
UIDS: Unikernel-based Intrusion Detection System
for the Internet of Things

Vittorio Cozzolino, Nikolai Schwellnus and Jörg Ott
Technical University of Munich

cozzolin@in.tum.de, n.schwellnus@tum.de, ott@in.tum.de

Aaron Yi Ding
Delft University of Technology

aaron.ding@tudelft.nl

Abstract—The advent of the Internet of Things promises to
interconnect all type of devices, including the most common
electrical appliances such as ovens and light bulbs. One of
the greatest risks of the uncontrolled proliferation of resource
constrained devices are the security and privacy implications.
Most manufacturers’ top priority is getting their product into
the market quickly, rather than taking the necessary steps
to build security from the start, due to high competitiveness
of the field. Moreover, standard security tools are tailored to
server-class machines and not directly applicable in the IoT
domain. To address these problems, we propose a lightweight,
signature-based intrusion detection system for IoT to be able
to run on resource-constrained devices. Our prototype is based
on the IncludeOS unikernel, ensuring low resource utilization,
high modularity, and a minimalist code surface. In particular,
we evaluate the performance of our solution on x86 and ARM
devices and compare it against Snort, a widely known network
intrusion detection system. The experimental results show that
our prototype effectively detects all attack patterns while using
up to 2-3x less CPU and 8x less RAM than our baseline.

I. INTRODUCTION

With the rising popularity of Internet of Things (IoT),
an increasing number of devices are being connected to the
Internet. Most of these devices are resource-constrained and
security is often regarded as an afterthought. Mirai [3], Qbot
[6], and Torii [20] are examples of large-scale network attacks
enabled by the proliferation of vulnerable, badly configured
smart devices. The distributed and hardly controlled nature
of the IoT transformed it into what is today a powerful
cyberattack platform. In fact, vulnerabilities have been found
in all types of related devices, ranging from cars [24] to light
bulbs [10]. Moreover, such devices are oftentimes connected
to the network by people having little knowledge about
security or privacy concerns. In 2010, a study [8] found
that 13% (≥580.000) of the discovered embedded devices
still used factory default login credentials. In 2017, Positive
Technologies found around 15% of devices with factory-
default credentials, which proved to be an exacerbation of the
problem [1].
IoT devices are too resource-constrained to employ traditional
security tools (virus scanner, etc.), which renders both edge
computing and enterprise networks far more exposed to

attacks [11]. Additionally, botched or corrupted updates can
leave the device in an unstable state, which may be hard to
recover from due to the lack of user interfaces. What we need
are security tools that are lightweight, modular, and easily
deployable. Hence, we aim at laying the foundation of the
concept of composable security through unikernels with the
latter embedding self-contained security functionality quickly
deployed on-demand. This work represents a first step in
such direction with a signature-based, minimalistic Unikernel
Intrusion Detection System (UIDS), which can to deliver the
same detection capabilities of well-known IDSs (e.g., Snort)
while using 2-3x less CPU and 8x less RAM. We make two
contributions:

• A signature-based IDS, capable of detecting common
Denial of Service (DoS), and port scan attacks, which
can be deployed on resource-constrained devices with
minimal overhead and memory footprint.

• A comprehensive evaluation of our solution with dif-
ferent hardware and datasets against a well-known IDS
tool.

II. RELATED WORK

Intrusion detection is a very mature field of research
going back to Anderson’s “Computer security threat moni-
toring and surveillance” [2]. The first prototype of a real-
time IDS was developed between 1984 and 1988, called the
intrusion detection expert system (IDES) [9]. Currently, the
rising number of deployed embedded devices and sensors has
motivated researchers to explore IDSs that can run on resource-
constrained devices. As there are few specific solutions target-
ing IoT networks, part of the research is focused on adapting
and profiling desktop-class tools, such as Snort1, to be less
resource-intensive. One interesting study is [15], where the
authors investigated the performance of Snort and Bro2 on
wireless mesh networks (WMNs). It was found that these IDSs
are unsuitable as a security solution for WMNs as they are too
demanding. To address this problem, they posited a lightweight
IDS for WMNs that decreases memory consumption and
packet drop rates in such resource-constrained nodes. However,
it could only detect a few types of attacks. Similarly, in [14],
the authors also argued about the infeasibility of deploying
Snort in WMNs and proposed a distributed solution called
PRactical Intrusion DEtection in resource constrained wireless

