
Detecting Probe-resistant Proxies
Sergey Frolov, Jack Wampler, Eric Wustrow

University of Colorado Boulder

Proxies

Censored User

Censor-Controlled Network

obfs3
proxy

Active Probing

Censored User

Censor-Controlled Network

obfs3
proxy

obfs3??
Let’s confirm!

Active Probing

Censored User

Censor-Controlled Network

obfs3
proxy

speaks obfs3

Active Probing

Censored User

Censor-Controlled Network

obfs3
proxy

*speaks
obfs3 back*

Active Probing

Censored User

Censor-Controlled Network

obfs3
proxy

Okay, now I can
safely block this

endpoint.

Thwarting Active Probing

● Probe-Resistant proxies
○ Require knowledge of shared secret to use
○ Don’t know secret? Server remains silent

Thwarting Active Probing

Censored User

Censor-Controlled Network

obfs4
proxy

*Tries to speak obfs4
without knowing

server’s password*

Thwarting Active Probing

Censored User

Censor-Controlled Network

obfs4
proxy

Remains silent

Thwarting Active Probing

Censored User

Censor-Controlled Network

obfs4
proxy

Not sure if I
can block this

Are these proxies actually probe-resistant in practice?

● How common is the behavior of proxies to never
respond to HTTP, TLS, ...any protocol?
○ If not common, censor can block it.

Probing Probe-Resistant proxies

We need a source of TCP endpoints on the internet to
compare their responses with Probe-Resistant proxies’
responses. We have 2 datasets:

Probing Probe-Resistant proxies

ZMap Dataset
785k endpoints

Tap Dataset
433k endpoints

We used the following probes:

1. HTTP
2. TLS ClientHello
3. Modbus
4. S7
5. Random bytes (23B - 17KB)
6. Empty probe
7. DNS zone Transfer
8. STUN

Probing Probe-Resistant proxies

For each probe we record 3‑tuple result:

● Time to close
● Type of close (FIN, RST or TIMEOUT)
● Size of response data

● Probe-resistant proxies never respond!

Probing Probe-Resistant proxies

Endpoints that respond with data

Probe Tap dataset

TLS 87.8%

HTTP 64.6%

DNS-AXFR 58.8%

S7 56.9%

STUN 52.5%

Modbus 51.4%

Empty 8.4%

Any 94.0%

Response alone can distinguish 94% of endpoints in the
realistic Tap dataset from proxies.

Endpoints that respond with data

Probe Tap dataset ZMap dataset

TLS 87.8% 0.90%

HTTP 64.6% 0.95%

DNS-AXFR 58.8% 0.67%

S7 56.9% 0.66%

STUN 52.5% 0.56%

Modbus 51.4% 0.54%

Empty 8.4% 0.23%

Any 94.0% 1.16%

Very few “legitimate” services
(lots of firewalls/honeypots)

Probing Probe-Resistant proxies

How do our probe-resistant proxies respond to those probes?
We examine:

● obfs4

● ObfuscatedSSH

● Lampshade

● MTProto Proxy

● Shadowsocks-Outline

● Shadowsocks-Python

Probe Close
Time (s)

Close
Type

HTTP GET 0.250 RST

TLS ClientHello 0.240 RST

Random 25, 47,
51, 7KB, 17KB

0.237 -
0.251

RST

DNS AXFR 0.242 RST

STUN 0.236 RST

Probe Close
Time (s)

Close
Type

Modbus 30.237 FIN

S7 30.236 FIN

Random 23 30.238 FIN

Empty probe 30.238 FIN

Probing ObfuscatedSSH

How else can we distinguish proxies from remaining 6%?

Proxy server code

clientConn := listener.Accept()

Proxy server code

clientConn := listener.Accept()

clientConn.SetDeadline(in30Seconds)

Proxy server code

clientConn := listener.Accept()

clientConn.SetDeadline(in30Seconds)

buffer := make([]byte, 50)

Proxy server code

clientConn := listener.Accept()

clientConn.SetDeadline(in30Seconds)

buffer := make([]byte, 50)
error := io.ReadFull(clientConn, buffer)
if error != nil { // didn’t get 50 bytes in 30s
 clientConn.Close()
 return
}

Proxy server code

clientConn := listener.Accept()

clientConn.SetDeadline(in30Seconds)

buffer := make([]byte, 50)
error := io.ReadFull(clientConn, buffer)
if error != nil { // didn’t get 50 bytes in 30s
 clientConn.Close()
 return
}

if !checkCredentials(buffer) {
 clientConn.Close()
 return
}
// do the proxying here

Can probe-resistant proxies be distinguished from other
servers due to such thresholds?

