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Abstract—This paper presents a longitudinal study of 11 Billion
SSH brute-force attacks targeting an operational system at the
National Center for Supercomputing Applications. We report the
nature of these distributed attacks in terms of i) persistence (i.e.,
consecutively attacking over an entire year), ii) targeted strategies
(i.e., using stolen SSH keys), iii) large-scale evasion techniques
(i.e., using randomized SSH client versions) to bypass signature
detectors, and iv) behaviors of human-supervised botnet.

The significance of our analyses for security operators include
i) discerning cross-country attacks versus persistent attacks, ii)
notifying cloud providers and IoT vendors regarding stolen SSH
keys for them to verify the effectiveness of software patches, iii)
deterring the above evasion techniques by using anomaly detec-
tors/rate limiters, and iv) differentiating between fully automated
attacks versus more sophisticated attacks driven by human.

I. INTRODUCTION
The Secure Shell (SSH) is the universal authentication

protocol for managing remote servers. Attacks targeting exposed
SSH servers see an exponential growth recently due to the
availability of leaked passwords and stolen keys [25], [30], [33],
[38], [40], [41]. A successful SSH login typically grants the
super-user (root) permission, thus enables persistent access for
compromising internal network, exfiltrating sensitive data [26],
[32], [37] and causing monetary losses. For example, when
being offered 50 Bitcoins by a hacker, a former server
administrator at ShapeShift [23], a cryptocurrency company,
gave away an SSH private key to the company’s Bitcoin core
server for accessing internal Bitcoin’s wallets. This incident
eventually led to $230,000 losses [7], [20].

This paper presents a longitudinal study of 11 Billion
SSH brute-force attacks targeting an operational system [22],
[31] at the National Center for Supercomputing Applications1

(NCSA). We report the nature of these attacks in terms of i)
persistence (i.e., consecutively attacking over an entire year),
ii) targeted strategies (i.e., using stolen SSH keys), iii) large-
scale evasion techniques (i.e., using randomized SSH client
versions) to bypass signature detectors, and iv) behaviors of
human-supervised botnet.

A. Data Overview
Our dataset contains 11 billion attack attempts, including

3.4 billion connections and 7.9 billion SSH password- and
key-based brute-force attack records. Each is an attempt to
compromise the SSH server and thereby access the internal
network and steal sensitive data. The data is collected in
an operational honeypot in 1,000 days starting in February

§Joint first authors.
1NCSA hosts the Blue Waters, a sustained petascale supercomputer of 22,640 cores.

2017, deployed on a /16 IP address space simulating ∼65K
machines [31]. In total, the honeypot recorded 4.5 million
unique, globally distributed, IP addresses of attackers.

B. Analysis Workflow
The main steps in our analyses are to: i) discern the

nature of attacks in terms of persistence (Section II), ii)
identify coordination and evasion techniques (Section III), and
iii) distinguish human-supervised and fully automated botnet
attacks (Section IV). Fig. 1 illustrates the logical flow of our
approach.

We first load our large dataset (3TB) into Clickhouse, a
columnar database [15], for fast and distributed SQL queries
on the dataset. Then, we show summary statistics and month-
by-month trends of attack techniques, including SSH keys,
passwords, usernames, SSH client versions, and IP sources. We
focused on trend anomalies (Fig. 2(b)) and persistent footprints
over the entire honeypot operation (Fig. 3 and 4). Second, we
closely inspected attacker tactics (i.e., through SSH key and
client version forensics) in terms of exploitation, coordination,
and evasion. Finally, we quantify the degree of automation
in attack strategies by comparing attack activities during the
weekend and weekday. This analysis allows us to discern and
distinguish human-supervised botnets with fully automated ones
(Fig. 8, 6, and 7).

C. Findings and Implications
We provide key findings and implications as follows.
• Persistent attacks versus cross-country attacks.

