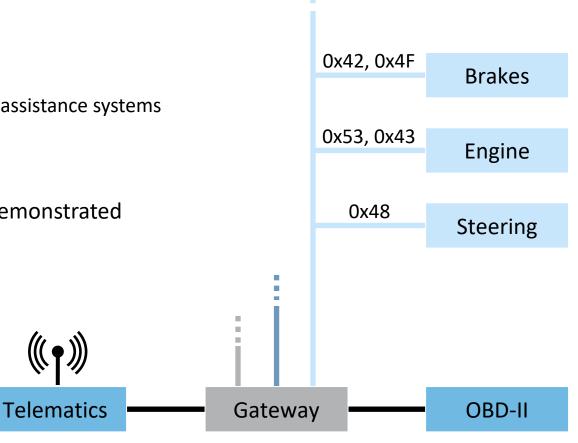
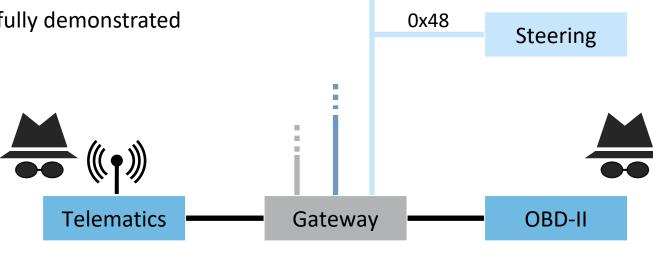
EASI: Edge-Based Sender Identification on Resource-Constrained Platforms for Automotive Networks


Marcel Kneib (1), Oleg Schell (2), Christopher Huth (3)

(1) Robert Bosch GmbH, RheinMain University
(2) Bosch Engineering GmbH, Karlsruhe Institute of Technology
(3) Robert Bosch GmbH

Motivation

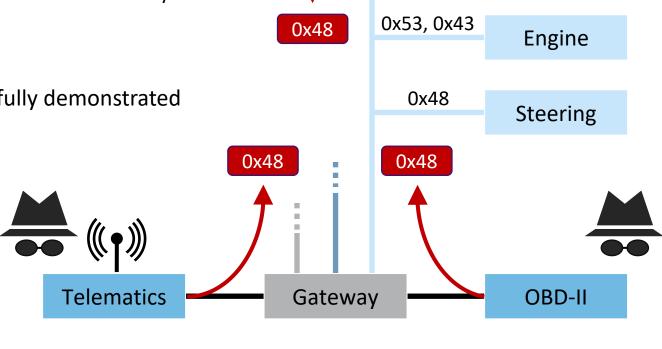

- ► Increased connectivity...
 - ▶ either by built-in or retrofitted (wireless) interfaces
 - required for comfort functions and advanced driver assistance systems
 - provides several additional attack vectors
- ► Attack potential is well known and successfully demonstrated
 - ► Miller and Valasek [43]
 - ► Tencent Keen Security Lab [62]
- ► Controller Area Network
 - Broadcasting without authenticity
 - ► 500 kb/s bandwidth
 - ► 64 bit payload

Motivation

- ► Increased connectivity...
 - ▶ either by built-in or retrofitted (wireless) interfaces
 - required for comfort functions and advanced driver assistance systems
 - provides several additional attack vectors
- ► Attack potential is well known and successfully demonstrated
 - ► Miller and Valasek [43]
 - ► Tencent Keen Security Lab [62]
- ► Controller Area Network
 - Broadcasting without authenticity
 - ► 500 kb/s bandwidth
 - ► 64 bit payload

