
Blaze: A Framework for
Interprocedural Binary Analysis
Matthew Revelle
Matt Parker
Kevin Orr
Workshop on Binary Analysis Research (BAR) 2023
March 3, 2023

This material is based upon work supported by the 
Defense Advanced Research Projects Agency (DARPA) and the Naval Information Warfare Center (NIWC) under Contract No. N6600122C4018. 

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA and NIWC.
Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Interprocedural Binary Analysis
Example

https://www.exploit-db.com/exploits/43435

Command injection

Authentication check

User input

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Interprocedural Binary Analysis
Example

https://www.exploit-db.com/exploits/43435

Decode Base64
encoded password

Hard-coded login credentials

is_authenticated variable

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Interprocedural Binary Analysis
Motivation

• Task: Find a feasible path that uses 
the hard-coded credentials and 
reaches the vulnerability

• Manual tracking of feasible paths 
and constraints over multiple 
function control-flow graph (CFGs)

A

B C

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Interprocedural Binary Analysis
Motivation

• Number of paths in a function can be very large, but often many are 
infeasible

• Automated removal of these paths can have a big impact

• Can use automated analyses to automatically simplify an 
interprocedural CFG as it is constructed

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Interprocedural Binary Analysis
Problem Statement

Use automated analyses to interactively help reverse engineers manage 
the complexity of analyzing program binaries for vulnerabilities.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Static Analysis Framework

• Built around interprocedural 
control-flow graphs (ICFGs) and a 
typed intermediate language (PIL)

• Supports symbolic analysis through 
satisfiability modulo theories (SMT) 
solvers

• Open source, written in

• Support for many executable 
formats and architectures via

Blaze

“Haskell logo.” https://www.haskell.org/img/haskell-logo.svg
“Binary Ninja logo.” https://www.cyberus-technology.de/assets/images/products/tycho/logo_binary_ninja.png
“Ghidra logo.” https://ghidra-sre.org/images/GHIDRA_1.png

and
Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://www.haskell.org/img/haskell-logo.svg
https://www.cyberus-technology.de/assets/images/products/tycho/logo_binary_ninja.png
https://ghidra-sre.org/images/GHIDRA_1.png


Control-Flow Graphs
(CFGs)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



(ICFGs)

• Control-flow graphs (CFGs) that 
may span across function calls

• In ICFGs, function calls are 
expandable call nodes

• ICFGs can be constructed 
programmatically or by user 
interaction

Interprocedural 
Control-Flow Graphs Before expansion Call to bar expanded

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



(SMT)

• SMT solvers can check if a formula is 
satisfiable

• Support for integers, floats, bit vectors, 
arrays, and more through theories

• Describe program constraints as a 
mathematical formula

• Behind the scenes in Blaze, typed PIL 
statements are used to generate SMT 
formulas

Satisfiability Modulo Theories

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Influence of a Node

• A node x in a control-flow graph 
dominates node y if every path from 
the root to y passes through x

• A node may have many dominators

Dominators

B

C D

A

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Dominating Constraints

• Nodes dominated by a 
conditional branch are in a 
branch context

• Every branch context is 
associated with a constraint

• Branch contexts can be nested

• Use branch contexts to 
determine if a node is 
reachable

Branch Contexts arg1 != 0

var_10 != 0

A

arg1 == 0

var_10 == 0

var_10 == arg1

B

var_10 == arg1arg1 != 0 var_10 == 0∧arg1 != 0 var_10 != 0∧ ∧ var_10 == arg1 ∧
Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Call Expansion
Constraint-Driven Transformations

foo bar

arg1@foo != 0 arg1@bar == 0 arg1@bar != 0arg1@foo == 0

arg1@foo != 0 arg1@bar == 0∧
Unsatisfiable

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Call Expansion

Constraint-Driven Transformations
foo

• The call to bar is expanded 

• Infeasible path is automatically removed from the ICFG

bar

bar

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Constraint-Driven Transformations
CVS Example

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Node/Edge Reduction

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Node/Edge Reduction

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Node/Edge Reduction

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Implementation
Blaze

Implementation available at: https://github.com/kudu-dynamics/blaze

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://github.com/kudu-dynamics/blaze


Backup Slides

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



(PIL)

• ICFG basic blocks contain PIL statements

• PIL provides a common target 
representation for importing

• All analysis algorithms operate on PIL

• PIL has a type system and unification-
based checker capable of type inference

• SMT formulas can be generated by PIL 
statements

Path Intermediate Language BN Medium Level IL (SSA Form)

Blaze PIL

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Pruning
ICFG Interactions

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)