Persistent attackers constituted over 70% of total attack
attempts; some of them have been brute-forcing consecu-
tively for over an entire year. While the total number
of unique attack sources (4M IPs) does not increase
significantly, we saw a 20× increase in attack attempts
since the public disclosure of the honeypot [31]. On
the other hand, attackers from 20 countries across four
continents rapidly exploited an SSH key over four days –
50× faster than a single-country botnet even with more IP
sources, implying a global coordination effort. The finding
indicates that most attackers (distributed across countries)
were rapidly shifting targets after fruitless exploitation
within a short period, while a few persistent attackers
were relentlessly coming back to the honeypot and posing
aggressive threats to production systems.

• Leaked SSH keys exploitation. Attackers from the major
cloud and ISPs (e.g., Google or Charter Communications)
used leaked SSH keys of IoT appliances (e.g., Enterprise
VA load balancer [3] or VMware data protection appli-
ances [12]). In particular, attackers originated from Google-
registered IPs rapidly exploited all seven leaked keys that
we have identified (Table II) in one day. This finding
enables the opportunity to alert the owner of leaked keys
and IoT appliance operators to i) investigate whether their
software patches are sufficient, and ii) determine whether
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Figure 1: Analysis workflow to mine threat intelligence.

affected devices with outdated vulnerabilities still exist in
the wild.

• Large-scale evasion techniques. A globally coordinated
botnet (from 30 countries across six continents) spoofed
millions of unique client versions for three months, which
was over 8,000× the counterpart in the previous 18 months.
This finding implies that new bot blocking techniques
such as rate limiting or anomaly-based blocking must be
deployed instead of signature-based blocking based on
known client versions.

• Human-supervised botnets. We found a group of human-
supervised bots, operating from the same /8 subnet, that
only attacked during human working days. Compared to
the fully automated type of botnet that attacks constantly,
the human-supervised botnet employed more diverse
devices and planned more strategically in credential brute-
forcing. Security operators can integrate our approach into
defense strategies to build bot-specific defense models.

II. LONGITUDINAL PERSPECTIVE OF ATTACK BEHAVIORS
This section presents key findings from the longitudinal

analysis of SSH attack trends.

A. Trend Anomalies
The anomalies in trend, including surgent client versions,

dissipating active IPs versus rising active attack attempts, guided
us to discover particular attacker tactics behind the scene.

Abrupt upsurge of unseen client versions from new
attackers. The honeypot witnessed a dramatic increase of
∼50,000× unique new-attempted client versions from August
to October 2018. Eventually, as implied in Fig. 2(b), aligned
with the total 4 million unique IP sources, the final accumulative
number of unique client versions also reached a scale of 2
million in the end. This number is abnormally high because
the previous studies both reported just more than 100 version
strings [31], [33]. Further inspection reveals attackers from a
group of new-emerging, globally distributed IP sources were
massively spoofing client versions in coordination. Contrary to
the version trend, within the same month in August, increments
of new IPs slowed down (Fig. 2(b) and 2(c)). In Section III-C,
we present the detailed attack tactics underlying the million-
scale SSH version string manipulation.

Increasing scale of attack attempts from fewer attackers.
Fig. 2(c) illustrates the monthly progression of active IPs
and attack attempts in reverse trends. Due to changes in
network policy to no longer block honeypot traffic, monthly
attack attempts increased by 600 times in April 2018. On
the other hand, while the honeypot did not filter certain IPs,

the overall IPs were still decreasing. This implies that, after
fruitless exploitation over a short period, most attackers in the
wild were shifting targets rapidly. Combining the two reverse
trends, we could conclude that number of attacks per IP were
dramatically increasing over time. We speculate that certain
attackers remained persistent in exploiting our honeypot by
repeatedly coming back or launching a large number of exploits
at one time. We will characterize and present the activities and
patterns of those persistent attackers below.

B. Persistent Attack Traces
We had observed four million unique IP addresses during

the initial 463 days of honeypot deployment [31]. However,
this number increased by only 0.5 million (12.5%) over the
next 537 days. In contrast, total attack attempts increased by
almost 20 times (from 405 million to 7.9 billion). We suspect
certain persistent attackers were repeatedly coming back to
attack the honeypot. Therefore, in this section, we present the
statistics and patterns of attackers in terms of persistence.