0x42, 0x4F

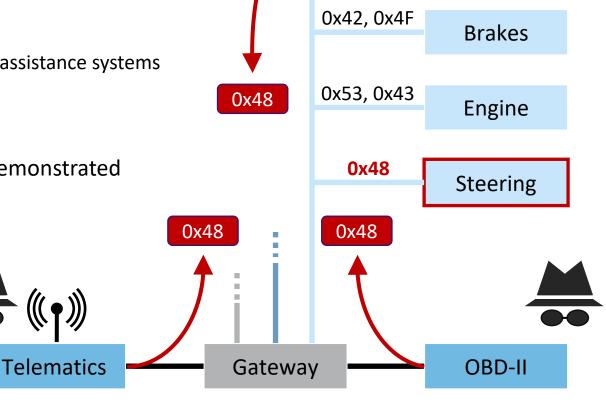
0x53, 0x43


Brakes

Engine

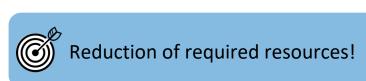
Motivation

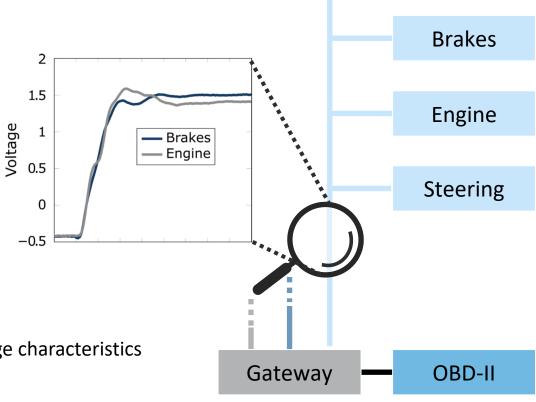
- ► Increased connectivity...
 - ▶ either by built-in or retrofitted (wireless) interfaces
 - required for comfort functions and advanced driver assistance systems
 - provides several additional attack vectors
- ► Attack potential is well known and successfully demonstrated
 - ► Miller and Valasek [43]
 - ► Tencent Keen Security Lab [62]
- ► Controller Area Network
 - Broadcasting without authenticity
 - ► 500 kb/s bandwidth
 - ► 64 bit payload


0x42, 0x4F

Brakes

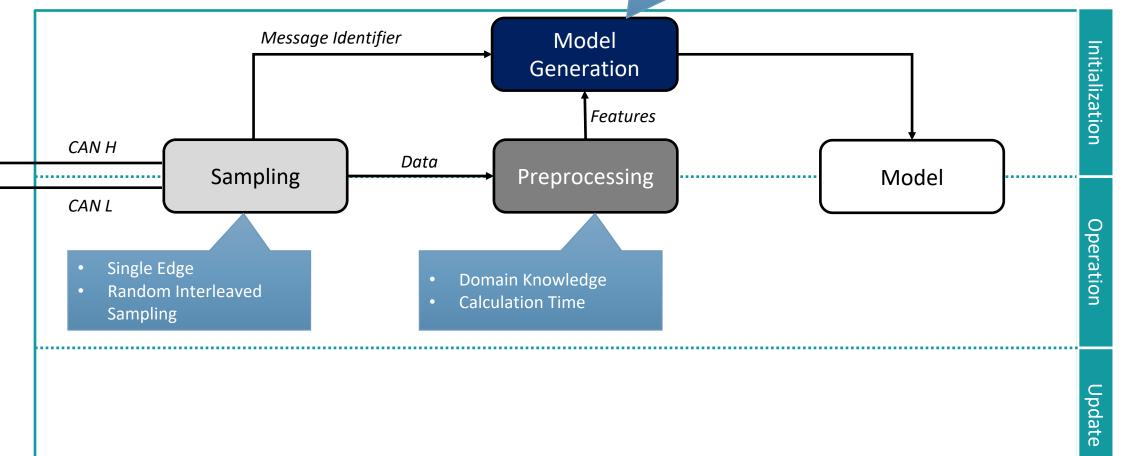
Motivation


- ► Increased connectivity...
 - ▶ either by built-in or retrofitted (wireless) interfaces
 - required for comfort functions and advanced driver assistance systems
 - provides several additional attack vectors
- ► Attack potential is well known and successfully demonstrated
 - ► Miller and Valasek [43]
 - ► Tencent Keen Security Lab [62]
- ► Controller Area Network
 - Broadcasting without authenticity
 - ► 500 kb/s bandwidth
 - ▶ 64 bit payload

