
OAuth 2.0 authorization using blockchain-based
tokens

Nikos Fotiou, Iakovos Pittaras, Vasilios A. Siris, Spyros Voulgaris, George C. Polyzos
Mobile Multimedia Laboratory

Department of Informatics, School of Information Sciences and Technology
Athens University of Economics and Business, Greece
{fotiou,pittaras,vsiris,voulgaris,polyzos}@aueb.gr

Abstract—OAuth 2.0 is the industry-standard protocol for
authorization. It facilitates secure service provisioning, as well as
secure interoperability among diverse stakeholders. All OAuth 2.0
protocol flows result in the creation of an access token, which is
then used by a user to request access to a protected resource.
Nevertheless, the definition of access tokens is transparent to
the OAuth 2.0 protocol, which does not specify any particular
token format, how tokens are generated, or how they are used.
Instead, the OAuth 2.0 specification leaves all these as design
choices for integrators. In this paper, we propose a new type
of OAuth 2.0 token backed by a distributed ledger. Our con-
struction is secure, and it supports proof-of-possession, auditing,
and accountability. Furthermore, we provide added-value token
management services, including revocation, delegation, and fair
exchange, by leveraging smart contracts. We realized a proof-of-
concept implementation of our solution using Ethereum smart
contracts and the ERC-721 token specification.

I. INTRODUCTION

OAuth 2.0 [1] has received widespread adoption and it
is considered the industry-standard protocol for authorization.
OAuth 2.0 enables delegation and interoperability, it enhances
end-user security, and it facilitates access control management.
Due to its intriguing properties, it is being used in environ-
ments with higher and more diverse security requirements
than initially considered, such as IoT systems, Open Banking,
eHealth, eGovernment, and Electronic Signatures [2].

In a nutshell, OAuth 2.0 constitutes the protocol through
which a client obtains an access token from an authorization
server, to access a protected resource, stored in a resource
server. However, the OAuth 2.0 specification does not define
how an access token is generated, validated, and destroyed; in-
stead it leaves the management of OAuth 2.0 tokens’ lifecycle
as an open design choice.

In this paper, we propose a new type of token, which is
protected using proof-of-possession keys and at the same time
it supports auditing and accountability, fast revocation, and
added-value services. In order to achieve our goal, we build
on the emerging distributed ledger technology (DLT). Our
solution considers an append-only distributed ledger (public or
private), where users, identified by a public key, can transact

uniquely identified tokens. Our implementation is based on
the Ethereum blockchain and the ERC-721 token specification
(but other similar technologies can be considered). Our system
leverage Ethereum’s support for distributed apps (referred to as
smart contracts) to build blockchain-based token management
services. The proposed solution has the following advantages:

• The entity that generates access tokens (i.e., the au-
thorization server) can easily revoke them before they
expire. Furthermore, token revocation does not involve
any interaction with the client or the resource server,
hence it can be implemented even if these entities are
offline/unreachable. Similarly, a resource server can
verify the validity of a token (i.e., it has not been
revoked) even if the authorization server is offline,
since token revocation is recorded on the DLT through
a transaction that can occur at any time prior to the
token’s usage.

• Clients do not have to store their tokens locally, neither
do they have to store any secret associated with their
access tokens. Instead, all tokens can be retrieved form
the ledger. Hence, tokens are portable and can be
easily used by multiple client devices. Furthermore,
since we are using a popular token specification, a
wide range of “wallets” and libraries can be supported
by our system.

• Token integrity and authenticity can be verified simply
by performing a lookup in the ledger, and it does
not involve any signature verification or any other
cryptographic operation. Therefore, our solution is less
prone to implementation errors, and tokens are simpler
since they do not carry any cryptographic proof. Fur-
thermore, token ownership can be securely modified
without any interaction with the authorization server.

• All tokens, including the revoked ones, are immutably
stored in the ledger, hence auditing and accountability
mechanisms are facilitated.

The feasibility of our solution is verified through a proof-
of-concept implementation, inspired by an IoT gateway access
use case. The remainder of this paper is organized as follows.
In Section II, we introduce OAuth 2.0 and ERC-721 tokens.
In Section III we present the design of our system, and in
Section IV we detail the provided token management services.
Finally, we present our implementation and its evaluation in
Section V, and we conclude in Section VI.