Persistent attackers constituted over 70% of all attacks.
We categorize two types of IPs in Fig. 4: recurring IPs and
monthly new IPs. In contrast with monthly new IPs (with the
first occurrence at the current month), recurring IPs repeatedly
appear to attack the honeypot across different months. Hence
their occurrences in the current month are recurrences. For
recurring IPs, the maximum value of monthly average attempts
per IP is 0.2 million, which is 5× that of new IPs. As Fig. 4
implies, Starting from May 2018, the trend of actively recurring
IPs started to catch up with monthly new IPs. In general, total
attacks from the recurring IPs are 2.5× the overall contribution
from monthly new IPs, and those recurring IPs constituted
more than 70% of all the attack attempts in the dataset.

Persistent attackers continuously attacked for over one
year. To quantify recurring IP’s degree of persistence, we
investigated three metrics: attack time span, effective attack
days, and the longest span of consecutive attack days. For
each IP, We define "attack time span" as the time between the
dates of that IP’s first and last attack, "effective attack days"
as the number of days with at least one attack attempt by that
IP, and "longest consecutive days" as the highest number of
consecutive effective attack days for that IP.

Even within a long time span, attackers may not actively
attack every day. Our results show that four IPs have the longest
attack time span of 1,000 days, which is as long as the time
span of the honeypot’s operation. However, their effective attack
days range from 62 to 221 days, which means these four IPs
were only effectively attacking at most 22% of their time spans.

We then switched focus to attackers with a large number
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Figure 2: Cumulative trend plots depicting key features in more than 8 billion attack attempts spanning 1,000 days.
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Figure 3: Normalized attack activities between two persistent
IPs (A&B) in 2019 [M: Monday, T: Thursday, S: Sunday].
Both IPs adopted naive password strategies: A rotated over 42
unique passwords almost every day; while B alternated almost
equally between only two passwords every single day.

of effective attack days. The most significant value is 555
days, which was achieved by two IPs. Moreover, both IPs were
actively attacking for 384 consecutive days – over an entire
year. The top five IPs with the most effective attack days were
all attacking consecutively over an entire year. In particular,
these five IPs came from four different ISPs. In Fig. 3, we select
two persistent IPs from the top five to illustrate the different
patterns in their normalized attack activities.

Implications. Persistent IPs are more prone to access a
range of internet-connected sites and devices [36]. Therefore,
we advocate sharing the long-term threat intelligence with peer
sites, so that corresponding network operators can preempt the
aggressive threats by monitoring or flagging these persistent
attackers in advance, saving both defense resources and time.

III. EXPLOITATION, COORDINATION, AND EVASION
This section presents the exploitation, collaborating, and

evasion strategies of advanced adversaries.
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Figure 4: Monthly attack attempts comprising of monthly new-
incoming IPs and cross-month recurring IPs. Total attempts
from recurring IPs accounted for more than 70% total attack
attempts.

A. Exploitation of Leaked SSH Keys
In total, 185 unique SSH public key fingerprints (in the SHA-

256 hash) found their way into our honeypot. By matching
each of the keys with a public database and online files of
bad keys [11], [21], we discovered and recovered the identities
of seven keys that were publicly leaked due to vulnerabilities.
Further investigations implied that cybercriminals were trying
to gain root permission to vulnerable production appliances and
devices in the wild using these leaked keys, even years after
the key-pertinent vulnerability disclosure. Their exploitation
strategies are revealed in more detail below.

Attackers were targeting production devices using leaked
keys. The seven leaked keys belonged to seven different
enterprises (see Table I). All these keys granted attackers with
root permission in the targeted systems eventually. Among those
keys in Table I, the top four have direct root privileges. With
the bottom three keys, attackers gain access as non-root users
initially. However, either by exploiting local vulnerabilities (e.g.,
Array Networks [4] and Ceragon [6]) or becoming a sudoer
without a password (e.g., VMware [10]), attackers eventually

Table I: Details of the seven leaked SSH keys (sorted by public disclosure year).
SSH Key Key Owner Appliance Type Public 1st Attack Username(SHA256) Disclosure Year Attempt Year