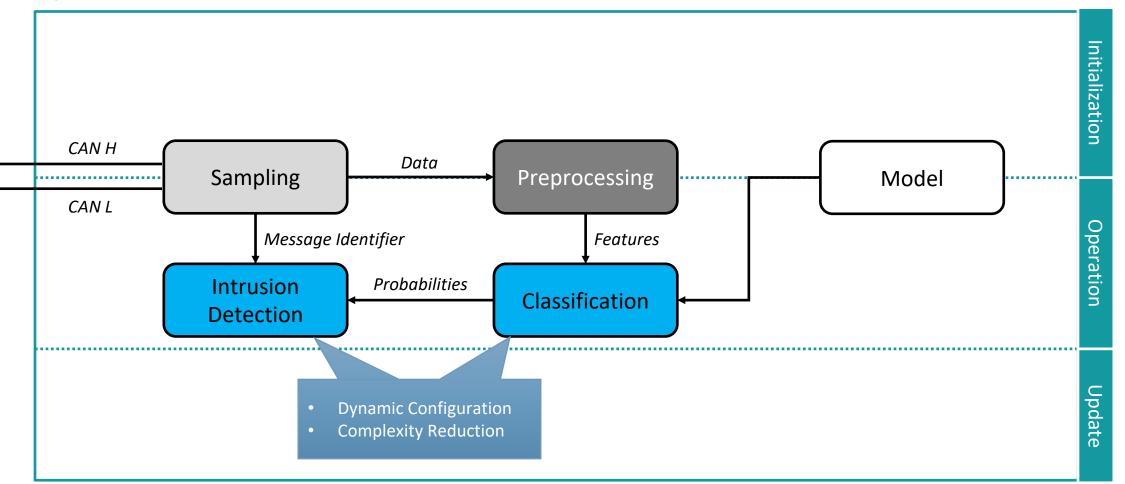


Countermeasures

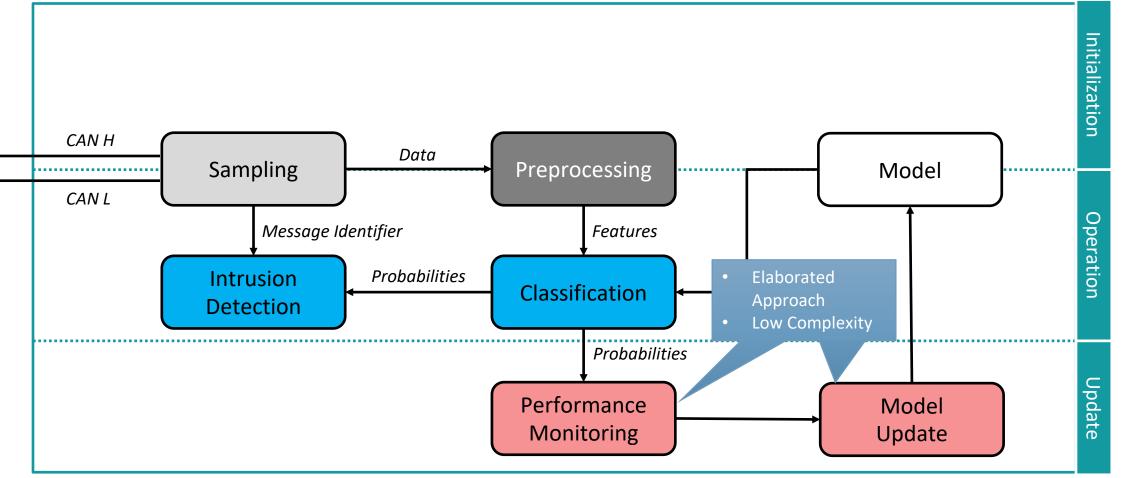
- ► Message Authentication Codes
 - Overhead, payload, broadcast, non-repudiation, ...
- **▶** Digital Signatures
- ► Intrusion Detection (Prevention) Systems
 - ► Signatures... only suitable for known attacks
 - Anomalies... prone to false positives
- ► Voltage-Based Sender Identification
 - ► Anomaly detection through exploitation of unique voltage characteristics
 - ► High detection rates
 - Low false positive rate
 - ► High hardware demands



