
Unicorn
Runtime Provenance-Based Detector
for Advanced Persistent Threats

Xueyuan Han, James Mickens
Harvard University

Thomas Pasquier
University of Bristol

Adam Bates
University of Illinois at Urbana-Champaign

Margo Seltzer
University of British Columbia

1

Advanced Persistent Threats

2

Actions on Objectives

Command & Control
Give Remote Instructions to Victim

Installation
Install Backdoor or Malware

Exploitation
Victim Triggers Vulnerability

Delivery
Deliver the Weapon

Weaponize
Design Backdoor & Penetration Plan

Reconnaissance
Identify Target & Explore Vulnerabilities

Diverse Attack Vectors

Zero-Day Exploits

Long Duration

Ø Active Scanning
Ø Passive Scanning

Ø Malware
Ø Scripting

Ø Spearphishing
Ø Supply-chain Attack

Ø Application Shimming
Ø Job Scheduling

Ø Hooking
Ø Dylib Hijacking

Ø Connection Proxy
Ø Domain Fronting

Low-and-Slow Attack Patterns

Whole-System Data Provenance

3

Process A

Process B

File G

Process C

File H

File K

File F

File F

File W

Process C

File F

File W

a.b.c.d

Process C

m.n.o.pFile W File X

exec

file read

fork

version

version
IP read

IP write
file write

File P

Full historical context of a system from a
single, connected whole-system graph

Process D

Causal relationships among system
subjects (e.g., process) and objects

Low-and-Slow Attack Patterns
We use whole-system data

provenance instead of traditional
system call or log-adjacent system

event analysis.

Previous Provenance-Based Approaches

4

Process A

Process B

File G

Process C

File H

File K

File F

File W

Process C

File F

File W

a.b.c.d

Process C

m.n.o.pFile W File X

exec

file read

fork

version
IP read

IP write

file write

File P
Process D

Process

IP

Exfiltration
Rule Rule-based approaches

require expert knowledge
& susceptible to 0-day

Single-hop graph exploration
constrains contextual analysis

Snapshot static modeling lacks
flexibility while runtime dynamic
model update is unsuitable for
low-and-slow attack patterns

Unicorn Goals

We formalize system-wide intrusion detection problem in APT
campaigns as a real-time, graph-based anomaly detection problem on
large, attributed, streaming whole-system provenance graphs.
ØContinuously analyze provenance graph with space and time

efficiency while leveraging its rich historical context and system-wide
causality relationships

ØConsider the entire duration of system execution without making
assumptions of attack behavior

ØLearn only normal system behavior changes but not those directed by
the attackers

5

Unicorn Overview

6

1 2 3 4

1. Takes as input a labeled, streaming provenance graph
2. Builds at runtime an in-memory graph histogram
3. Computes a fixed-size graph sketch periodically
4. Clusters sketches into a system model

Execution Tim
eline

Graph Histogram

7

1

5 3

2

4 4

A B

Iterative, vertex-centric,
Weisfeiler-Lehman label update:

new_label = Hash(3, 1A2B)
histogram[new_label] += 1

1

8 7

6

9 9

Within the same iteration, every
vertex is updated in parallel

In the next iteration, each vertex is
updated again, exploring larger

neighborhood:
new_label = Hash(7, 16)
histogram[new_label] += 1

After R iterations:
v Each vertex explored R-hop

neighborhood
v Rich execution context

v histogram contains entire graph
statistics
v Full historical context

Efficient streaming variant:
v Leverage partial ordering

guarantee from the provenance
capture system

Discount Histogram for Concept Drift

8

We model and monitor long-term system behavior, which often
changes over time.
ØSuch changes result in changes in the underlying statistical properties

of the histogram. This phenomenon is called concept drift.
ØWe use exponential weight decay to gradually forget outdated data.

ØUnicorn focuses on current system execution as well as elements that are
causally related to current execution even if they are temporally distant.

ØUnicorn maintains fading “memory” of the past.

!" =$
%
&%1()*"

Exponential decay:
&% = +,-△%

/ (decay factor) controls the
rate of forgetting

Graph Sketch

9

Execution Tim
eline

In a streaming setting, # of histogram
elements changes continuously

We want to measure based on the
underlying distribution of graph

features, instead of absolute counts

Similarity-Preserving
Data Sketching

We employs HistoSketch:
v Hash histograms to compact,

fixed-size sketch vectors
v Approximate histograms based on

normalized Jaccard similarity
v Constant time algorithm to

support real-time streaming
v Sketch size |S| controls tradeoffs

between information loss and
computation efficiency

Evolutionary Model

10

Execution Tim
eline

Periodic data sketching
during model building

Clustering temporally-
ordered sketches based on

Jaccard similarity

Each cluster represents a ”meta-
state” of system execution. We use

those clusters and their statistics
(e.g., diameter) to construct

evolutionary model.
v With evolutionary modeling,

Unicorn learns system
behavior at many points in
time during a single training
execution trace.

v With gradually forgetting
scheme, Unicorn focuses
on the most relevant
activities at each time point.