1M4Rz...quOZA Vagrant [1] Base box for development environments 2010

2018

root
9prMb...Ghro4 F5 [2] BigIP appliances 2012
MEc4H...UfTww Loadbalancer [3] Virtual load balancer

2014VtjqZ...PiQPc Quantum [5] Virtual deduplication backup appliance

/JLp6...POCc0 Array Networks [4] Virtual application delivery controllers
sync

Secure access gateways
Z+q4X...8kIxM Ceragon [6] IP traffic router 2015 mateidu

f+1oG...zEDhc VMware [12] Data Protection appliances 2016 admin
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Table II: A summary of the ASes that exploited the seven leaked SSH keys.

Autonomous Client Version SSH Key (SHA256) & Key Owner

System [SSH-2.0-] 1M4Rz... 9prMb... MEc4H... VtjqZ... /JLp6... Z+q4X... f+1oG...

Vagrant F5 Loadbalancer Quantum Array Networks Ceragon VMware
Google LLC libssh_0.7.0 3 3 3 3 3 3 3

Charter
Ruby/Net::SSH... 3 3 3 3 3 3

Communications
Portlane libssh-0.6.1 3 3

Ruby/Net::SSH. . . refers to Ruby/Net::SSH_5.0.2 x86_64-linux-gnu.

escalate privilege to root.
The attackers used the privilege level related to each corre-

sponding leaked key when targeting our honeypot. In Table I,
the top four keys were all attempted with root permission, while
the bottom three were attempted using the exact user names
issued from key owners and related to disclosed vulnerabilities.
For example, username admin from VMware can escalate to
root without a password [8]. This observation indicates, instead
of randomly using leaked keys to brute-force, the attackers have
adequate details about pertinent vulnerabilities when plotting
the targeted attacks.

Attackers were rapidly exploiting the leaked keys. At-
tacks that originated from Autonomous System (AS) such as
Google LLC (Google) [18], Charter Communications [14],
and Portlane [17] participated in exploiting the seven leaked
keys. Table II presents an overview. As can be inferred from
Table II, two of the seven keys were used by all three ASs;
four of the seven keys were used by both Google- and Charter
Communications-registered IPs. In particular, attackers from
Google tried all seven identified, leaked keys. In addition to
the seven leaked keys, Google-registered IPs also exploited
four other keys with unknown identities. We suspect that those
four keys, though not identified yet, also belong to production
devices with disclosed vulnerabilities. Coincidentally, all seven
keys were attempted on the same day (Dec 14, 2018) by
attackers from Google-registered IPs. In addition, IPs registered
by Charter Communications attempted to exploit the five
known leaked keys, together with three other unidentified
keys, over two days (July 28-29, 2018). Portlane-registered
IPs used two and only two known keys on another day (Mar
24, 2018). Therefore, we speculate that these attackers were
rapidly switching targets for massive exploits of (outdated)
vulnerabilities in order to access compromised devices in the
wild by collecting and reusing old, sensitive SSH keys.

Challenges and limitations. Our previous work on hundred
million scale attempts [31] claimed no evidence of leaked keys.
We suspect that was either due to a mismatched comparison
between different hashing algorithms in SSH protocol (e.g.,
SHA256, DSS, RSA) or insufficient keys for analysis. In our
work, we did the exact SHA256 conversion (ssh-keygen -lf
id_rsa.pub) of the publicly available keys in online database
and files. As a result, we have successfully pinpointed matches
Table III: Top ten SSH key fingerprints from most diverse IP
sources (reversely sorted by number of originating countries).

SSH Key # Countr(y/ies) # AS(es) # IPs Client Version
(SHA256) [SSH-2.0-]
qlIN/... 20 38 64 Go

B6kr4... 
1

2 25 
libssh-

0.5.2

mumiE... 
1

49
jSCqa... 42
V6OOC... 28
zPA6Y... 23
NH5Y7... 19
OyHmn... 17
8blLD... 16
+UJNI... 71 kthrssh__x00

between public datasets and recorded attempts at our honeypot.
Therefore, these matches further allowed us to trace attack
origins, behaviors, and strategies.