Close Thresholds

Probe Size Response
Size

Close
Time

Close
Type

49 bytes or fewer 0 30s FIN

50 bytes 0 Right away FIN

51 bytes or more 0 Right away RST

Investigating Close Thresholds

● Built a threshold scanner to binary search for close
thresholds
○ Send random data of different lengths
○ Scanned Tap/ZMap endpoints to compare with

probe-resistant proxies
○ Check for “stability”

Proxies’ thresholds

Proxy FIN Threshold RST Threshold

ObfuscatedSSH 24 B 25 B

Shadowsocks-Python 50 B -

Shadowsocks-Outline 50 B 51 B

Lampshade 256 B 257 B

obfs4 8 KB - 16 KB next mod 1448

MTProto - -

Investigating Close Thresholds

Tap Dataset ZMap Dataset

Endpoints 433k 779k

“Stable” thresholds 144k (33.5%) 116k (15%)

Investigating Close Thresholds

Tap Dataset ZMap Dataset

Endpoints 433k 779k

“Stable” thresholds 144k (33.5%) 116k (15%)

Sent data response 257k (59.5%) 5k (0.7%)

Error 3k (0.8%) 568k (73%)

“Unstable” thresholds 27k (6.2%) 88k (11.3%)

Why so few stable close thresholds?

Tap Endpoints’ Stable Thresholds

5, 11 and no threshold are the most common.

Decision Trees

We built manual decision trees to detect Probe-Resistant
proxies based on their responses to our probes.

We also evaluated automatic decision trees, but they seemed
less practical (see Appendix).

Manual ObfuscatedSSH decision tree

Manual Lampshade Decision Tree

Decision tree results

Proxy Decision Tree Labeled

Tap ZMap

Lampshade 0 1

ObfuscatedSSH 8 0

obfs4 2 0

Shadowsocks-Python 0 8

Shadowsocks-Outline 0 7

MTProto 3144 296

Manual MTProto decision tree

Defense Strategies

● Recommended: never respond, never close connection
○ 0.56% of Tap dataset

● Randomizing parameters, such as timeout, on a
per-server basis increases the overall size of “Anonymity
Set” for your transport.

● Stable thresholds are a fingerprint
○ To fix don’t close immediately after handshake fails

and keep draining the buffer until the timeout

Responsible Disclosure

We disclosed the presence of unique close thresholds to the
devs, and as a result, it was removed from:

● OSSH on May 13, 2019
● obfs4 on June 21, 2019 (version 0.0.11)
● SS-Outline on September 4, 2019 (version 1.0.7)
● Lampshade on October 31, 2019

Timeouts still have to be chosen with care.

Probe-indifferent Server Timeouts (Tap)

TODO: timeouts! TODO: either put them here or in the
backup

But note: popular values might be limited to specific applications

Conclusions

● Probe-resistant proxies aren’t (or weren’t!)
○ Never responding with data is uncommon on the

Internet
○ Connection timeouts and thresholds can be used to

fingerprint server applications
● Notified proxy developers

○ Removed thresholds
○ But choosing timeouts still tricky

● Long-term: investigate alternative proxy protocols
○ e.g. Domain Fronting, Refraction, HTTPS-proxy

FIN

Thank you for attention!

Backup

Internet Censorship

Mean percentage of domains from Satellite input list blocked per country.
Source: https://censoredplanet.org/data/visualizations

https://censoredplanet.org/data/visualizations

https://gfw.report
● “How China Detects and Blocks Shadowsocks”

describes evidence of a similar active probing attack
occuring in China in 2019.

https://gfw.report

How to fix this behavior?

Removing Close Threshold

Probe Size Response
Size

Close
Time

Close
Type

49 bytes or fewer 0 30 sec FIN

50 bytes 0 Right away FIN

51 bytes or more 0 Right away RST

Removing Close Threshold

clientConn := listener.Accept()

clientConn.SetDeadline(in30Seconds)

buffer := make([]byte, 50)
error := io.ReadFull(clientConn, buffer)
if error != nil { // didn’t get 50 bytes in 30s
 clientConn.Close()
 return
}

if !checkCredentials(buffer) {
 clientConn.Close()
 return
}
// do the proxying here

Removing Close Threshold

clientConn := listener.Accept()

clientConn.SetDeadline(in30Seconds)

buffer := make([]byte, 50)
error := io.ReadFull(clientConn, buffer)
if error != nil { // didn’t get 50 bytes in 30s
 clientConn.Close()
 return
}

if !checkCredentials(buffer) {
 io.Copy(ioutil.Discard, clientConn)
 clientConn.Close()
 return
}

Removing Close Threshold

Probe Size Response
Size

Close
Time

Close
Type

49 bytes or fewer 0 30 sec FIN

50 bytes 0 30 sec FIN

51 bytes or more 0 30 sec FIN

