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Interprocedural Binary Analysis
Example

https://www.exploit-db.com/exploits/43435

Command injection

Authentication check

User input

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Interprocedural Binary Analysis
Example

https://www.exploit-db.com/exploits/43435

Decode Base64
encoded password

Hard-coded login credentials

is_authenticated variable
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Interprocedural Binary Analysis
Motivation

• Task: Find a feasible path that uses 
the hard-coded credentials and 
reaches the vulnerability

• Manual tracking of feasible paths 
and constraints over multiple 
function control-flow graph (CFGs)

A
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Interprocedural Binary Analysis
Motivation

• Number of paths in a function can be very large, but often many are 
infeasible

• Automated removal of these paths can have a big impact

• Can use automated analyses to automatically simplify an 
interprocedural CFG as it is constructed
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Interprocedural Binary Analysis
Problem Statement

Use automated analyses to interactively help reverse engineers manage 
the complexity of analyzing program binaries for vulnerabilities.
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Static Analysis Framework

• Built around interprocedural 
control-flow graphs (ICFGs) and a 
typed intermediate language (PIL)

• Supports symbolic analysis through 
satisfiability modulo theories (SMT) 
solvers

• Open source, written in

• Support for many executable 
formats and architectures via

Blaze

“Haskell logo.” https://www.haskell.org/img/haskell-logo.svg
“Binary Ninja logo.” https://www.cyberus-technology.de/assets/images/products/tycho/logo_binary_ninja.png
“Ghidra logo.” https://ghidra-sre.org/images/GHIDRA_1.png

and
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Control-Flow Graphs
(CFGs)
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(ICFGs)

• Control-flow graphs (CFGs) that 
may span across function calls

• In ICFGs, function calls are 
expandable call nodes

• ICFGs can be constructed 
programmatically or by user 
interaction

Interprocedural 
Control-Flow Graphs Before expansion Call to bar expanded
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(SMT)

• SMT solvers can check if a formula is 
satisfiable

• Support for integers, floats, bit vectors, 
arrays, and more through theories

• Describe program constraints as a 
mathematical formula

• Behind the scenes in Blaze, typed PIL 
statements are used to generate SMT 
formulas

Satisfiability Modulo Theories
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Influence of a Node

• A node x in a control-flow graph 
dominates node y if every path from 
the root to y passes through x

• A node may have many dominators

Dominators

B

C D

A

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Dominating Constraints

• Nodes dominated by a 
conditional branch are in a 
branch context

• Every branch context is 
associated with a constraint

• Branch contexts can be nested

• Use branch contexts to 
determine if a node is 
reachable

Branch Contexts arg1 != 0

var_10 != 0

A

arg1 == 0

var_10 == 0

var_10 == arg1

B

var_10 == arg1arg1 != 0 var_10 == 0∧arg1 != 0 var_10 != 0∧ ∧ var_10 == arg1 ∧
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Call Expansion
Constraint-Driven Transformations

foo bar

arg1@foo != 0 arg1@bar == 0 arg1@bar != 0arg1@foo == 0

arg1@foo != 0 arg1@bar == 0∧
Unsatisfiable
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Call Expansion

Constraint-Driven Transformations
foo

• The call to bar is expanded 

• Infeasible path is automatically removed from the ICFG

bar

bar

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Constraint-Driven Transformations
CVS Example
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Node/Edge Reduction
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Node/Edge Reduction
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Node/Edge Reduction
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Implementation
Blaze

Implementation available at: https://github.com/kudu-dynamics/blaze
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Backup Slides
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(PIL)

• ICFG basic blocks contain PIL statements

• PIL provides a common target 
representation for importing

• All analysis algorithms operate on PIL

• PIL has a type system and unification-
based checker capable of type inference

• SMT formulas can be generated by PIL 
statements

Path Intermediate Language BN Medium Level IL (SSA Form)

Blaze PIL
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Pruning
ICFG Interactions
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