1https://www.snort.org/
2Today known as Zeek — https://en.wikipedia.org/wiki/Zeek

Workshop on Decentralized IoT Systems and Security (DISS) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-64-9
https://dx.doi.org/10.14722/diss.2020.23008
www.ndss-symposium.org



mesh network (PRIDE). Kyaw et al. [17] compared Snort
and Bro IDS running on a Raspberry Pi 2, and showed that
a Raspberry Pi 2 has enough resources to run open-source
IDSs such as Snort or Bro sufficiently fast to detect DoS
attacks and port scans. In addition the authors concluded that
Snort performed better than Bro on the Raspberry Pi. For
the IoT edge network, researchers have also used Docker
containers [12] to deploy cloud-assisted security functional-
ities, especially for D2D communication [13]. Finally, [21]
focused on the present and in-deep analysis of the feasibility of
deploying an IDS infrastructure based on Snort and Raspberry
PIs. Based on their results, this is possible in small networks;
however, and more experiments are needed to better grasp the
true limits of the Raspberry Pi. Another example of IDSs for
constrained devices is CEPIDS [5], which is a complex event
processing (CEP)-based IDS for detecting DoS attacks and port
scans. CEPIDS follows a similar architecture to Snort. It uses
three components to collect, evaluate and potentially block
malicious network traffic. The authors showed that their IDS
performs better than Bro and is on-par with Snort. However,
the methodology used to evaluate their solution is unclear, as
they compare their results with those obtained from [17] by
using a different dataset and device.

III. BACKGROUND

In this section, we briefly introduce two main types of
IDSs: signature-based and anomaly-based.
Signature-based IDSs use parameters of known attacks to
detect them. Hence, one downside is that new attacks cannot
be detected as long as their signatures are not yet known. As
such, signature-based IDSs need to receive constant updates
to be competitive. In addition, attacks that cannot be easily
described with signatures are difficult to detect. On the other
hand, a big advantage of signature-based IDSs is that known
attacks can be detected fast, accurately, and with fewer false
positives. This approach, however, depends on the accuracy
and quality of the signatures. If the signatures are known, an
attacker can craft traffic that is benign but triggers signature-
based rules, classifying the traffic as malicious, and as such
generates many false positives.
Anomaly-based IDSs require a normal operation model
against for comparison to the current network traffic. The flow-
ing traffic characteristics are then compared to this baseline,
and if an anomaly is found, the IDS will generate an alert.
In the case of network-based IDSs, machine learning is
oftentimes used to build a model trained on non-malicious
traffic. Incoming packets not fitting the model are classified
as abnormal and an alert is generated. An obvious problem
with this approach is that no malicious traffic must be present
during the model learning phase; otherwise, malicious traffic
will be classified as normal and no alerts will be generated.
Anomaly-based approaches can detect attacks that are un-
known at the time of deployment. However, they depend
heavily on the accuracy of the baseline model and require a
potentially long and tedious training process. Hence, one of
the main challenges in highly heterogeneous network traffic is
building such accurate models.

IV. UIDS

We design UIDS as a signature-based IDS capable of
detecting common DoS attacks, such as TCP SYN flood,

Network

virtio

Ethernet

IP4 IP6 ARP

UIDSConnTrack

IP4Capture ICMPHandle

TCP/UDP ICMP+UDP

ICMP

U
ID

S
In
cl
ud

eO
S

Fig. 1. UIDS packet reception path.