In addition to a proper conversion method, the challenges in
SSH key matching also lie in the limited availability of a public,
formatted database of leaked SSH keys. We matched our keys
with one public bad SSH key database [11]. To expand the
search scope, we also manually looked for leaked keys listed in
the files at Packet Storm [21]. The entire search, however, is far
from automated and complete, and thus leaves the remaining
178 keys unidentified.

B. Key-based Collaboration
We inspected the diversity of attack sources using SSH keys

in general, from which we uncovered global coordination.
An SSH key was exploited by 20 countries. We sorted key-

based attempts characterized by the number of the originating
IP address, presenting the top ten in Table III. Each of the
ten keys originated from more than 15 distinct IP addresses,
with the highest number being 71. However, most attackers
originated from just a single country or AS. The only exception
is the first key in Table III, which was used by 64 IPs scattered
over 20 countries from four continents (including Asia, Europe,
North America, and Oceania).

A persistent, single-country botnet versus a rapid, glob-
ally colluding botnet. Further inspection revealed that this
globally coordinated botnet exploited a single SSH key 90
times within only four days (Dec. 11 to Dec. 14, 2017). On
the other hand, the last key in Table III originated from 71
IPs, yet all from a single country and AS. In contrast with
the global botnet, this botnet persistently used one key for
2,700 times spanning five months (Feb. 2017 to July 2017).
Compared with this single-origin bot, we can conclude that the
globally coordinated bot wrapped up its fruitless attacks and
shifted targets 50× faster.

C. Client Version-based Coordination and Evasion
Starting from August to October in 2018, the honeypot wit-

nessed an unprecedented emergence of unseen client versions.
More than 1.7 million new client versions sprang up in August
alone, which was over 8,000× more than the total number
of unique client versions in the previous 18 months. Further,
inspection revealed that only several hundred IPs spoofed client
versions by randomizing over one million OpenSSH version
banners. This is unusual because, among all attackers, about
90% of IPs advertised only one client version. We speculate
these randomizations were the attackers’ mimic technique
responding to our honeypot’s deceitful defense mechanism.

Attackers randomized SSH client version banners at
high frequencies. We sorted those unique client versions by
the number of occurrences in August. The distribution of
occurrences turned out to have an extremely long tail: 88
out of 1.7 million client versions occurred over 2,000 times
each; ten out of 1.7 million occurred over ten times, while the
rest 1.7 million distinct client versions just occurred at most 9
times each. Moreover, the top-spoofing IP advertised 400,000
unique client versions during its 200-hour attack campaign,
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Figure 5: CDFs indicate over million unique client versions in
total during August - October 2018 (contrast with previous 18
months: maxprevious months(# unique client versions/IP) = 55).

implying varying an average of 2,000 client versions per
hour. This attacker advertised SSH-2.0-OpenSSH_7 within first
several days of attack, then switched to massive spoofing by
appending SSH-2.0-OpenSSH_ with 5-character random strings
(e.g., +qLfH). Plus, contributions from other attackers adopting
the same technique spoofed random strings had more than a
million permutations in total.

A globally-coordinated botnets were involved in forging
a million permutations of client versions. As illustrated in
Fig. 2(b), the pace of new-incoming IPs even slowed down in
August 2018. We initially suspected a large number of recurring
botnets were scheming the large-scale randomization. However,
only several hundred IPs were involved, and over 85% of them
were new-incoming IPs in August. On the other hand, the
earliest IPs involved in spoofing launched its first attack in
February 2017 – as early as the honeypot’s initial operation,
yet these IPs did not start spoofing client versions until August.

Around 90% IPs advertised only one client version. In
the long tail of the unique number of client version per IP
distribution, further investigation showed that less than 300
IPs, yet globally coordinated from over 30 countries across
six continents (all excluding Antarctica), actually accounted
for the million-scale random permutations of client versions
to masquerade their attack traces. Fig. 5 presents the CDFs of
client versions per IP tail distribution during Aug – Oct 2018,
with a maximum number of 400,000 in August, which was
over 7,000× its counterpart in all previous 18 months.