Workshop on Decentralized IoT Systems and Security (DISS) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-64-9
https://dx.doi.org/10.14722/diss.2020.23002
www.ndss-symposium.org

Authorization server

Client

Resource server

Authorization grant

Access token

Access token

Resource

Resource ownerAuthorization request

Authorization grant

Fig. 1. OAuth 2.0 interactions.

II. BACKGROUND AND RELATED WORK

A. OAuth 2.0

OAuth 2.0 systems are composed of the following entities.
A resource server that hosts a protected resource owned by a
resource owner, a client wishing to access that resource, and an
authorization server responsible for generating access tokens.
Access tokens are granted to clients authorized by the resource
owner: client authorization is proven using an authorization
grant. These interactions are illustrated in Fig. 1. As it can be
seen in this figure, a client first requests an authorization grant
from the resource owner, then it uses this grant to obtain an
access token from the authorization server, and finally, it uses
the access token to access the protected resource stored in the
resource server. The semantics, as well as the mechanisms
for generating and validating access tokens and grants are
transparent to the OAuth 2.0 protocol.

Each OAuth 2.0 deployment may choose the type of token
it will use. The most commonly used type of token is the
bearer token [3], which can be used by any user who possesses
it (i.e., the “bearer”). For additional security, a token can
be associated with a secret key, so that only users who can
prove that they possess this key can use the token. Since the
latter type of tokens provides more security (at the cost of
the communication overhead required to verify ownership) it
is considered by our solution. In particular, our constructions
are based on JSON Web Tokens (JWTs) [4] enhanced with
blockchain-based proof-of-possession mechanisms.

A JWT is a compact, URL-safe means of representing
“claims.” It consists of zero or more name/value pairs, and it is
transmitted encoded in base64url [5]. RFC 7519 defines some
“standard” claim names and their semantics. Table I contains
the names, and the corresponding semantics, of the JWT claims
used by our solution.

B. Ethereum and ERC-721

Ethereum [6] is a popular blockchain system that supports
distributed applications, known as “smart contracts”. A smart
contract is executed by all “peers” in the Ethereum network
and its outcome is agreed upon consensus. Users interact

TABLE I. JWT CLAIMS USED IN OUR SYSTEM

Name Semantics
iss The issuer of the token
sub The subject of the token, i.e.,

the entity that will use the
token to gain access to a re-
source

aud The audience of the token,
i.e., the the recipients that the
JWT is intended for

exp The expiration time on or after
which the JWT must not be
accepted for processing

jti A unique token identifier

with a smart contract by issuing “transactions,” which are
signed by a user-specific key. A hash of this key is used
as the user “address” and it is used for associating users
with information stored in the blockchain. All transactions
are immutably recorded in the blockchain, for this reason
blockchain-based solutions are ideal for implementing auditing
and accountability mechanisms. Furthermore, a smart con-
tract can create an “event”. Events are also recorded in the
blockchain and end-user applications can be configured to
“listen” for specific contract events.

Ethereum community is developing “Ethereum Request
for Comments” (ERC), which the equivalent of RFC but for
smart contract. ERC-7211, is an open standard that describes
how to build “non-fungible or unique tokens on the Ethereum
blockchain.” This standard is very similar, in many ways, to
ERC-202, which probably the most popular Ethereum standard
and it is used for creating custom Ethereum tokens. However,
in contrast to ERC-20 tokens, ERC-721 tokens are “unique”
and non-interchangeable with other tokens (non-fungibility).
Many Ethereum wallets, such as Metamask3, can handle these
tokens. All ERC-721-based tokens are identified by a unique
identifier (we will refer to this identifier as tokenid), and they
can be owned only by a single user.

This standard, like every other token standard in Ethereum,
defines some functions that a smart contract should implement
in order to be able to create and handle ERC-721 tokens.
Furthermore, the ERC-721 metadata extension, defines some
additional functions that can be used for associating an ERC-
721 token with metadata. Table II describes the functions
defined in ERC-721 and in ERC-721 metadata extension, used
by our system. Additionally, functions transferFrom and
approve, when invoked each generates an event, named
Transfer and Approval respectively. Both these events
have three attributes; the attributes of the Transfer event
are the from address, the to address, and the tokenid, while
the attributes of the Approval event are the owner address,
the approved address, and the tokenid.