TCP ACK flood, and UDP flood. Moreover, our signature
based approach can detect the most common port scans in
three different variations: one-to-one, distributed and decoy
scans. We base our prototype on the IncludeOS [4] unikernel
which follows the zero-overhead principle and is written in
C++. UIDS expands on the rudimentary connection tracking
capabilities of IncludeOS to classify traffic as suspicious
or benign and keeps additional state information regarding
possible malicious packets.
IncludeOS contains a few features that we found handy during
the UIDS development. It offers state-keeping for network
connections, UDP and ICMP, and a more sophisticated one
for TCP. In addition, the IncludeOS modular network stack
allows us to easily capture packets on the wire and redirect
them to custom modules for additional processing. The
network stack of IncludeOS comprises C++ classes for each
module of the stack, such as IPv4, IPv6, and TCP which
are connected together using delegates and can be rewired at
runtime.

We extend IncludeOS as shown in Figure 1 to parse the
captured packets and detect attacks. Packets received by the
virtio device are passed up in the network’s stack hierarchy
of IncludeOS. After the Ethernet layer, we redirect packets
to a custom capture module bypassing the standard one as
shown in the figure with a red cross. Subsequently, we forward
them to the core of our system: the UIDSConnTrack module.
ICMP packets of type destination unreachable are parsed by
ICMPHandler to extract the UDP packet that generated the
ICMP error message. Afterwards, they are forwarded to the
connection tracking module with the augmented data.
Port scans are classified as probes hitting different ports on the
same host (vertical scans) or the same port on different hosts
(horizontal scans). For this reason, we track suspicious packets
on a per-host and per-port basis. UIDS classified packets as
probes (suspicious) if at least one of the following criteria was
met: (i) SYN packet to a closed, filtered or inactive port/host,
(ii) ACK or FIN packet not belonging to an active connection,
(iii) invalid packets (NULL/XMAS scan), (iv) partial three-way
handshake, (v) UDP packets generating ICMP unreachable
replies, and (vi) unanswered UDP packets.

2



Fig. 2. Setup for traffic replay.

The UIDSConnTrack module stores information about packets
that satisfied the above rules on a per-host, per-port basis using
trackers. The latter are implemented as unordered maps, saving
the address of the sending host, in addition to the scan type
and time.
DoS detection is implemented similarly to port scan but with
a different ruleset. In this case, trackers are simple packet
counters, as common practice for such attacks, and store less
information about the sender to save on resources.
The data structures tracking suspicious packets are analyzed
periodically, and if an attack is recognized during a scan, the
system generates an alert in the form of a JSON message.
Subsequently, alerts are forwarded to an alert module, which
either sends the data using UDP over a second network
interface or flushes it to stdout.

V. EVALUATION SETUP

We benchmark UIDS attack detection capabilities against
different datasets normally used to evaluate the effectiveness
of IDSs. These are often developed to train and test anomaly-
based IDSs using machine-learning but could also be used
to evaluate signature-based IDS as well. In our evaluation,
we use three publicly available datasets containing DoS
attacks and port scans in a packet-based format. One of
the most widely used dataset is the 1998 DARPA Intrusion
Detection Evaluation Dataset3; however it is very old, and
therefore did not contain traffic one would likely see today. In
addition, several researchers have shown different flaws in this
dataset [18], [19]. Hence, we instead used TRAbID [16] and
CICIDS 2017 [22]. In addition to existing datasets, we use
a small-scale testbed of our design to stress-test UIDS. Both
port scans and DoS flooding attacks are used to stress-test
our implementation and evaluate the accuracy of alerts raised
by UIDS and Snort.