EDGE BASED SENDER IDENTIFICATION


- Algorithm Assessment
- Dynamic Configuration

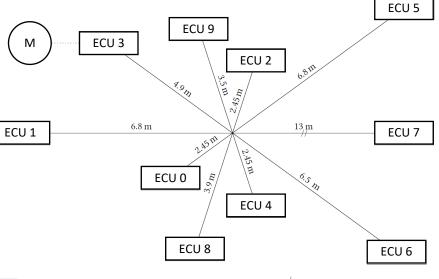
Edge-Based Sender Identification


Operation Phase

Edge-Based Sender Identification

Model Adjustments

EVALUATION



Evaluation

General Evaluation

- ► Sender identification evaluation on PC with three setups
 - ► Focus on Logistic Regression
 - \blacktriangleright Avg. identification rate of 99.98 % \rightarrow false alarm every 5000 frames
- ► Intrusion detection based on thresholds
 - ► Avg. detection rate of 99.8 % and no false positives

	Setup		Sender		Intrusion Detection	
	ECUs	Frames	Identification		Normal	Attack
Durchataura	10	40.000	00.00	Normal	100	0
Prototype	10 48 000	99.99	Attack	0.19	99.81	
Fiat	6.2	25.000	100	Normal	100	0
	6+2	35 000	100	Attack	0.06	99.94
Porsche	6.2	0.000	00.05	Normal	ormal 100	0
	6+2	9 000	99.86	Attack	0.77	99.23

Evaluation

Varying Conditions

Summer journey with cool down phases

23°C (73.4°F) – 36°C (96.8°F)

3 trips & 17 000 frames

Sender Identification Rate: 99.99 %

No false positives

Winter journey for 5 days

-2°C (28.4°F) – 10°C (50°F)

9 trips & 65 000 frames

Electronic consumers (lights, wipers, heating, startstop automatic, ...)

Sender Identification Rate: 99.99 %

No false positives

Detection Rate: 99.96 %

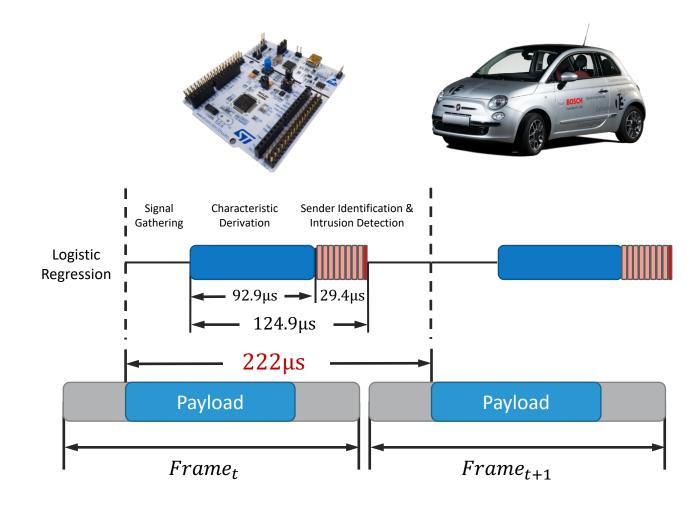
Evaluation

Embedded Implementation

System

- ► ARM Cortex-M4 180 MHz Microcontroller
- DSP for feature calculations
- Fiat 500 data set via UART

Initialization Phase


- ▶ 200 frames with mini-batch from 8 ECUs
- **▶** 2.61s for model generation

Operation Phase

- ► Classification with Logistic Regression
- ▶ 97μs 125μs per frame
- → Real-time capable