C. Related work

Many recent research efforts investigate Blockchain-based
access control, either by defining custom blockchain systems
(e.g., [7]) or by using Ethereum smart contracts for recording
policies and for implementing on-chain access control deci-
sions (e.g., [8]–[12]). Our solution does not rely on smart

1https://eips.ethereum.org/EIPS/eip-721
2https://eips.ethereum.org/EIPS/eip-20
3https://metamask.io/

2

TABLE II. ERC-721 AND ERC-721 METADATA EXTENSION
FUNCTIONS USED IN OUR SYSTEM

Name Purpose
ownerOf(tokenid) It accepts as input a tokenid

and returns the address of the
token owner

transferFrom(from, to, tokenid) It transfers a tokenid from
one Ethereum address to an-
other

approve(address,tokenid) It approves an Ethereum ad-
dress to manage a tokenid

on owner’s behalf
getApproved(tokenid) It retrieves the Ethereum ad-

dress that is allowed to man-
age tokenid

tokenURI(tokenid) It accepts as input a tokenid

and returns a URI that point
to token’s metadata

contracts for implementing access control decisions (which
may cause privacy issues), instead it uses the ledger for storing
auxiliary information used for validating OAuth 2.0 access
tokens.

The work in this paper is related to our previous work pub-
lished in [13]–[15]. However, in these papers we considered
constrained devices not capable of accessing the blockchain.
In this paper we relax this assumption and we consider
resource servers capable of reading values from the blockchain
(resource servers are not required to “write” in the blockchain);
even with read-only access we can implement constructions
that were not possible with our previous work, including
revocation, and delegation.

III. SYSTEM DESIGN

Our system considers a typical OAuth 2.0 architecture
(such as the one described in section II-A). Therefore, the
main entities of our system are clients, authorization servers,
resource servers, and resource owners. From a high-level
perspective, our system operates as follows. The client re-
quests an access token from the authorization server, using
an authorization grant received by the resource owner. The
authorization server validates the authorization grant of the
client, generates a JWT and an ERC-721 token, transfers the
ERC-721 token to the Ethereum address of the client, and
transmits the JWT to the client. Then, the client requests access
from the resource server, providing the JWT. The resource
server retrieves the corresponding ERC-721 token which is
used for verifying the validity and the ownership of the JWT:
if all verifications are successful the resource server allows the
client request. This process is illustrated in Figure 2.

A. Notation and security assumptions

In our system, resources are uniquely identified by a
URI, referred to as the URIresource. We assume a security
mechanism with which a resource server can prove that it
hosts a specific URIresource (e.g., using an X.509 certificate).
Henceforth, when we say that “a client requests URIresource
from a resource server” it is assumed that the client has already
verified URIresource ownership. Moreover, the communica-
tion between a client and a resource server takes place over a
secure communication channel.

In our system each authorization server owns an ERC-721
contract, referred to as ContractAS ; we detail these smart con-

Authorization
server

Client

Resource
server

Authorization grant

ERC-721 token ERC-721 token

Access request

Token lookup

ERC-721 token
Challenge

Response

Fig. 2. Overview of our system

tracts in the following section. Moreover, we assume a security
mechanism with which clients and authorization servers can
securely communicate; this mechanism provides confidential-
ity and integrity protection of the exchanged messages, as well
as authorization server authentication. Furthermore, resource
owners trust authorization servers to behave according to the
specified procedures.

Finally, each client owns a public key PClient, and a corre-
sponding private key, used for transacting with the Ethereum
blockchain. Again, we consider a security mechanism with
which PClient ownership can be verified.

B. The ERC-721 contract

ERC-721 contracts in our system are implemented such
that only the contract owner can create new tokens. When
a token is created its tokenid and metadata are specified:
these two properties are read-only and they cannot be modified.
Moreover, token owners in our system cannot transfer their
tokens; the only entity that can invoke the transferFrom
method is the contract owner. Moreover, when invoking the
transferFrom method, the contract owner is allowed to
transfer any token, no matter who the token owner is.

