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•Query equality pattern (qeq) 

• If and when the search is the same (search pattern) 

•Response identity pattern (rid) 

•The file identifiers matching the query (access pattern) 

•Co-occurrence pattern (co-occ) 

•The number of files shared by any two queries 

•Response length pattern (rlen) 

•The number of files matching a query 

•Volume pattern (vol) / Total volume pattern (tvol) 

•The number of bits of each file / the sum of file sizes in bits
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Query Leakage Terminology



Q: do we leak all of these patterns “at once”?
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Q: can we use the disclosed leakage to recover user’s data? 
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Leakage Attacks
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Leakage Attacks 
Assumptions

• Adversarial model 

• persistent: needs encrypted index, documents and queries 

• snapshot: needs encrypted index and documents 

• Auxiliary information 

• known sample: needs sample from same distribution 

• known data: needs actual data or/and user queries 

• δ: fraction of adversarially-known data

• Passive vs. active 

• injection (chosen-data): needs to inject data
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• “For example, IKK demonstrated that by observing accesses to an encrypted 
email repository, an adversary can infer as much as 80% of the search 
queries” 

• “It is known that access patterns, to even encrypted data, can leak sensitive 
information such as encryption keys [IKK]”  

• “A recent line of attacks […,Count,…] has demonstrated that such access 
pattern leakage can be used to recover significant information about data in 
encrypted indices. For example, some attacks can recover all search queries 
[Count,…] …”
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Impact of IKK & Count



A closer look at IKK & Count attacks 
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Non-trivial limitations

• High known-data rates  

• Count  v1 requires more than 80% and 5% of the queries 

• IKK requires more  than 95% and 5% of the queries 

• Count v2 requires more than 60% 

• Practical vs. Theoretical? 

• Low-vs. high selectivity keywords 

• Experiments all run on high-selectivity keywords 

• Keywords that are frequent in the user’s data 

• Re-ran on low-selectivity keywords and failed 

• Both exploit co-occurrence 

• relatively easy to hide  (using OPQ SSE)
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Q: can we de better than IKK & Count?
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Summary of our Attacks 
Injection attacks

Decoding & 
Binary 

attacks
tvol Query recovery

Vulnerable  
schemes

• Baseline STE • Semi-ORAM • OPQ STE • Full ORAM

First injection attack was by [Zhang-Katz-Papamanthou16] and  
works against Baseline STE and Semi-ORAM



The SubgraphVL Attack
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The SubgraphVL Attack

• Let K⊆ D be set of known documents 

• K = (K2, K4) and D = (D1, …, D4)
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The SubgraphVL Attack
•We need to match qi to some wj  

• The volumes are the ground of truth
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The SubgraphVL Attack
• Observations: if qi = wj then  

• N(wj) ⊆ N(qi) and #N(wj) ≈ δ . #N(qi)
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Evaluation of our Attacks 
Setting
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• Enron dataset: 

•  ~500K emails  

• Folder for every employee 

• Creation of different document collections 

• One user setting 

•Multiple user setting 

• Size of the query space: 500 & 5000 

• Composition of the query space 

• Query frequency::high, pseudo-low, low
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Summary of our Attacks 
Against Enron Dataset
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Attack Type Pattern Known Queries δ for HS δ for PLS δ for LS

IKK known-data co Yes ≥95% ? ?

Count known-data rlen Yes/No ≥80% ? ?

ZKP injection rid No N/A N/A N/A

SubgrapID known-data rid No ≥5% ≥50% ≥60%

SubgraphVL known-data vol No ≥5% ≥50%
δ=1  
recovers<10%

VolAn known-data tvol No ≥85% ≥85%
δ=1  
recovers<10%

SelVolAn known-data tvol, rlen No ≥80% ≥85%
δ=1  
recovers<10%

Decoding injection tvol No N/A N/A N/A

Binary injection Tvol No N/A N/A N/A

δ needed for RR ≥ 20%

Very theoretical

Theoretical

Practical



Takeaways
• Cryptanalysis in Encrypted search should be more “nuanced” — there is a lot more to learn! 

• Baseline STE is still OK for low-selectivity queries 

• ORAM-based search is also vulnerable to volume-based known-data attacks 

• ORAM-based search is also vulnerable to injection attacks 

• Subgraph attacks are practical for high-selectivity queries 

• need only δ ≥ 5% 

• Countermeasures 

• for δ < 80% use OPQ [this work]  

• for δ ≥ 80% use PBS [Kamara-M-Ohrimenko18] or use VLH or AVLH [Kamara-M19]
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Thank you!
https://eprint.iacr.org/2019/1175

https://eprint.iacr.org/2018/978

