

Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Harsh Chaudhari*, Rahul Rachuri^ and Ajith Suresh*

* Indian Institute of Science (IISc), Bangalore
^ Aarhus University, Denmark

Ajith Suresh CrIS Lab, IISc https://www.csa.iisc.ac.in/~cris

Outline

Privacy Preserving Machine Learning (PPML)

□ Secure Multi-party Computation (MPC)

Overview of Trident Protocol

Benchmarking Results

Machine Learning (ML) Prediction – An Abstraction

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Machine Learning (ML) Prediction – An Abstraction

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Machine Learning (ML) Prediction – An Abstraction

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Privacy Preserving Machine Learning (PPML)

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB, CSA, IISC

Secure Multi-party Computation (MPC) [Yao'82]

A set of parties with private inputs wish to compute some joint function of their inputs.

Goals of MPC:

- **Correctness** Parties should correctly evaluate the function output.
- Privacy Nothing more than the function output should be revealed

Secure Multi-party Computation (MPC) [Yao'82]

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

TRIDENT PROTOCOL

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB, CSA, IISC

> A new 4PC protocol over ring in the pre-processing model

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

> A new **4PC protocol** over ring in the pre-processing model

4 parties
Honest majority
At most 1 corruption

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

> A new 4PC protocol over ring in the **pre-processing** model

Data independent pre-processingFast online phase

Online

> A new 4PC protocol over ring in the pre-processing model

> Malicious security with guarantee of fairness

> A new 4PC protocol over ring in the pre-processing model

Malicious security with guarantee of fairness

Corrupt parties arbitrarily deviate

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

> A new 4PC protocol over ring in the pre-processing model

> Malicious security with guarantee of **fairness**

Honest parties get output whenever corrupt parties get output

Ref	Pre-processing (#elements)	Online (#elements)	Security
Araki et al'17 (3PC)	12	9	Abort

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Ref	Pre-processing (#elements)	Online (#elements)	Security
Araki et al'17 (3PC)	12	9	Abort
ASTRA (3PC)	21	4	Fair

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Ref	Pre-processing (#elements)	Online (#elements)	Security
Araki et al'17 (3PC)	12	9	Abort
ASTRA (3PC)	21	4	Fair
Gordon et al.'18 (4PC)	2	4	Abort

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Ref	Pre-processing (#elements)	Online (#elements)	Security
Araki et al'17 (3PC)	12	9	Abort
ASTRA (3PC)	21	4	Fair
Gordon et al.'18 (4PC)	2	4	Abort
Trident	3	3	Fair

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB, CSA, IISC

> A new 4PC protocol over ring in the pre-processing model

> Malicious security with guarantee of fairness

Efficient Mixed World Conversions

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Boolean World

• Comparison, Bit Extraction ...

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Boolean World

• Comparison, Bit Extraction ...

Arithmetic World

• Addition, Multiplication ...

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Range of improvement over ABY3

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

$\min(x_1 + x_2, x_3)$

 x_4

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Arithmetic

 $x_1 + x_2$

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

> A new 4PC protocol over ring in the pre-processing model

- > Malicious security with guarantee of fairness
- Efficient Mixed World Conversions
- Special tools for PPML

Dot Product

Ref	Pre-processing (#elements)	Online (#elements)	Security
ABY3 (3PC)	12d	9d	Abort

d – #elements in each vector

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Dot Product

Ref	Pre-processing (#elements)	Online (#elements)	Security
ABY3 (3PC)	12d	9d	Abort
ASTRA (3PC)	21d	2d+2	Fair

d – #elements in each vector

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Dot Product

 $X \bullet Y = \sum_{i=1}^{d} x_i \cdot yi$

Ref	Pre-processing (#elements)	Online (#elements)	Security
ABY3 (3PC)	12d	9d	Abort
ASTRA (3PC)	21d	2d+2	Fair
Trident	3	3	Fair

d – #elements in each vector

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB, CSA, IISC

> A new 4PC protocol over ring in the pre-processing model

- Malicious security with guarantee of fairness
- Efficient Mixed World Conversions
- Special tools for PPML
- Lower monetary cost in the outsourced setting

A new 4PC protocol over ring in the pre-processing model

Malicious security with guarantee of fairness

Efficient Mixed World Conversions

Special tools for PPML

Lower monetary cost in the outsourced setting

Computation is outsourced to a set of hired servers

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Benchmarking

> Implemented both Trident and ABY3, using the ENCRYPTO library.

- Benchmarked the protocols over LAN (40 Mbps) and WAN (1 Gbps) with the Google Cloud Platform.
- Servers located in West Europe, East Australia, South Asia, and South East Asia.
- For benchmarking, we used batch sizes up to 512 and feature sizes up to 1000.

Summary of Our Benchmarking Results

ML Algorithm	Improvement in terms of Online Throughput over ABY3		
	Training	Prediction	
Linear Regression	251.84x	145.81x	
Logistic Regression	34.58x	149.63x	
Neural Networks	63.71x	407.12x	
Convolutional Neural Networks	42.81x	741.56x	

*Throughput for Training - #iterations processed by servers / minute *Throughput for Prediction - #queries processed by servers / minute

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

References

- 1. Andrew Chi-Chih Yao. *Protocols for secure computations* (extended abstract). In FOCS, pages 160-164, 1982.
- 2. P. Mohassel, M. Rosulek, and Y. Zhang. Fast and Secure Three party Computation: Garbled Circuit Approach. In CCS, 2015.
- 3. T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watzman, and O. Weinstein. *Optimized Honest-Majority MPC for Malicious Adversaries Breaking the 1 Billion-Gate Per Second Barrier*. In IEEE S&P, 2017.
- 4. J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. *High-Throughput Secure Three-Party Computation for Malicious Adversaries and an Honest Majority*. In EUROCRYPT, 2017.
- 5. K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, and A. Nof. *Fast Large-Scale Honest-Majority MPC for Malicious Adversaries*. In CRYPTO, 2018.
- 6. P. Mohassel and P. Rindal, ABY3: A Mixed Protocol Framework for Machine Learning. In ACM CCS, 2018.
- 7. H. Chaudhari, A. Choudhury, A. Patra and A. Suresh. ASTRA: High-throughput 3PC over Rings with Application to Secure Prediction, In ACM CCSW, 2019.
- 8. S. D. Gordon and S. Ranellucci and X. Wang. Secure Computation with Low Communication from Cross-checking. In ASIACRYPT, 2018.