Traffic replay. UIDS and Snort run on KVM with QEMU
using bridge networking to expose an interface to replay
traffic to. IncludeOS comes with a deployment tool for
KVM and QEMU, which allowed to configure this bridge
networking. We replay the dataset network traffic through
an Ethernet interface on the traffic-generator node and send
it to the device hosting UIDS and Snort via the incoming
network interface. On the receiving host, traffic is forwarded
to the bridge interface using the tool tcpbridge included in the
tcpreplay tool suit. Finally, the bridge interface (bridge43) is
connected to the virtual machines (VMs). Figure 2 illustrates
the complete network flow.
CICIDS2017 traffic is split into port scan and DoS to
dramatically reduce the evaluation period from more than

3https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-
evaluation-dataset

Fig. 3. Setup for live traffic.

9h to 1.5. However, such a procedure might introduce
false-positives in the first few minutes of the new traffic
since some connections might have been established directly
before the split. Nevertheless, these false-positives were easily
filtered out from the analysis (if they occurred).
The TRAbID dataset provides two traffic captures for port
scan and DoS. We use the probe known attacks capture for
the evaluation of the port scan detection accuracy. It contains
seven port scans originating from different machines, but all
directed to the same host. However, the amount of attack
traffic is very small compared to the background traffic
(≤0.15%). Unfortunately, for this dataset, the DoS traffic
capture is not currently publicly available, so we could not
use it in our evaluation.

Live traffic. Besides testing our solution against existing
datasets, we also generate our own network traffic traces. For
this purpose, we connect two hosts with a switch supporting
port-mirroring. A host running UIDS and/or Snort is connected
to the mirrored port, to receive all traffic generated between
the hosts. Figure 3 illustrates the described setup.
To generate the traces, we uses the tool sourcesonoff 4, which
outputs realistic Internet-like traffic using statistical models,
detailed in [23]. Moreover, we develop a simple script using
netcat to simulate an arbitrary number of concurrent TCP
connections. Finally, the attack traffic is injected in the testbed
using nmap for the port scan and hping for DoS traffic.

VI. RESULTS

In this section, we present the results obtained by testing
UIDS against the datasets described before while using Snort
as the baseline. We focus primarily on CPU and RAM uti-
lization to evaluate the compatibility of UIDS with resource-
constrained devices. In terms of the memory footprint, UIDS
weights only ≈2.3MB and boots in ≈200 ms on a non-
optimized version of KVM (we did not use Solo55). We run our
tests on two different hardware platforms: a laptop equipped
with an Intel i7-4710@2.5GHz (LAP) and a Raspberry Pi
3B+ with an A53 ARMv8@1.4GHz (RPI). On the former,
both IDSs run virtualized on top of KVM. On the latter,
due to the lack of support for ARM, IncludeOS can not be
directly virtualized using KVM. Instead, we emulate the x86

4http://www.recherche.enac.fr/∼avaret/sourcesonoff
5https://github.com/Solo5/solo5

3



0

100

200

300

400

500

600

RA
M

 [M
B]

Snort RAM
UIDS RAM

0 500 1000 1500 2000
Time [s]

0

20

40

60

80

100

120
CP

U 
[%

]
Snort CPU
UIDS CPU
Snort mean CPU
UIDS mean CPU

Fig. 4. UIDS vs. Snort — Port scan (TRAbID, LAP).

0

100

200

300

400

500

600

RA
M

 [M
B]

Snort RAM
UIDS RAM

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0
2
4
6
8

10
12
14

CP
U 

[%
]

Snort CPU
UIDS CPU
Snort mean CPU
UIDS mean CPU

Fig. 5. UIDS vs. Snort — Port scans (CICIDS2017, LAP).

architecture on top of ARM using QEMU. Therefore, UIDS
suffers a considerable performance penalty due to the addi-
tional emulation overhead which affected the results as well.
Conversely, Snort runs baremetal, which gave it a considerable
advantage in terms of performance. Hence, on the RPI we test
UIDS in what could be seen as the worst case scenario.

