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Abstract—Reconnaissance is critical for adversaries to prepare
attacks causing physical damage in industrial control systems
(ICS) like smart power grids. Disrupting reconnaissance is
challenging. The state-of-the-art moving target defense (MTD)
techniques based on mimicking and simulating system behaviors
do not consider the physical infrastructure of power grids and
can be easily identified.

To overcome these challenges, we propose physical function
virtualization (PFV) that “hooks” network interactions with real
physical devices and uses these real devices to build lightweight
virtual nodes that follow the actual implementation of network
stacks, system invariants, and physical state variations in the
real devices. On top of PFV, we propose DefRec, a defense
mechanism that significantly increases the effort required for an
adversary to infer the knowledge of power grids’ cyber-physical
infrastructures. By randomizing communications and crafting
decoy data for virtual nodes, DefRec can mislead adversaries
into designing damage-free attacks. We implement PFV and
DefRec in the ONOS network operating system and evaluate
them in a cyber-physical testbed, using real devices from different
vendors and HP physical switches to simulate six power grids.
The experimental results show that with negligible overhead, PFV
can accurately follow the behavior of real devices. DefRec can
delay adversaries’ reconnaissance for more than 100 years by
adding a number of virtual nodes less than or equal to 20% of
the number of real devices.

I. INTRODUCTION

Reconnaissance is crucial to an adversary’s preparation
for an attack on industrial control systems like smart power
grids (ICS) [77]. By obtaining in-depth knowledge of physical
processes, adversaries can determine “attack-concept” opera-
tions to cause devastating physical disruptions without raising
alarms [10], [17]. For the attack on a Ukrainian power plant
that caused a blackout affecting 225,000 residents [37], [38],
security analysis directly indicates that “the strongest capabil-
ity of the attackers was ... to perform reconnaissance operations
required to learn the environment.” Reconnaissance allows
adversaries to design attack strategies that cause physical
damage (e.g., compromising measurement data or maliciously
turning off switches).

Compared to passive intrusion detection systems (IDS),
which detect attacks after malicious activities, preemptive
approaches that can disrupt reconnaissance before an adversary
starts to inflict physical damage are highly desirable. First, by
preventing reconnaissance on a critical set of physical data, we
can cover a wide spectrum of attacks, including unknown ones.
Although adversaries may exploit different vulnerabilities and
perform diverse malicious activities to cause different types of
physical damage, they rely on the same physical processes
from the target system to plan effective attack strategies.
Second, we can detect and mislead attacks before adversaries
execute their strategies and inflict damage. Detecting attacks
at this early stage enables us to remove potential threats and
prevent damage.

Despite all these benefits, there exists a big research gap to
design practical and efficient anti-reconnaissance approaches.
Current research, such as moving target defense (MTD) tech-
niques, relies on mimicking and simulation of system behav-
iors and thus, has critical drawbacks. First, mimicking system
behaviors can be easily detected [25] because it often poorly
follows a complete system specification and lacks interactions
with environments. Second, simulations of network infrastruc-
ture, often used in honeypots or honeynets [6], [11], [72], are
based on a static specification. Even if the implementation is
perfectly consistent with a protocol specification, it can still
be different from the actual implementation of a real system,
e.g., one with proprietary implementation in a real utility envi-
ronment. Last, those state-of-the-art honeypot projects for ICS
do not model physical processes and system-level behaviors,
e.g., latencies of executing control commands and variations
of physical states, which can vary at different locations and
times. Adversaries can exploit those state variations to identify
the simulation [18].

A. Contributions
To overcome the drawbacks of mimicking and simulations,

we propose the design of physical function virtualization
(PFV) to build lightweight virtual nodes that follow the actual
implementation of network stacks, physical state variations,
and system invariants of real physical devices in power
grids. PFV leverages a network control application based
on software-defined networking (SDN) to “hook” network
interactions with real devices and use them as network flows
of virtual nodes (as shown in Figure 1).

PFV’s Role. We position PFV as a complementary service
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Fig. 1: Design principle of PFV: using SDN to interact with
adversaries on behalf of virtual nodes based on interactions of real
physical devices.
to existing security functionality, including IDSs and honey-
pots. Virtual nodes built by PFV cannot perfectly follow every
aspect of physical devices from a large variety of vendors
without formal coverage analysis (which we leave to future
work). However, based on a concept completely different from
network mimicking and simulation, PFV achieves lightweight
virtualization on network interactions of physical devices,
providing additional protection to complement passive IDSs:

• Considering practical threats with partial compromise.
IDSs, especially anomaly-based ones, rely on a correct
system model to identify anomalies; they require that
no compromises occur while building system models.
These assumptions are unrealistic and even dangerous
in practice [65]. PFV considers a strong threat model
in which adversaries have already compromised power
grids’ networks and no trust is needed on complicated
SCADA (supervisory control and data acquisition) systems
or substation configurations. PFV can potentially extend
future IDSs to fight against practical and realistic threats.