Performance

▶ No false positives & Sender Identification Rate 99.94 %

Conclusion

- ► Sender identification provides additional security for CAN networks
- ► EASI: Edge-Based Sender Identification
 - ► Reduction of resource requirements
 - ► Feasible on automotive-compatible hardware
 - ► High performance can be kept up under varying conditions
 - ► Refinement of performance monitoring & model adjustments
- ► Outlook
 - ► CAN with flexible data rate (CAN-FD)
 - ► Additional mitigations of signal drifts
 - On-board sampling

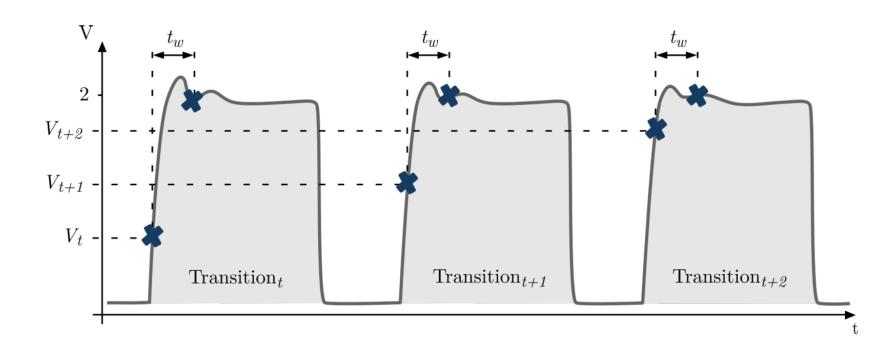
Thank you for your attention!

#LikeABosch

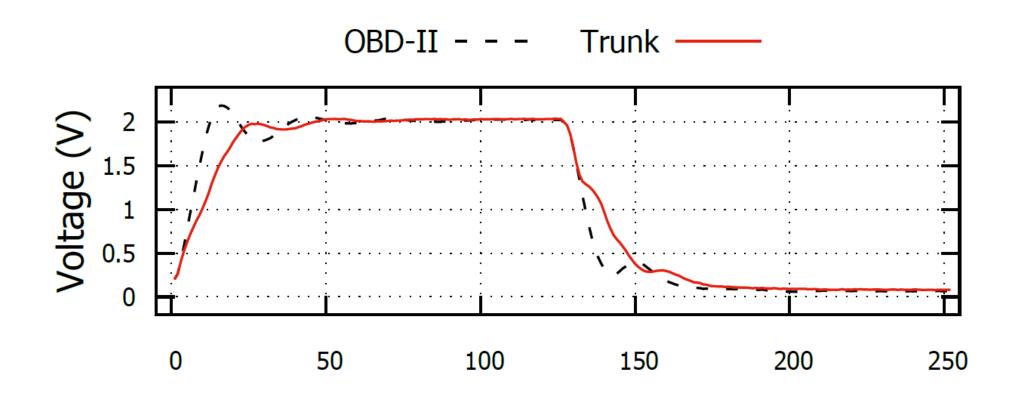
M.Sc.