A. TRAbID

Traffic from the TRAbID dataset is replayed over ≈33
min with an average speed of 33.68Mbps. Figure 4 shows the
resource consumption on our laptop, which are correlated to
the number of packets sent. Two dips in the graph at ≈600 and
≈1350 s are caused by a sharp drop in the number of packets
generated by the dataset, moving from an average of ≥14000
to ≤1500 packets per second (pps).
The port scan traffic is not visible in the graph as it only
represented a very small part of the overall traffic. Both UIDS
and Snort equivalently detect 85% of all port scans contained
in the dataset covering UDP, SYN, NULL, TCP connect, FIN,
and XMAS scans. The ACK scan is not detected because it
is not supported in UIDS and no rules to detect it are added
to Snort. On the laptop, memory consumption for UIDS is
just under 100 MB while it hovers around 400-600 MB for
Snort. Additionally, UIDS CPU utilization is ≈40% while it
is up to ≈80% for Snort. On the Raspberry Pi, both UIDS and
Snort use, on average, the same amount of CPU. Regarding
the memory allocation, UIDS is less demanding than Snort,
requiring ≈50MB of RAM. Figure 7 shows the results in
detail. Our solution is definitely penalized with this setup, as
it is running on a twice virtualized stack, which clearly affects
the performance.

0

100

200

300

400

500

600

RA
M

 [M
B]

Snort RAM
UIDS RAM

0 500 1000 1500
Time [s]

0
2
4
6
8

10
12
14
16

CP
U 

[%
]

Snort CPU
UIDS CPU
Snort mean CPU
UIDS mean CPU

Fig. 6. UIDS vs. Snort — DoS (CICIDS2017, LAP).

TABLE I. CICIDS2017 — PORT SCANS AND RELATIVE DETECTION.

Scan From (min) Until (min) UIDS Snort
TCP SYN scan 11 13 yes yes
TCP Connect scan 14 16 yes yes
TCP FIN scan 17 19 no no
TCP XMAS scan 20 22 no no
TCP NULL scan 23 25 no no
ICMP Ping scan 26 27 no yes
TCP version scan 28 30 yes yes
UDP scan 31 32 yes yes
IP-protocol scan 33 35 no no
TCP ACK scan 36 38 no no
TCP window scan 39 41 yes yes

B. CICIDS2017

The results for this dataset are divided for port scan and
DoS attacks, and are described as follows.

Port scan. Port scans are executed during specific time
windows, as specified in Table I. We notice that both UIDS
and Snort detect most TCP/UDP-based scans contained in
the dataset. As a side note, the CICIDS dataset supposedly
contained FIN-, NULL-, and XMAS-scans, but could not find
any evidence of such scans in the downloaded dataset. In fact,
no packet without TCP flags set (NULL scan) or with URG,
PSH and FIN flags set (XMAS scan) could be found using
various tools. Therefore, neither UIDS nor Snort raise any
alert regarding such attacks. The only difference in port scan
detection between Snort and UIDS is the ICMP ping scan,
which is not currently implemented, and therefore, is not
detected by UIDS. The TCP version and window scans have
similar characteristics as TCP SYN or connect scans, and are
detected by both IDSs but classified as TCP SYN scans.
Snort and UIDS generated false positive alerts for FIN scans
in the first 120 seconds of the dataset. As mentioned in
Section V, this is due to the splitting of the dataset which
led both systems to see finalization packets that belonged to
connections lost during the splitting.
Figure 5 shows the resource utilization. Overall, the CPU
usage is low for both IDSs because the packet rates in the
CICIDS dataset are smaller than those in TRAbID, averaging
around ≈330 pps and approximately 1 Mbps. Memory
consumption is definitely higher for Snort, with 400-600MB,
against UIDS, with less than 100MB (4-6x lower). A spike
in memory usage can be observed after the first port scan is
executed at the 11-12 min mark. Interestingly, this spike is
modest for UIDS with a variation of ≤10MB but substantial
for Snort with ≥130MB.

