

Hold The Door! Fingerprinting Your Car Key to Prevent Keyless Entry Car Theft

Kyungho Joo* Wonsuk Choi* Dong Hoon Lee

Korea University

* Co-first Authors

Outline

- Introduction
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

- Traditional system
	- Physically insert a key into the keyhole
	- Inconvenient
	- Vulnerable to key copying

- Keyless Entry System
	- Remote Keyless Entry (RKE) System
	- Passive Keyless Entry and Start (PKES) System
- Attacks on Keyless Entry System
	- Cryptanalysis
	- Relay Attack
	- etc. (e.g., Roll-jam)

- Countermeasures
	- Distance bounding protocol
		- Sensitive to timing error (Propagates at the speed of light)
	- UWB-IR Ranging System
		- Efforts are underway (IEEE 802.15.4z Task Group) [1-3]
		- Requires an entirely new keyless entry system
- Motivation
	- Device Fingerprint: Exploits hardware imperfection
	- PHY-layer signal analysis

[1] UWB with Pulse Reordering: Securing Ranging against Relay and Physical Layer Attacks (M. Singh et al.) [2] UWB-ED: Distance Enlargement Attack Detection in Ultra-Wideband (M. Singh et al.) 5[3] Message Time of Arrival Codes: A Fundamental Primitive for Secure Distance Measurement (P. Leu et al.)

- Contributions
	- New attack model
		- Combines all known attack methods; our attack model covers both PKES and RKE systems
		- Single/Dual-band relay attack, Cryptographic attack
	- No alterations to the current system
		- Easily employed by adding a new device that captures and analyzes the ultra-high frequency (UHF) band RF signals emitted from a key fob
	- Evaluations under varying environmental factors
		- Temperature variations, NLoS conditions (e.g., a key fob placed in a pocket) and battery aging

- Passive Keyless Entry and Start (PKES) System
	- LF band (125~135 kHz, Vehicle)
		- \cdot $\sqrt{2}$ meter communication range
	- UHF band (433, 858 MHz, Key fob)
		- ~100 meter communication range)
	- Shared cryptographic key between the key and the vehicle

• System Model

Outline

- Introduction / Background
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

- Single-band Relay Attack [*]
	- Manipulate LF band signal only
	- Wired / Wireless Attack

- Dual-band Relay Attack (I. Amplification Attack)
	- Manipulate both LF and UHF band signals
	- Amplifies UHF band signal and injects to the vehicle

- Dual-band Relay Attack (II. Digital Relay Attack) [*]
	- Performs the whole process of digital communication
	- Demodulate LF/UHF band signal

- Cryptographic Attack [*]
	- Single attacker
	- Injects LF band signals to the key fob
	- Records valid responses and extract secret key
	- Exploits weaknesses of cryptographic algorithm

Outline

- Introduction / Background
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

• Overview (HODOR)

• Feature Extraction

• Feature Extraction (Continue)

 \int

Noise

Signal

 $A \neq$

- Training
	- Semi-supervised learning • Only requires legitimate data **Normalization** • Covers unknown attacks Parameter • OC-SVM, k-NN 90% Classifier \rightarrow Output $\left|\rightarrow\right|$ $\frac{\mu}{\tau}$ **Training** σ Legitimate data 10% **Testing** X10 EA

SITY

Outline

- Introduction / Background
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

- Experimental Setup
	- Cars: KIA Soul, Volkswagen Tiguan
	- SDRs: HackRF One, USRP X310
	- SW: GNURadio
	- Loop Antenna, SMA Cable (Relay LF band signal)

- Selected Classification Algorithms
	- One-Class SVM (OC-SVM) with Radial Basis Function (RBF) kernel
	- k-NN with Standardized Euclidean Distance
	- MatLab implementation
- Performance Metric
	- Assume False Negative Rate (FNR) as 0%
	- Calculate False Positive Rate (FPR)

• Single-Band Relay Attack Detection

Experimental Setup

(LF band signal relay)

(0% FPR in both algorithms)

SITY

- Dual-Band Relay Attack Detection
	- Amplification Attack

- Dual-Band Relay Attack Detection
	- Digital Relay/ Cryptographic Attack

Experimental Setup (Cryptographic Attack)

(Average FPR k-NN: 0.65%, SVM:0.27%)

- Environmental Factors
	- Non-Line of Sight (NLoS) conditions, Dynamic Channel Conditions

Location of key fob

Location of key fob

Backpack: FPR k-NN: 1.32%, SVM:1.35%

Pocket: FPR k-NN: 1.71%, SVM:1.67%

Underground: FPR k-NN: 5%, SVM:4%

26 Roadside: FPR k-NN: 2%, SVM:3%

Appendix

- Environmental Factors
	- Signals from RKE system

Average FPR k-NN: 6.36%, SVM:0.65% Average FPR k-NN: 0%, SVM:0%

• Execution time

- Implementation on Raspberry Pi
	- 1.4Ghz Core, 1G RAM
- Python Code

Total Execution Time K-NN: 163.8ms and SVM: 159.038ms

- Feature Importance
	- Utilizing Relief algorithm

Outline

- Introduction / Background
- Attack Model
- Our Method
- Evaluation
- Discussion
- Conclusion

Discussions

- HODOR and Security
	- Threshold is a trade-off parameter in HODOR
	- Small threshold leads to the false alarm; a large threshold leads to the false-negative (attack success)
- Feature Impersonation
	- Attacker must impersonate the whole feature at the same time
	- Impersonating a specific feature leads to a distortion in other features
- Practicality
	- Shortened execution time

Conclusion

- Proposed a sub-authentication system
	- Supports current systems to prevent keyless entry system car theft
- Effectively detect simulated attacks that are defined in our attack model
	- Reducing the number of erroneous detection occurrences (i.e., false alarms)
- Found a set of suitable features in a number of environmental conditions
	- Temperature variation, battery aging, and NLoS conditions

HODOR! Q&A (Thank you!)

This work was supported by Samsung Electronics

Appendix

• Playback Attack Detection