The ERC-recommended approach for associating a token
with some metadata is through the metadata extension, which
provides a method that maps a tokenid to a URI where
metadata are stored (i.e., tokenURI). Nevertheless, we pos-
tulate that this approach violates both the decentralization and
immutability principles of DLTs, since with this approach the
metadata file is stored in a centralized location, and it can be
modified without being possible to track or even detect the
changes. For this reason, in our system, metadata are encoded
in a JWT and the base64url representation of the JWT is stored
in the contract: this is the return value of the tokenURI
method. Therefore, in our system, the metadata extension is
used to retrieve the metadata themselves and not a URI that
points to the metadata.

3

C. Setup

During setup, resource owners configure their resource
servers with ContractAS . Moreover, clients “register” with the
authorization server.4 During this registration process, which
is out of the scope of this paper, the authorization server
learns the Ethereum public key of the client (i.e., PClient).
In cases where this registration process cannot take place
a priori, solutions such as the OAuth 2.0 dynamic client
registration protocol [16] can be considered. Additionally, prior
to any other operation, each client obtains from the resource
owner an authorization grant (the format of this grant and
the mechanisms for generating it are out of the scope of this
paper). This grant represents a resource owner’s authorization,
and is used by a client to request an access token for a specific
URIresource.

D. Access token request

A client, that owns PClient, requests from an autho-
rization server an access token for a protected resource
URIresource, including in the request the authorization grant
received during the setup. The authorization server veri-
fies PClient ownership and grant validity (using protocols
out of the scope of this paper). Then, the authorization
server creates a JWT which contains the following claims:

Listing 1. The generated JWT
{

‘ ‘ i s s ’ ’ : ‘ ‘ $ C o n t r a c t {AS}$ ’ ’ ,
‘ ‘ sub ’ ’ : ‘ ‘ $P { C l i e n t }$ ’ ’ ,
‘ ‘ aud ’ ’ : ‘ ‘ $URI { r e s o u r c e }$ ’ ’
‘ ‘ j t i ’ ’ : ‘ ‘ $ token { i d }$ ’ ’
‘ ‘ exp ’ ’ : ‘ ‘ e x p i r a t i o n t ime ’ ’

}

As a next step, the authorization server creates an ERC-
721 token. The tokenid of this new token matches the value
specified by the jti claim of the JWT. Moreover, the metadata
of the token is set equal to the base64url encoding of the JWT.
Finally, the authorization server invokes the transferFrom
method of the ERC-721 contract to transfer the created token
to PClient, and sends the generated JWT back to the client.
It should be noted that the client does not have to store the
JWT: at any time it can retrieve all the tokens it owns from the
ERC-721 contract, and extract the corresponding JWT from a
token’s metadata.

E. Resource access request

In order for a client to access a protected resource, it sends
to the resource server a request that includes the received JWT.
The resource server performs the following steps:

1) It examines: (i) if it “knows” the ContractAS in-
cluded in the iss claim of the JWT (i.e., if it has
been configured with this contract address), (ii) if the
URIresource included in the aud claim of the JWT
matches the URI of the requested resource, and (iii)
if the token is still valid (i.e., it has not expired).

2) It executes the ownerOf method of ContractAS ,
providing as input the tokenid included in the jti

4This registration step is also assumed by the OAuth protocol.

claim of the JWT, and examines if the returned
address corresponds to PClient included in the sub
claim of the JWT.

3) It executes the tokenURI method of ContractAS ,
and examines if the returned string is the same as the
received JWT.

At this point, the resource server is able to attest the integrity
of the received JWT (since it is the same as the metadata of
the token stored in the blockchain), as well as its validity. As
a next step, the resource server verifies that the client is the
real owner of PClient. If all verifications succeed, the resource
server accepts the client’s request. Additionally, a resource
server may store a valid JWT locally, create a session identifier,
and send this identifier to the client: the client may use this
identifier, as long as the JWT is still valid, accelerating this
way subsequent requests for the same resource.

IV. TOKEN MANAGEMENT SERVICES

A. Revocation

Tokens usually carry an expiration time: OAuth 2.0 and
JWTs specifications do not provide any mechanism that allows
an authorization server to revoke an access token prior to its
expiration time. Even “OAuth 2.0 token revocation RFC [17],”
specifies a mechanism that allows “clients to notify the autho-
rization server that a [...] access token is no longer needed,”
i.e., a mechanism that provides a “log out” functionality rather
than revocation.