4



40

60

80

100

120

140

160

RA
M

 [M
B]

Snort RAM
UIDS RAM

0 500 1000 1500
Time [s]

0
10
20
30
40
50
60
70
80
90

CP
U 

[%
]

Snort CPU
UIDS CPU
Snort mean CPU
UIDS mean CPU

Fig. 7. UIDS vs. Snort — Port scan (TRAbID, RPI).

40
60
80
100
120
140
160
180

RA
M

 [M
B]

Snort RAM
UIDS RAM

Snort CPU
UIDS CPU
Snort mean CPU
UIDS mean CPU

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

5

10

15

20

25

30

CP
U 

[%
]

Fig. 8. UIDS vs. Snort — Port scan (CICIDS2017, RPI).

Flood-based DoS. Traffic from the CICIDS2017 dataset
contains a DoS attack generated with the open-source tool
Low Orbit Ion Cannon (LOIT)6. This attack is active from
15:56 until 16:16 and is contained in the second traffic slice
generated by splitting the dataset. Both Snort and UIDS emit
alerts correctly during the active phase of the attack. Figure
6 clearly shows the beginning and end of the DoS attack in
relation to the number of CPU resources used. As foreseen,
memory consumption remain stable and marginal during the
attack since the very little state information needed storing
to detect flood-based DoS attacks. Also, for this benchmark,
UIDS proves to be extremely lightweight compared to Snort.
In fact, it allocates ≈4x less memory than Snort during the
attack peak and on average 3x less CPU.

Figures 8 and 9 show CPU and RAM usage for the
Raspberry Pi for CICIDS2017 port scan and DoS traffic,
respectively. While UIDS CPU usage is 5-6x higher com-
pared with Snort, memory allocation is surprisingly reduced.
Hence, considering that we are running in an emulated x86
environment, UIDS can handle moderately fast traffic (up to
≈34Mbps) for the CICIDS2017 dataset and reliably detect the
same attacks as that in the case of running on more powerful
hardware.

C. Results with custom testbed

We use our own testbed to evaluate the performance of
UIDS under heavy loads, as described in section V. To simu-
late a fully utilized link, we open multiple TCP sessions with
netcat and transmit random traffic as fast as possible through
all concurrent connections. As the TCP protocol performs load

6https://sourceforge.net/projects/loic/

40
50
60
70
80
90
100
110
120
130

RA
M

 [M
B]

Snort RAM
UIDS RAM

0 500 1000 1500
Time [s]

0

5

10

15

20

25

30

CP
U 

[%
]

Snort CPU
UIDS CPU
Snort mean CPU
UIDS mean CPU

Fig. 9. UIDS vs. Snort — DoS (CICIDS2017, RPI).

0 100 200 300 400 500020406080

CP
U 

[%
]

0 50 100 150 200 250
Time [s]

0
20
40
60
80

82

84

86

UIDS RAM

20
40
60
80

RA
M

 [M
B]

82

84

86

0 20 40 60 80 100 120 140 1600
20
40
60
80

UIDS CPU
UIDS mean CPU

Fig. 10. UIDS stress-test (LAP) — Saturated 1Gbps link (top). Background
traffic plus attacks (middle). 1Gbps, 5000 concurrent TCP connections (bot-
tom).

balancing for us, we do not need any additional configuration
steps. Figure 10(top) shows the resource consumption of UIDS
dealing with a saturated 1Gbps link with an increasing number
of concurrent connections, specifically, 1000 connections until
60 s, 5000 until 90 s and 10000 until 165 s. A step-up in
memory consumption can be observed when the number of
concurrent connections increased. This is expected, as UIDS
needs to keep track of these extra connections.
Because the link capacity is fully utilized, some traffic is
lost, and therefore, not available for our connection tracking
algorithm. This is problematic because the port scan detector
relied on accurate connection tracking. Moreover, we observe
several false positives for TCP no-reply (i.e., lost answers to
SYN packets) as well those for FIN scans.