Defense-targeting evasion. The honeypot deceives attackers
by randomizing key fingerprints for each of the 65,536 servers
on the entire /16 IP address space [31]. We, therefore, suspect
that the attackers were mimicking our honeypot’s defense
mechanism responsively. Besides, attackers were massively
hiding essential attack signatures, which would generally
invalidate signature-based detection. As a result, it calls for
needs to deploy new defense strategies such as rate-limiting or
anomaly-based detection.

IV. HUMAN-SUPERVISED ATTACK TECHNIQUES
This section analyzes routine human activities embedded

in a large scale of time-series attack data (Section IV-A).
After discovering routine patterns of human attackers on a
weekly basis, we further provide case studies to compare
and contrast the distinctive behavior patterns and strategies
between fully automated botnets and human-supervised botnets
(Section IV-B).
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A. Why understanding human-supervised attacks is important
and our data-driven methodology

Human interaction played an essential role in cybersecurity
attacks, e.g., ransomware propagation, advanced tool develop-
ment at targeted victims [13], [39]. Revealing human attacker
evidence aid in the detection of sophisticated underlying strate-
gies that automated bots alone cannot accomplish. However,
it’s non-trivial to distinguish both techniques in large-scale
security data.

Current work [32], [34] implemented additional features
to capture human-generated activities, e.g., keyboard/mouse
typing/clicking, window resizing. However, these methods
introduced overhead to networking system design. Instead of
modifying or adding features to the current design, The billion-
scale attack attempts motivate us to come up with a data-driven
methodology for mining human activity patterns.

Tail analysis of attack distributions. We take regional
time differences into account when investigating evidence of
routine human activities. In practice, we pinpointed one specific
time zone and focused only on IP addresses originating from
this time zone. Then we chose a month with the most attack
attempts, to increase the chance of finding evidence of human
activities among source IPs.

After grouping by IP, we computed average weekday and
weekend attempts for each IP during the selected month. To
quantitatively capture routine human evidence, we calculated a
ratio of weekday to weekend average attempts for each IP. Since
we aimed to find relatively long-term (4–6 weeks) evidence, we
filtered out IPs with the number of active weekdays lower than
15. Fig. 8 presents the ratio distribution after filtering, which
drew our attention to the tail. Specifically, we then focused
on IPs with the ratio Z-score [24] greater than three standard
deviations (3σ ) from the mean (µ), as shown by the tail on
the rightmost part of the distribution.

Activity patterns of the human-supervised botnet. It
turned out that all IPs in the tail, with similar activity patterns,
originated from the same /8 subnet, indicating organized routine
management of botnet by the human attacker(s). These IPs also
used the same client versions, passwords, and usernames. The
daily intensity of these bots indeed aligned with human social
routine on a weekly basis: periodic variations with decreasing
activities on weekends (especially Sundays). As an example,
we illustrate daily activities of one such IP over eight weeks in
Table IV (Fig. 6), a representative of a human-supervised bot.
Further inspection revealed that its average attack attempts
during working hours (i.e., 9 am–5 pm) are over 2× the
counterpart outside working hours.

B. Case studies of two botnet types: human-supervised and
fully automated

To fairly compare between two distinct botnet behaviors,
over the same duration, we selected another IP with a weekday
to weekend average attempt ratio equaling to one. Its daily
activities are illustrated in Table IV (Fig. 7), a representative of
a fully automated bot. In general, Table IV provides an overview
of feature-wise comparisons in terms of main authentication
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Table IV: Human-supervised versus fully automated botnet.