• Increasing reconnaissance efforts. Virtual nodes follow
the behavior of real devices at a fine-grained level that
makes it computationally expensive, if not impossible, for
adversaries to efficiently distinguish real devices from vir-
tual nodes. Consequently, we expect PFV can significantly
increase adversaries’ reconnaissance efforts. Compared to
high false detection rates in anomaly-based IDSs [65],
PFV can help to reduce the rate of successful reconnais-
sance by at least three orders of magnitude (as shown in
Section VII-A).

• Regaining computational advantages for defense mech-
anisms. Network packets from virtual nodes provide
additional misleading information for adversaries, while
defense mechanisms can leverage accurate system infor-
mation. In Section V, we show that PFV can even make
vulnerable state estimation used in conventional SCADA
systems robust against stealthy cyberattacks.

Based on PFV, we present DefRec, a specific defense
mechanism to significantly increase the reconnaissance efforts
required to infer the knowledge of power grids’ cyber-physical
infrastructures without affecting legitimate applications that
already know the actual power grid configurations (e.g., the
identities of real physical devices). DefRec specifies and im-
plements two security policies: (i) obfuscate communications
by adding random interactions with virtual nodes, introducing
significant overhead for adversaries to identify real devices;
and (ii) mix decoy data (from virtual nodes) with real data
(from physical devices), based on which adversaries would
design ineffective and easy-to-detect attacks (e.g., activities
that access virtual nodes).

Even though we present the design of DefRec (and PFV)

for power grids, the design concept can be extended to other
ICSs. By adding parsers and encoders of protocols used in
different ICS networks and profiling characteristics reflecting
system invariants in those environments, PFV can monitor
and manipulate network interactions with real devices without
any proprietary instrumentation. Based on those adjustments
in PFV, the first security policy in DefRec that randomizes
communications with virtual nodes is also extensible. The
second security policy relies on the control theoretical model of
power grids. By using the model of physical processes in other
ICSs, we can also implement the security policy for different
utility environments.

The main contributions of the paper are:

• To the best of our knowledge, this is the first work to
propose the concept of PFV (physical function virtual-
ization) that builds virtual nodes following the actual
implementation of network stacks, system invariants, and
physical state variations of real physical devices.

• To the best of our knowledge, DefRec is also the first work
that aims at increasing the difficulty for an adversary’s re-
connaissance to infer the knowledge of power grids’ cyber-
physical infrastructures, by randomizing communications
and crafting decoy data for virtual nodes.

• For evaluation, we used real devices to implement both
cyber and physical infrastructures of power grids: (i) real
intelligent electronic devices (IED) from three different
vendors, (ii) five HP SDN-compatible switches to build six
communication networks containing up to 124 nodes, and
(iii) simulations of six real-world power grids containing
up to 1,000 substations.

Our experimental results show that DefRec, together with
PFV, is highly effective at disrupting reconnaissance while
introducing negligible performance overhead:

• PFV can build virtual nodes closely following the im-
plementation of real devices, including complete network
stacks, system invariants such as latencies of executing
commands, and runtime variations of physical states.

• DefRec can significantly increase the reconnaissance ef-
forts to identify real devices, e.g., delaying adversaries for
at least 100 years by adding a number of virtual nodes
less than or equal to 20% of the number of real devices.

• DefRec can craft decoy data to further increase adver-
saries’ reconnaissance on power grids’ physical infrastruc-
ture, with less than 0.5% false negatives.

• Performance overhead is negligible: (i) PFV can effi-
ciently construct virtual nodes with the goodput of at
least 1.5 Mbps (sufficient for a power grid with 30,000
measurements), and (ii) DefRec introduces less than 3%
overhead on existing network communications and power
grid operations.

II. DESIGN OBJECTIVES

In this section, we first present background information on
power grids. Then we describe our design principles based on
the threat model considered in this work.

A. Power Grid Basics

A power grid is an ICS, in which generators supply power
to load demands over a wide geographical area. The generators
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and load demands are connected by transmission lines in a
complex topology, often referred to as a transmission network.
In the graphical representation of a transmission network (e.g.,
in Figure 3), we use a bus to represent a substation, where
generators or load demands are deployed. In each bus and
transmission line, we can have physical measurement data,
including voltage, current, power consumption, and generation.

Fig. 2: Hierarchical network infrastructure of power grids.
In Figure 2, we show a hierarchical communication net-

work used by power grids. A control center uses an IP-
based control network to retrieve data from substation devices
periodically; this process is also known as data acquisition.
Based on the retrieved data, the control center uses state
estimation to determine the physical state of power grids
(details in Section V-A1).

For further discussion, we use the following definitions:

Definition 1. End Devices: Intelligent electronic devices
(IED) located at the end of a communication path connecting
the control center and substations.

End devices connect to sensors or circuit breakers through
hardwired connections in their downstream communications.
In their upstream communications, multiple end devices con-
nect to a higher-level IED, e.g., RTUs (remote terminal units),
which forwards information (e.g., aggregated measurements or
commands) to/from the control center.

Definition 2. Edge Switches: Network switches located at the
first or the last hop of a communication path that connects the
control center and end devices.