In a second experiment, we evaluate whether UIDS could
detect attacks in a realistic background traffic and if UIDS can
cope with a large-scale DoS attack using 1Gbps traffic. Figure
10(mid) shows resource consumption during the background
traffic, port scans, and a large DoS attack using the ICMP
flood. The CPU usage is very small when handling traffic
generated by the tool sourcesonoff, while memory usage is
comparable to the results obtained for the other datasets.
Four different port scans are executed during the first 300 s of
the second experiment: TCP SYN, TCP XMAS, TCP NULL
and a UDP scan. All four scans are detected and no false alerts

5



are generated.
UIDS behaves as expected during the ICMP flood between
310 and 420 s, as shown in Figure 10(mid). However, the
ICMP flood with ≈120,000 pps and close to 1Gbps rate is
strong enough to effectively disable our traffic-generating host.
Consequently, we see a reduction in the allocated memory as
many connections timed out and no new ones are generated;
thus, fewer connections need tracking.

Finally, we conduct a third experiment to evaluate the
port scan detection capability under high load, as shown in
Figure 10(bottom). We use the same four scans as in the
previous experiment and a saturated 1Gbps link with 5000
concurrent TCP connections. In this case, all types of scans
are detected including TCP SYN which got linked to false-
positive alerts, and as such, are not accurate.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents UIDS: our first prototype of signature-
based unikernel IDS for the IoT. UIDS is implemented from
scratch in C++ and is based on IncludeOS. We evaluated our
solution on both a mid-range laptop and a Raspberry PI and
compared the results against Snort on two datasets. From our
experiments, UIDS required 2-3x fewer CPU resource and up
to 8x times less memory than Snort without penalizing any
detection capability. We consider these results very promising
as our main goal was to build a lightweight modular solution,
with reduced hardware resource demand.
Despite this being our first prototype, UIDS showed great
potential by delivering better resource efficiency, isolation, and
a small memory footprint without sacrificing on the security
aspects. Its modularity enabled easier code updates and opened
the door to composable, on-demand security with unikernels.
In our future work, we plan on exploring the tradeoffs of
extending UIDS to anomaly-based detectors and simplifying
its setup by using the IncludeOS configuration language NaCl
and integrating UIDS with our edge-cloud deployment and
chaining framework [7] to orchestrate a network of UIDS and
fully exploit its modularity for service composition.

REFERENCES

[1] “Positive technologies - learn and secure : Practical ways
to misuse a router,” http://blog.ptsecurity.com/2017/06/
practical-ways-to-misuse-router.html, accessed: 2019-07-17.

[2] J. P. Anderson, “Computer security threat monitoring and surveillance,”
1980.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 1093–1110.

[4] A. Bratterud, A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum,
“Includeos: A minimal, resource efficient unikernel for cloud services,”
in 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), Nov 2015, pp. 250–257.

[5] A. Cardoso, R. Fernandes Lopes, A. Teles, and F. Benedito Veras Ma-
galhaes, “Poster abstract: Real-time DDoS detection based on complex
event processing for IoT,” 04 2018, pp. 273–274.

[6] G. Cluley, “Mutating Qbot worm infects over 54,000 PCs at organiza-
tions worldwide,” Tripwire, Tripwire, 2016.

[7] V. Cozzolino, A. Y. Ding, and J. Ott, “Edge chaining framework for
black ice road fingerprinting,” in Proceedings of the 2Nd International
Workshop on Edge Systems, Analytics and Networking, ser. EdgeSys
’19. New York, NY, USA: ACM, 2019, pp. 42–47. [Online].
Available: http://doi.acm.org/10.1145/3301418.3313944

[8] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity
of embedded network devices: Results of a wide-area scan,” in
Proceedings of the 26th Annual Computer Security Applications
Conference, ser. ACSAC ’10. New York, NY, USA: ACM, 2010,
pp. 97–106. [Online]. Available: http://doi.acm.org/10.1145/1920261.
1920276

[9] A. K. D and S. Venugopalan, “Intrusion detection systems: A review,”
International Journal of Advanced Research in Computer Science,
vol. 8, 10 2017.

