:  We compare Unicorn against a state-of-

the-art provenance-based anomaly detection system StreamSpot 
using its published dataset
v Can Unicorn outperform StreamSpot? If so, what are the factors?

vDARPA TC dataset: Data obtained during a red-team vs blue-team 
adversarial engagement with various provenance capture systems
v Can Unicorn accurately detect anomalies in long-running systems? 
v Is the algorithm generalizable to different capture systems?

vSimulated supply-chain (SC) attack dataset: Our own controlled 
dataset using CamFlow whole-system provenance capture system
vHow do Unicorn’s different design decisions affect APT detection?
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StreamSpot dataset
Can Unicorn outperform StreamSpot? If so, what are the factors?
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Unicorn’s larger 
neighborhood exploration (R) 
improves precision/recall and 

outperforms StreamSpot.

StreamSpot creates snapshot-based static model and 
dynamically updates the model at runtime.
v Results in a significant number of false alarms, creating an 

opportune time window for attackers
v Persistent attackers can manipulate the model to gradually and 

slowly change system behavior to avoid detection
v Unicorn’s evolutionary model reduces false positives (see 

paper) and prevents model manipulation



TC dataset
Can Unicorn accurately detect anomalies in long-running systems? Is the algorithm generalizable to different 
capture systems?

14

v DARPA’S 2-week long third adversarial engagement with datasets collected from a network of 
hosts running different audit systems

v Benign background activity generated from the red team allows us to model normal system 
behavior

High detection performance that accurately 
detects anomalies in long-running systems 

without prior attack knowledge

Unicorn’s
analytics 

framework 
generalizes to 

different 
capture 

systems and 
various graph 

structures.



SC attack dataset: Detection Performance
How do Unicorn’s different design decisions affect APT detection?
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We identify four important parameters that can affect detection performance:
v Hop count (R): size of neighborhood exploration
v Sketch size (|S|): size of fixed-size graph sketches
v Interval of sketch generation: how often we construct new graph sketches as the provenance graph 

grows during system execution
v Decay factor (!): the rate at which we forget the past and focus on present execution
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SC attack dataset: Detection Performance
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Runtime Performance
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Hop count (R), sketch size (|S|), interval of sketch generation, and decay factor (!) minimally affect Unicorn’s
ability to process the provenance graph as new edges arrive. We use batching to further improve its processing 
speed. This means Unicorn can perform real-time detection with parameters optimized for detection accuracy. 

Memory usage depends on hop count and 
sketch size, but empirically large R and |S|

are not ideal for detection performance.

Average 
CPU 

stabilizes 
around 

12.3% on a 
single CPU 
regardless 

of 
parameter 
settings. 



Discussion & Conclusion
vUnicorn is a real-time provenance-based anomaly detector that 

efficiently analyze system-wide data provenance for APT attacks.
vUnicorn leverages graph sketching to build an incrementally 

updatable, fixed-size, longitudinal graph data structure to enable 
online, streaming analysis.

vAnomaly-based detection requires a “good” set of benign behavior to 
learn from, can be susceptible to evasion techniques, and needs 
human-in-the-loop to verify FPs and update the model.

vReasoning about anomaly alerts (forensics) can be difficult and 
requires additional tools.
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Q & A
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