

Hold The Door! Fingerprinting Your Car Key to Prevent Keyless Entry Car Theft

Kyungho Joo*

Wonsuk Choi*

Dong Hoon Lee

Korea University

Outline

- Introduction
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

- Traditional system
 - Physically insert a key into the keyhole
 - Inconvenient
 - Vulnerable to key copying

- Keyless Entry System
 - Remote Keyless Entry (RKE) System
 - Passive Keyless Entry and Start (PKES) System
- Attacks on Keyless Entry System
 - Cryptanalysis
 - Relay Attack
 - etc. (e.g., Roll-jam)

- Countermeasures
 - Distance bounding protocol
 - Sensitive to timing error (Propagates at the speed of light)
 - UWB-IR Ranging System
 - Efforts are underway (IEEE 802.15.4z Task Group) [1-3]
 - Requires an entirely new keyless entry system
- Motivation
 - Device Fingerprint: Exploits hardware imperfection
 - PHY-layer signal analysis

^[1] UWB with Pulse Reordering: Securing Ranging against Relay and Physical Layer Attacks (M. Singh et al.)

^[2] UWB-ED: Distance Enlargement Attack Detection in Ultra-Wideband (M. Singh et al.)

^[3] Message Time of Arrival Codes: A Fundamental Primitive for Secure Distance Measurement (P. Leu et al.)

- Contributions
 - New attack model
 - Combines all known attack methods; our attack model covers both PKES and RKE systems
 - Single/Dual-band relay attack, Cryptographic attack
 - No alterations to the current system
 - Easily employed by adding a new device that captures and analyzes the ultra-high frequency (UHF) band RF signals emitted from a key fob
 - Evaluations under varying environmental factors
 - Temperature variations, NLoS conditions (e.g., a key fob placed in a pocket) and battery aging

- Passive Keyless Entry and Start (PKES) System
 - LF band (125~135 kHz, Vehicle)
 - I ~ 2 meter communication range
 - UHF band (433, 858 MHz, Key fob)
 - ~100 meter communication range)
 - Shared cryptographic key between the key and the vehicle

System Model

Outline

- Introduction / Background
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

- Single-band Relay Attack [*]
 - Manipulate LF band signal only
 - Wired / Wireless Attack

- Dual-band Relay Attack (I.Amplification Attack)
 - Manipulate both LF and UHF band signals
 - Amplifies UHF band signal and injects to the vehicle

- Dual-band Relay Attack (II. Digital Relay Attack) [*]
 - Performs the whole process of digital communication
 - Demodulate LF/UHF band signal

UHF band signal information

- Cryptographic Attack [*]
 - Single attacker
 - Injects LF band signals to the key fob
 - Records valid responses and extract secret key
 - Exploits weaknesses of cryptographic algorithm

Outline

- Introduction / Background
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

• Overview (HODOR)

• Preprocessing

Preamble Payload

• Feature Extraction

• Feature Extraction (Continue)

 SNR_{dB} Kurtosis

Spectral Brightness

Carrier Frequency offset

Training

Outline

- Introduction / Background
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

- Experimental Setup
 - Cars: KIA Soul, Volkswagen Tiguan
 - SDRs: HackRF One, USRP X310
 - SW: GNURadio
 - Loop Antenna, SMA Cable (Relay LF band signal)

- Selected Classification Algorithms
 - One-Class SVM (OC-SVM) with Radial Basis Function (RBF) kernel
 - k-NN with Standardized Euclidean Distance
 - MatLab implementation
- Performance Metric
 - Assume False Negative Rate (FNR) as 0%
 - Calculate False Positive Rate (FPR)

Single-Band Relay Attack Detection

Experimental Setup

(LF band signal relay)

Results

(0% FPR in both algorithms)

- Dual-Band Relay Attack Detection
 - Amplification Attack

Experimental Setup

(UHF band amplification)

Results

(0% FPR in both algorithms)

- Dual-Band Relay Attack Detection
 - Digital Relay/ Cryptographic Attack

Experimental Setup

(Cryptographic Attack)

(Average FPR k-NN: 0.65%, SVM:0.27%)

- Environmental Factors
 - Non-Line of Sight (NLoS) conditions, Dynamic Channel Conditions

Backpack: FPR k-NN: 1.32%, SVM:1.35%

Pocket: FPR k-NN: 1.71%, SVM:1.67%

Underground: FPR k-NN: 5%, SVM:4%

Roadside: FPR k-NN: 2%, SVM:3%

Appendix

- Environmental Factors
 - Signals from RKE system

Average FPR k-NN: 6.36%, SVM:0.65%

Average FPR k-NN: 0%, SVM:0%

- Execution time
 - Implementation on Raspberry Pi
 - I.4Ghz Core, IG RAM
 - Python Code

Phase		Algorithm		
_		k-NN	SVM	
	f_{peak}	4ms / 3.85ms		
Feature	f_c^{offset}	4ms / $3.55ms$		
Extraction	SNR_{dB}	130ms / $94ms$		
(FSK / ASK)	Kurtosis	20ms / $16.2ms$		
	Spec. Brightness	5ms / $3.73ms$		
Attack Detection	\mathbb{C}_{PKES}	4.8ms / 4.94ms	.038ms / .04ms	
(FSK / ASK)	\mathbb{C}_{RKE}	3.8ms / $4ms$.04ms / $.07ms$	

Total Execution Time

K-NN: 163.8ms and SVM: 159.038ms

- Feature Importance
 - Utilizing Relief algorithm

Atta Scena		Single-band Relay Attack	Amplification Attack	Digital Relay Attack	Playback Attack
	1	SNR	Kurtosis	f_{peak}	Spec. Brightness
Rank	2	Kurtosis	SNR	Kurtosis	Kurtosis
	3	Spec. Brightness	Spec. Brightness	Spec. Brightness	f_{peak}
	4	f_{peak}	f_{peak}	SNR	SNR

Outline

- Introduction / Background
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

Discussions

- HODOR and Security
 - Threshold is a trade-off parameter in HODOR
 - Small threshold leads to the false alarm; a large threshold leads to the false-negative (attack success)
- Feature Impersonation
 - Attacker must impersonate the whole feature at the same time
 - Impersonating a specific feature leads to a distortion in other features
- Practicality
 - Shortened execution time

Conclusion

- Proposed a sub-authentication system
 - Supports current systems to prevent keyless entry system car theft
- Effectively detect simulated attacks that are defined in our attack model
 - Reducing the number of erroneous detection occurrences (i.e., false alarms)
- Found a set of suitable features in a number of environmental conditions
 - Temperature variation, battery aging, and NLoS conditions

Q&A

Appendix

Playback Attack Detection

k-NN

Normalized Distance $\Gamma_{PKES} = 4$ $\Gamma_{PKES} = 4$

Experimental Results

(SDR with 5MS/s)

Experimental Results

(USRP with various sample rate)