Anomaly Detection

11

An evolutionary sub-model
generated during training Runtime provenance graphRuntime graph sketching

Execution Tim
eline

Online model fitting

Evaluation Datasets
vStreamSpot dataset: We compare Unicorn against a state-of-

the-art provenance-based anomaly detection system StreamSpot
using its published dataset
v Can Unicorn outperform StreamSpot? If so, what are the factors?

vDARPA TC dataset: Data obtained during a red-team vs blue-team
adversarial engagement with various provenance capture systems
v Can Unicorn accurately detect anomalies in long-running systems?
v Is the algorithm generalizable to different capture systems?

vSimulated supply-chain (SC) attack dataset: Our own controlled
dataset using CamFlow whole-system provenance capture system
vHow do Unicorn’s different design decisions affect APT detection?

12

StreamSpot dataset
Can Unicorn outperform StreamSpot? If so, what are the factors?

13

Unicorn’s larger
neighborhood exploration (R)
improves precision/recall and

outperforms StreamSpot.

StreamSpot creates snapshot-based static model and
dynamically updates the model at runtime.
v Results in a significant number of false alarms, creating an

opportune time window for attackers
v Persistent attackers can manipulate the model to gradually and

slowly change system behavior to avoid detection
v Unicorn’s evolutionary model reduces false positives (see

paper) and prevents model manipulation

TC dataset
Can Unicorn accurately detect anomalies in long-running systems? Is the algorithm generalizable to different
capture systems?

14

v DARPA’S 2-week long third adversarial engagement with datasets collected from a network of
hosts running different audit systems

v Benign background activity generated from the red team allows us to model normal system
behavior

High detection performance that accurately
detects anomalies in long-running systems

without prior attack knowledge

Unicorn’s
analytics

framework
generalizes to

different
capture

systems and
various graph

structures.

SC attack dataset: Detection Performance
How do Unicorn’s different design decisions affect APT detection?

15

We identify four important parameters that can affect detection performance:
v Hop count (R): size of neighborhood exploration
v Sketch size (|S|): size of fixed-size graph sketches
v Interval of sketch generation: how often we construct new graph sketches as the provenance graph

grows during system execution
v Decay factor (!): the rate at which we forget the past and focus on present execution

SC attack dataset: Detection Performance
How do Unicorn’s different design decisions affect APT detection?

16

We identify four important parameters that can affect detection performance:
v Hop count (R): size of neighborhood exploration
v Sketch size (|S|): size of fixed-size graph sketches
v Interval of sketch generation: how often we construct new graph sketches as the provenance graph

grows during system execution
v Decay factor (!): the rate at which we forget the past and focus on present execution

SC attack dataset: Detection Performance
How do Unicorn’s different design decisions affect APT detection?

17

We identify four important parameters that can affect detection performance:
v Hop count (R): size of neighborhood exploration
v Sketch size (|S|): size of fixed-size graph sketches
v Interval of sketch generation: how often we construct new graph sketches as the provenance graph

grows during system execution
v Decay factor (!): the rate at which we forget the past and focus on present execution

SC attack dataset: Detection Performance
How do Unicorn’s different design decisions affect APT detection?

18

We identify four important parameters that can affect detection performance:
v Hop count (R): size of neighborhood exploration
v Sketch size (|S|): size of fixed-size graph sketches
v Interval of sketch generation: how often we construct new graph sketches as the provenance graph

grows during system execution
v Decay factor (!): the rate at which we forget the past and focus on present execution

Runtime Performance

19

Hop count (R), sketch size (|S|), interval of sketch generation, and decay factor (!) minimally affect Unicorn’s
ability to process the provenance graph as new edges arrive. We use batching to further improve its processing
speed. This means Unicorn can perform real-time detection with parameters optimized for detection accuracy.

Memory usage depends on hop count and
sketch size, but empirically large R and |S|

are not ideal for detection performance.

Average
CPU

stabilizes
around

12.3% on a
single CPU
regardless

of
parameter
settings.

Discussion & Conclusion
vUnicorn is a real-time provenance-based anomaly detector that

efficiently analyze system-wide data provenance for APT attacks.
vUnicorn leverages graph sketching to build an incrementally

updatable, fixed-size, longitudinal graph data structure to enable
online, streaming analysis.

vAnomaly-based detection requires a “good” set of benign behavior to
learn from, can be susceptible to evasion techniques, and needs
human-in-the-loop to verify FPs and update the model.

vReasoning about anomaly alerts (forensics) can be difficult and
requires additional tools.

20

Q & A

21

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Authors:
Xueyuan Han (presenter), Thomas Pasquier, Adam Bates, James Mickens, and
Margo Seltzer
Project Repo:
https://github.com/crimson-unicorn

Thank you for your time and attention!

https://github.com/crimson-unicorn