Type Illustration of Daily Attempts List of Unique List of # UniqueClient Versions Unique Passwords
[May 27 – July 21, 2019 (8 weeks)] [SSH-2.0-] Username(s)

1 3 5 7 2 4 6 1 3 5 7 2 4 6 1 3 5 7 2 4 6 1 3 5 7 2 4
Day of week

101
103
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s

Figure 6: Human-supervised attack attempts declined on
weekends [1: Mon. ∼ 7: Sun.].
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Figure 7: fully automated attack patterns were almost unvarying
over different days of the week [1: Mon. ∼ 7: Sun.].

sshlib-0.1 42

root, user,
admin, ubnt,
usuario, pi,

Fully supervisor,
automated support,

service,
mother

OpenSSH_6.2p2. . . refers to OpenSSH_6.2p2 Ubuntu-6;
nsssh2_4.0. . . refers to nsssh2_4.0 NetSarang Computer, Inc.

credentials. The duration we have selected is representative
of the entire attack campaign for both IPs. Furthermore, this
section offers detailed case studies to distinguish the attack
strategies adopted by both botnet types.

Human-supervised botnet is more resourceful in terms
of attack devices. The entire human-supervised botnet shared
the four client versions listed in Table IV. All bots iterated
over these four client versions with equal distribution for each.
There were cases when these four client versions were used
at the same time by one bot. On the other hand, the fully
automated bot advertised one and only one commonly-used
client version. Therefore, human-supervised botnet employed a
more diverse handful of devices to launch attacks.

Human-supervised botnet is more ambitious and strate-
gic in terms of credential brute-forcing. We used Dropbox
zxcvbn [42] to measure password strength. Fig. 9 summarizes
the score distribution for both botnets. For a fully automated
bot, only one password (7ujMko0admin) scores 3, which is the
highest among all 42 unique passwords it attempted, with the
majority scoring 0. On the other hand, around 3,000 passwords
used by the human-supervised botnet score 4.

Notably, one password used by human-supervised botnet
begins with Branch:masterFindfileCopypath, and ended
with a path in a Github repository [9]. This Git repo contains
a wide range of passwords collected from backdoors, web
shells, mail servers, WebLogic, Linux OS, dictionaries, etc. In
addition to passwords, we also found collections of database
and backdoor file paths, plus a script for brute-forcing enterprise
mail servers, including Exchange [16], etc.

On the other hand, fully automated bot rotated all 42
passwords every day over the entire attack campaign. Most
passwords are commonly-used default passwords in Linux OS,
IoT devices, routers, and firewalls.

V. FUTURE WORK
We hereafter plan out the future work as follow.
SSH keys. The identified SSH keys (especially disclosed in

recent years) alert key owners and IoT appliance operators to i)
investigate the coverage of patches for outdated vulnerabilities
and ii) examine whether affected devices and users still exist
in the wild. On the other hand, for unknown keys, we can
speculate their identities or targeted devices based on associated

usernames (e.g., raspberry) and client versions, so that we
can accordingly broadcast unknown keys to in advance as
precautions for zero-day exploits towards targeted devices.

Client versions. Attackers’ massive evasion techniques to
bypass signature detection motivate rate-limiting or anomaly-
based detection. Moreover, we plan to detect fake and spoofed
SSH version banners with [33] and [19]. Both methods require
additional SSH information (e.g., key exchange algorithms,
encryption methods), which is not available at present. On the
other hand, apart from fake banners, attackers also advertised
over 50 seemingly legitimate client versions (the vertical line in
Fig. 5). A further inspection into the landscape and dynamics
of such resourceful attackers will benefit the design of effective
defense strategies and mitigation operations.

Privacy-preserving insight sharing. In terms of threat
intelligence sharing across different sites, we suggest employing
Private Intersection-Sum [35] to 1) preserve the privacy of
sensitive information to be shared and 2) establish anonymous
hacker identifiers. In the long term, the intelligence gathered
from the honeypot can be leveraged in the automatic learning
and upgrading of defense systems, thus building up to AI-driven
intrusion detection [27]–[29] that can respond automatically to
unknown threats based on past evidence.

VI. CONCLUSION
We investigated a broad scope of attack strategies in billion-

scale SSH brute-force attacks. We discover the great potential
in attackers to launch large-scale, persistent, and evasion attacks
that are accompanied by strategic human supervision. Also, we
contribute methodology to reveal bot collaboration campaign in
the wild, offer a scientific data-driven approach to differentiate
between human-supervised versus fully automated botnet, as
well as motivate privacy-preserving threat intelligence sharing
for AI-driven intrusion detection in the ultimate goal.
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