In our system, tokens can be revoked by an authorization
server by invoking the transferFrom method of the ERC-
721 contract and transferring a token back to the authorization
server.5 We consider two cases: (i) the corresponding JWT has
not been used by the client by the time of the revocation, and
(ii) the corresponding JWT has been used, it has been stored
locally by the resource server, and it has been associated with a
session identifier. In the former case, when a client tries to use
the JWT the verification process will fail, since the output of
the ownerOf method will not match the PClient included in
the sub claim of the JWT, hence the resource server will reject
the JTW. In the latter case, the resource server must “listen”
for the events emitted by the transferFrom method; if an
event contains a tokenid included in an already stored JWT,
the resource server must delete the JWT and the associated
session identifier. It should be noted that events are immutably
stored in the blockchain, hence if a resource server is offline
for some time, it can easily recover all missed events.

B. Delegation

There can be cases where a client does not wish to
authenticate to the resource server using PClient, e.g., PClient

may be stored in a secure, offline storage place, or a user
may want to temporary use another device that does not have
access to PClient (for example a user may want to use different
devices while travelling). For these cases, our system allows a
token owner to delegate an access token to another Ethereum
address. The token does not change ownership, and the latter

5It is reminded that authorization servers are the contract owners, and
contract owners in our system are allowed to transfer any token, no matter
who the token owner is.

4

address is not allowed to further delegate the token. We
implement this functionality by using the approve method
of the ERC-721 contract and the “proof-of-possession key
Semantics for JWTs” defined in RFC 7800 [18]. RFC 7800
defines a “confirmation” (cnf) claim, which contains the key
of the owner of a JWT. Delegation of a tokenid is implemented
as follows: PClient invokes the approve method providing
as input tokenid and the Ethereum address associated with the
public key of the delegee PDelegee. Now PDelegee can use this
token by constructing a JWT and by adding PDelegee in the
cnf claim as illustrated in listing 2.

Listing 2. JWT with delegation enabled. cnf stands for “confirmation”
{

‘ ‘ i s s ’ ’ : ‘ ‘ $ C o n t r a c t {AS}$ ’ ’ ,
‘ ‘ sub ’ ’ : ‘ ‘ $P { C l i e n t }$ ’ ’ ,
‘ ‘ aud ’ ’ : ‘ ‘ $URI { r e s o u r c e }$ ’ ’
‘ ‘ j t i ’ ’ : ‘ ‘ $ token { i d }$ ’ ’
‘ ‘ exp ’ ’ : ‘ ‘ e x p i r a t i o n t ime ’ ’
‘ ‘ cnf ’ ’ :
{

‘ ‘ kid ’ ’ : ‘ ‘ $P {Delegee }$ ’ ’
}

}

The cnf claim is not recorded in the ERC-721 token’s
metadata, since metadata are read-only. For this reason, when
PDelegee performs a resource access request, Step 3 of token
integrity verification is modified as follows. It should be noted
that when a token is revoked, the delegee can not use it.

3) The resource server executes the tokenURI method
of ContractAS , and examines if the returned string
is the same as the received JWT excluding the cnf
claim.

Then, JWT ownership is verified as follows: the resource
server executes the getApproved method of the ERC-721
contract, providing as input tokenid, and examines if the return
value equals to the Ethereum address associated with PDelegee;
finally, it challenges client to verify PDelegee ownership. The
delegation process does not involve the resource owner, neither
the authorization server.

C. Fair exchange

Smart contracts are ideal for performing “fair exchange” of
digital goods [19]. In our previous work, published in [15], we
used smart contracts to exchange an access token for money. In
a nutshell, with the solution presented in [15] the authorization
server encrypts a token, the client “deposits” some money in
the form of escrow, and the server receives the escrow only
if it reveals the “correct” decryption key. The problem with
this approach is that it does not provide any guarantee that the
decrypted plaintext is a valid access token.