Marcel Kneib

Automotive Electronics – Body Electronics Product Security


Marcel.Kneib@de.bosch.com

BACKUP

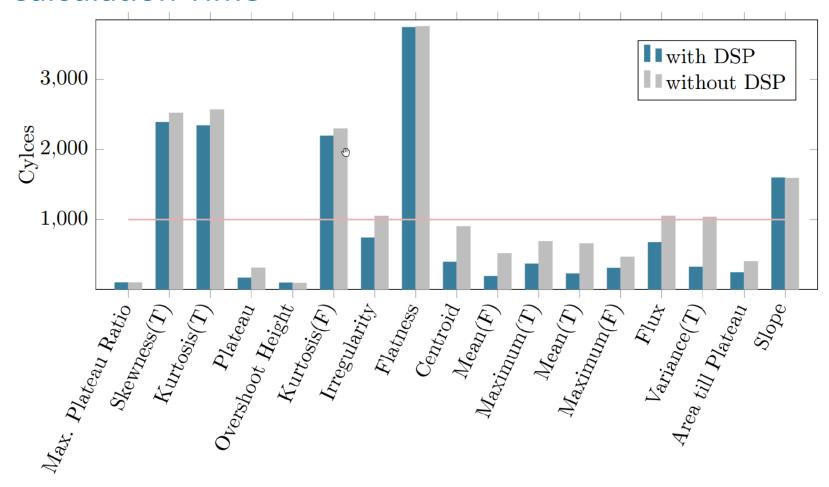


Random Interleaved Sampling

Measuring Point

Algorithm Assessment

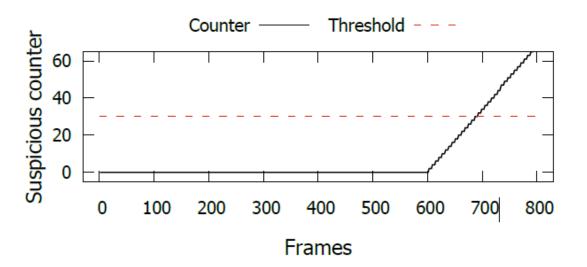
	Classification Speed	Memory Footprint	Model Adjustment	Overall Complexity
LR	+	0	+	0
Naive Bayes	0	+	+	+
SVM	0	-	0	0
Decision Tree	+	-	-	+
Neural Network	-	0	-	-



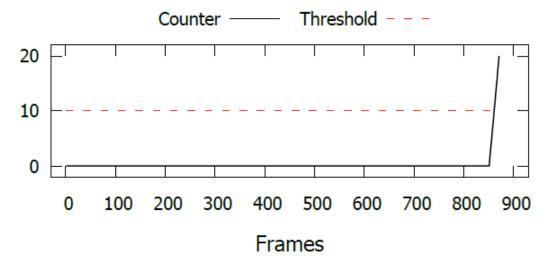
Backup Features

Rank	Feature	Description	Type	IG Prototype	IG Fiat	IG Porsche	IG General
1	Ratio Max Plateau	$\frac{Maximum}{Plateau}$	Descriptive	3.3	2.6	2.6	8.5
2	Skewness	$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{x(i) - \mu}{\sigma} \right)^3$	Time	3.1	2.4	2.8	8.3
3	Plateau	$\frac{N}{4} \sum_{i=\frac{3}{4}N}^{N} x(i)$	Descriptive	3.1	2.3	2.7	8.1
4	Kurtosis	$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{x(i) - \mu}{\sigma} \right)^4$	Time	3.1	2.5	2.5	8.1
5	Overshoot height	Maximum-Plateau	Descriptive	2.9	2.5	2.6	8
6	Irregularity	$\frac{\sum_{j=1}^{M-1} (y_m(j) - y_m(j+1))^2}{\sum_{j=1}^{M-1} y_m(j)^2}$ $\frac{\sum_{j=1}^{M} y_f(j) * y_m(j)}{\sum_{j=1}^{M} y_m(j)}$	Frequency	3.3	1.9	2.6	7.8
7	Centroid	$\frac{\sum_{j=1}^{M} y_f(j) * y_m(j)}{\sum_{j=1}^{M} y_m(j)}$	Frequency	3.2	1.8	2.7	7.7
8	Flatness	$\sum_{j=1}^{M} y_m(j) * \frac{\sqrt[M]{\prod_{k=1}^{M} y_m(k)}}{\sum_{k=1}^{M} y_m(k)}$	Frequency	3.1	2	2.5	7.6
9	Mean	$\mu = \frac{1}{N} \sum_{i=1}^{N} x(i)$	Time	3.2	1.7	2.6	7.5
10	Variance	$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x(i) - \mu)^2$	Time	2.6	2.3	2.6	7.5
11	Power	$\frac{1}{N} \sum_{i=1}^{N} x(i)^2$	Time	3.1	1.5	2.7	7.3
12	Maximum	$max(x(i))_{i=1N}$	Descriptive	3	1.9	2.3	7.2