[10] N. Dhanjani, “Hacking lightbulbs: Security evaluation of the philips
hue personal wireless lighting system,” Internet of Things Security
Evaluation Series, 2013.

[11] B. Duncan, A. Happe, and A. Bratterud, “Enterprise IoT security
and scalability: how unikernels can improve the status Quo,” in 2016
IEEE/ACM 9th International Conference on Utility and Cloud Comput-
ing (UCC). IEEE, 2016, pp. 292–297.

[12] I. Hafeez, A. Y. Ding, L. Suomalainen, A. Kirichenko, and S. Tarkoma,
“Securebox: Toward safer and smarter iot networks,” in Proceedings of
ACM Workshop on Cloud-Assisted Networking, ser. CoNEXT CAN ’16.
ACM, 2016.

[13] I. Hafeez, A. Y. Ding, and S. Tarkoma, “Ioturva: Securing device-to-
device (d2d) communication in iot networks,” in Proceedings of the
12th ACM MobiCom Workshop on Challenged Networks, ser. MobiCom
CHANTS ’17. New York, NY, USA: ACM, 2017, pp. 1–6.

[14] A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis,
“Pride: Practical intrusion detection in resource constrained wireless
mesh networks,” in International Conference on Information and Com-
munications Security. Springer, 2013, pp. 213–228.

[15] F. Hugelshofer, P. Smith, D. Hutchison, and N. Race, “Openlids: a
lightweight intrusion detection system for Wireless Mesh Networks,”
01 2009, pp. 309–320.

[16] E. K. Viegas, A. Santin, and L. Soares de Oliveira, “Toward a reliable
anomaly-based intrusion detection in real-world environments,” Com-
puter Networks, vol. 127, 08 2017.

[17] A. K. Kyaw, Yuzhu Chen, and J. Joseph, “Pi-ids: evaluation of open-
source intrusion detection systems on Raspberry Pi 2,” in 2015 Second
International Conference on Information Security and Cyber Forensics
(InfoSec), Nov 2015, pp. 165–170.

[18] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 darpa/lincoln
laboratory evaluation data for network anomaly detection,” in Recent
Advances in Intrusion Detection, G. Vigna, C. Kruegel, and E. Jonsson,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 220–
237.

[19] J. McHugh, “Testing intrusion detection systems: A critique of
the 1998 and 1999 darpa intrusion detection system evaluations
as performed by lincoln laboratory,” ACM Trans. Inf. Syst. Secur.,
vol. 3, no. 4, pp. 262–294, Nov. 2000. [Online]. Available:
http://doi.acm.org.eaccess.ub.tum.de/10.1145/382912.382923

[20] C. Osborne, “Meet Torii, a new IoT botnet far more sophisticated than
Mirai variants,” 2018.

[21] A. Sforzin, F. G. Mármol, M. Conti, and J.-M. Bohli, “Rpids: Rasp-
berry Pi IDS — a fruitful intrusion detection system for IoT,” in
2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Commu-
nications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld).
IEEE, 2016, pp. 440–448.

[22] I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward generat-
ing a new intrusion detection dataset and intrusion traffic characteriza-
tion,” 01 2018, pp. 108–116.

[23] A. Varet and N. Larrieu, “How to generate realistic network traffic?”
in 2014 IEEE 38th Annual Computer Software and Applications Con-
ference, July 2014, pp. 299–304.

[24] A. Wright, “Hacking cars,” Commun. ACM, vol. 54, no. 11, pp. 18–19,
Nov. 2011. [Online]. Available: http://doi.acm.org/10.1145/2018396.
2018403

6