With the solution presented in this paper this problem is
solved as follows: the authorization server creates the ERC-
721 token, and stores it in the ERC-721 smart contract by
“indicating” a PClient; the contract transfers the token to
PClient only when the latter performs an action (e.g., pay a pre-
specified amount of money). The advantage of this approach
is that the client can inspect the token before performing

any action; of course the client cannot use the token, before
performing the specified action, since up until this point, the
client does not own the token.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We have developed a proof of concept implementation
of the presented solution. We considered the case of an IoT
gateway access, the owner of which wishes to grant access to
guest users. As an IoT gateway we used Mozilla’s WebThings
Gateway6 that implements the WoT standard [20]. For our
proof of concept, we chose not to modify the gateway itself,
instead, we have developed an application that acts as a proxy,
between the client, the blockchain, and the gateway (that holds
the role of the resource server).

As an Ethereum wallet, we used the Metamask Firefox
extension, which can handle ERC-721-based tokens. We im-
plemented clients as JavaScript web applications using web3.js
Ethereum JavaScript API.7

The main component of our proposed system is the smart
contract that implements the functions of the ERC-721 in-
terface. In addition to the functions included in Table II we
implemented two functions that are not defined in the ERC-
721 interface. The first one, named mint, is for creating new
tokens, and the other, named burn, for “burning” tokens,
i.e., for destroying them. These functions, as well as the
transferFrom and approve functions, can only be invoked by
the smart contract owner.

B. Performance and Cost Evaluation

We have tested our proposed system in the Rinkeby
Ethereum test network8. We chose a public test network rather
than a private one in order to have more reliable results.

The actions of our system that involve the invocation of the
smart contract functions, create some computational overhead.
Gas is Ethereum’s unit for measuring the computational and
the storage resources required. Each operation of a smart
contract costs a fix amount of gas. Gas cost is the number
of units of gas required to perform an action, while gas price
is the amount of “ether” (i.e., Ethereum’s specific coin) a client
is willing to pay per unit of gas. The average price of a unit of
gas9 is $0.011× 10−4. Table III shows the cost of deploying
the smart contract in the blockchain network, as well as the
cost of operations performed by our system in terms of gas
units.

TABLE III. COST OF OUR CONSTRUCTION BUILDING BLOCKS

Operation Cost measured in gas
Contract Deployment 1585444
Create a token 254141
Burn a token 85791
Transfer a token 63858
Approve 45735

In addition to gas, Ethereum adds an execution time
overhead related to the time the Ethereum network needs to

6https://iot.mozilla.org/gateway/
7https://web3js.readthedocs.io/
8https://www.rinkeby.io/
9As measured by https://ethgasstation.info on 30 Dec. 2019

5

generate a new block. On average, an operation in Ethereum
is executed in ∼13 seconds.

Some of the aforementioned functions are declared as view
functions. That is, they only read state of the blockchain
without modifying it. Thus, they incur no cost, delay, or
overhead. These functions are: tokenURI, getApproved,
and ownerOf.

C. Discussion

Privacy considerations. With our solution, an authoriza-
tion server does not have to be aware of the resource server,
i.e., they never have to communicate directly, not even in the
case of a token revocation. The authorization server learns only
the URIresource that a client wants to access, but this does not
have to be the real URI of the resource: any pseudonym that
the resource server can understand can be used instead. On the
other hand, the metadata of an ERC-721 token are immutable
and visible to anybody, constituting a privacy threat. In order
to enhance clients’ privacy metadata can be encrypted using
a key known only to the resource owner, to the client, and to
the resource server.

Authorization server key breach. In order to enhance
the security of our solution we specify that some functions of
the ERC-721 contract can only be executed by the contract
owner, i.e., the authorization server. Of course, if the private
key the authorization server used for deploying the contract is
compromised, then the security of our system is jeopardized
and a new contract has to be deployed (which requires re-
configuration of the resource servers). For this reason, a
realization of our system may consider two different keys:
one for invoking the security critical functions of the smart
contract, and another for specifying which is the former key.
The latter key can be the one used for deploying the contract
and can be securely stored offline.

Approving other types of identifiers. ERC-721 spec-
ifications define that with the approve method a token
owner can specify another Ethereum address that can manage
its token. However, in our system a delegee never interacts
with the blockchain, therefore the input to approve does
not have to be an Ethereum address. Other types of delegee
identifiers can be considered, such as legacy public keys, or
even contemporary forms of authentication such as verifiable
credentials [21].