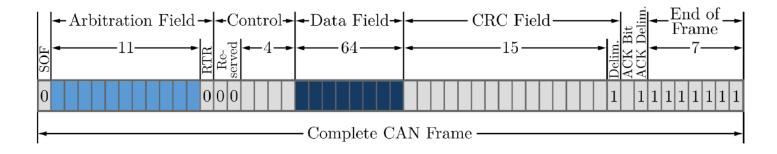
Features Calculation Time

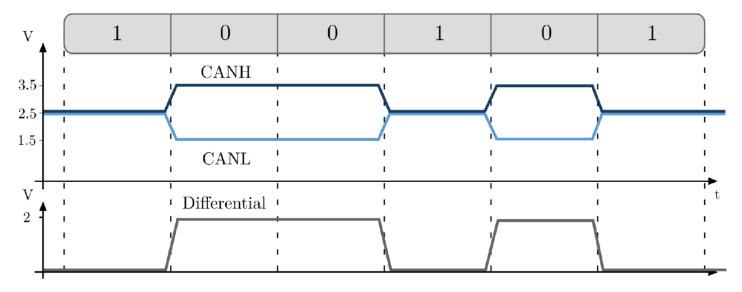

Performance

Logistic Regression						
	Attack	Pred	icted	Suspicious		
	Attack	0	1	Frames		
Duototyno	0	100	0	0.01		
Prototype	1	0.19	99.81	0.16		
Fiat 500	0	100	0	0		
riat 500	1	0.06	99.94	0.03		
Porsche Panamera	0	100	0	0.03		
rorsche Fahamera	1	0.77	99.23	0.64		
Support Vector Machines						
Prototypo	0	100	0	0		
Prototype	1	0	100	0		
Fiat 500	0	100	0	0.03		
riat 500	1	0.21	99.79	0.18		
Porsche Panamera	0	99.99	0.01	0		
Torsche Tahamera	1	0.51	99.49	0.26		
Naive Bayes						
Prototype	0	100	0	0		
Trototype	1	0	100	0		
Fiat 500	0	100	0	0		
riat 500	1	0	100	0		
Porsche Panamera	0	99.31	0.69	0		
roische Fahamera	1	2.31	97.69	1.93		

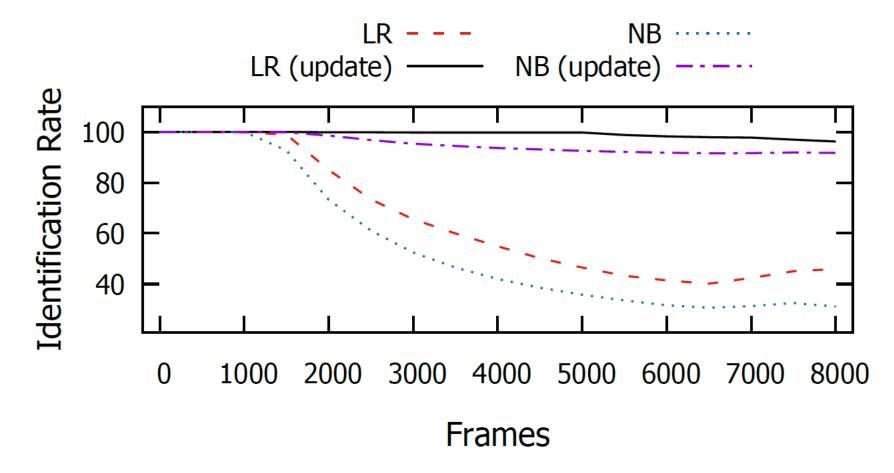

	Prototype	Fiat	Porsche	Average
LR Avg	99.99	100	99.86	99.98
LR Min	99.95	100	99.41	99.92
SVM Avg	100	99.98	99.81	99.98
SVM Min	100	99.83	98.87	99.84
NB Avg	100	100	97.64	99.79
NB Min	100	100	87.15	98.88

Additional and unmonitored ECU Attack


Additional ECU Attack



Unknown ECU Attack


CAN Frame and Signaling

Update Mechanism