VI. CONCLUSIONS

In this paper we presented the design and implementation
of an OAuth 2.0 authorization token, backed by blockchain-
based smart contracts. Our solution uses Ethereum to store in-
formation that can be used for auditing purposes, as well as for
token integrity verification. Ethereum smart contracts facilitate
revocation, decouple authorization and resource servers, enable
token delegation, and create opportunities for exchanging
tokens with fungible assets. We believe that our work can
be extended towards many directions, including the use of
permissioned ledgers, token validation using conditions stored
in the ledger, privacy-preserving token representations, and the
application of similar mechanisms for managing authorization
grants.

ACKNOWLEDGMENT

This research was supported by the EU funded Horizon
2020 project SOFIE (Secure Open Federation for Internet
Everywhere), under grant agreement No. 779984.

REFERENCES

[1] D. Hardt (ed.), “The OAuth 2.0 authorization framework,” IETF, RFC
6749, 2012.

[2] T. Lodderstedt, J. Bradley, A. Labunets, and d. Fett, “OAuth 2.0 security
best current practice,” IETF, draft-RFC, 2019.

[3] M. Jones and D. Hardt, “The OAuth 2.0 authorization framework:
Bearer token usage,” IETF, RFC 6750, 2012.

[4] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
IETF, RFC 7519, 2015.

[5] S. Josefsson, “The Base16, Base32, and Base64 data encodings,” IETF,
RFC 4648, 2006.

[6] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2014.

[7] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain
for IoT security and privacy: The case study of a smart home,” in
2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), March 2017, pp.
618–623.

[8] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of
trust: A decentralized blockchain-based authentication system for IoT,”
Computers and Security, vol. 78, pp. 126 – 142, 2018.

[9] O. Novo, “Blockchain meets IoT: An architecture for scalable access
management in IoT,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 1184–1195, April 2018.

[10] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the Internet of Things,” IEEE Internet of Things
Journal, pp. 1–1, 2019.

[11] G. Ali, N. Ahmad, Y. Cao, M. Asif, H. Cruickshank, and Q. E. Ali,
“Blockchain based permission delegation and access control in internet
of things (baci),” Computers & Security, vol. 86, pp. 318 – 334, 2019.

[12] D. D. F. Maesa, P. Mori, and L. Ricci, “A blockchain based approach
for the definition of auditable access control systems,” Computers &
Security, vol. 84, pp. 93 – 119, 2019.

[13] N. Fotiou, V. A. Siris, and G. C. Polyzos, “Interacting with the Internet
of Things Using Smart contracts and blockchain technologies,” in
Security, Privacy, and Anonymity in Computation, Communication, and
Storage. Springer International Publishing, 2018, pp. 443–452.

[14] D. Lagutin, Y. Kortesniemi, N. Fotiou, and V. A. Siris, “Enabling
decentralised identifiers and verifiable credentials for constrained IoT
devices using OAuth-based delegation,” in Workshop on Decentralized
IoT Systems and Security (DISS 2019), San Diego, CA, USA, 2019.

[15] V. A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, and G. C. Polyzos,
“OAuth 2.0 meets blockchain for authorization in constrained IoT
environments,” in 2019 IEEE 5th World Forum on Internet of Things
(WF-IoT), April 2019, pp. 364–367.

[16] M. Jones, J. Bradley, M. Machulak, and P. Hunt, “OAuth 2.0 dynamic
client registration protocol,” IETF, RFC 7591, 2015.

[17] M. Scurtescu, “OAuth 2.0 token revocation,” IETF, RFC 7009, 2013.
[18] M. Jones, J. Bradley, and H. Tschofenig, “Proof-of-possession key

semantics for JSON Web Tokens (JWTs),” IETF, RFC 7800, 2016.
[19] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly

exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC CCS.
New York, NY, USA: ACM, 2018, p. 967–984.

[20] B. Francis. (2019) Web Thing API. [Online]. Available:
https://iot.mozilla.org/wot/

[21] Manu Sporny et al. (2019) Verifiable credentials data model
1.0. [Online]. Available: https://www.w3.org/TR/verifiable-claims-data-
model/

6