B. Design Objective & Threat Model

Assumptions on Adversaries’ Capability. We assume
that adversaries penetrating a control network have limited
knowledge of network configurations and physical data. We
assume that adversaries can compromise any computing de-
vices connected to the control network; however, they are not
able to obtain knowledge of a whole power grid based on data
collected by those compromised devices. Unlike previous IDS
designs [5], [9], [41], we do not require the trust of SCADA
systems in a control center and end devices in substations
(except a few devices used by PFV, see following paragraphs).

Compared to external adversaries learning power grids
through coarse-grained publicly available data, these “insider”
adversaries are a more significant threat. For example, even
though external adversaries can know the basic connection
of substations through satellite pictures, they are not able to
obtain connections of physical devices and measurements these
devices collect, which reflect a much more complicated graph
required to design effective attacks [75]. The insider adver-
saries can perform reconnaissance in such fine granularity,
which can only be obtained through internal control networks
(as seen in real attack incidents [37], [38]).

For clarity, we classify adversaries’ attack capabilities into
three types. Passive attacks monitor network traffic to obtain
the knowledge of power grids’ cyber-physical infrastructures.
Proactive attacks achieve the same goal by using probing mes-
sages to trigger responses from real devices or virtual nodes.
Active attacks directly manipulate network traffic, including
dropping, delaying, compromising existing network packets,
or injecting new packets. Passive and proactive attacks are
common techniques used by adversaries to perform reconnais-
sance, while active attacks are used to issue attack-concept
operations to cause physical damage.

DefRec’s Objective. DefRec’s objective is to disrupt and
mislead adversaries’ reconnaissance based on passive and
proactive attacks, such that their active attacks become ineffec-
tive. Reconnaissance is a necessary step for “targeted attacks”
in ICSs [8], [39], which are more frequently appearing in real
utilities [17], [37], [38] and are becoming a critical and damag-
ing threat for ICSs, including power grids. In previous targeted
attacks, adversaries have used in-depth knowledge of the
target systems (obtained through reconnaissance) to stealthily
deliver malicious attacks. We specify our anti-reconnaissance
objectives (RO) as follows:

• RO1: for passive attacks on a control network, we aim at
significantly lengthening the time required by adversaries to
successfully learn the knowledge of the control network.

• RO2: for proactive attacks on a control network, we aim
at revealing adversaries’ existence with a high probability
and isolating the compromised devices from the network.

• RO3: for physical knowledge obtained by passive or
proactive attacks, we aim at leveraging intelligently crafted
decoy data to mislead adversaries into designing ineffective
attacks.

To achieve these objectives, we add only the components of
PFV in the trusted computing base (TCB, highlighted in Fig-
ure 3), which includes lightweight SDN controller applications,
network switches to which the SDN controller is attached,
a few real physical devices (referred to as “seed” devices)
from which we build virtual nodes, and the communication
channels between the aforementioned components. Those com-
munication channels, such as the one connecting SDN appli-
cations and the seed devices, can be protected by SSL/TLS,
to prevent adversaries’ eavesdropping. These assumptions are
typical in work that studies attacks targeting SDN [70], [74].
Compromising SDN controllers or edge switches requires
adversaries to invoke or inject certain network events [70].
Because DefRec performs simple activities, e.g., sending out
network traffic on behalf of virtual nodes, we can ensure the
assumptions made in the threat model by monitoring anomaly
events from/to SDN controllers [15].

DefRec’s objective is to increase adversaries’ reconnais-
sance efforts. Even if adversaries learn the identities of virtual
nodes and real devices, we can reconfigure power systems,
e.g., changing IP addresses of real devices, to disrupt their
future reconnaissance. In addition, adversaries still need to face
existing defense mechanisms, such as IDSs designed for active
attacks. We believe that PFV can also help the design of IDSs
for active attacks, which we leave to future work.

For Attacks Requiring Little or No Reconnaissance.
DefRec does not focus on attacks that require no or little
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Fig. 3: Design overview: (i) PFV constructs virtual nodes that follow the actual
implementations of seed devices; and (ii) DefRec specifies security policies based
on PFV to randomize communications and to craft decoy data for virtual nodes.

Fig. 4: Components of PFV: hook network
interactions with real devices based on virtual
nodes template and runtime profiling.

reconnaissance, including adversaries that (i) target applica-
tions storing or using all network configurations and physical
data in a single location, (ii) have already compromised a
large number of physical devices, (iii) perform attacks through
random physical disruptions or data compromises, and (iv)
have a direct access to a large number of physical devices,
e.g., through Internet-of-things (IoT) [64]. For the first case,
it is necessary to dedicate specialized protections on those
critical applications, such as running them in an isolated and
trusted environment like Intel SGX [12], which has already
been applied in critical power grid applications [32], [62].

For the second type of attacks, adversaries can introduce
physical damage without reconnaissance. As shown in [41],
[42], if adversaries can compromise 50% of physical devices,
they can very likely introduce physical damage through ran-
dom active attacks (probability is more than 60%). As normal
control operations seldom involve such a large number of
physical devices, this type of attack can trigger alerts under
existing protection mechanisms.

For the third and fourth types of attacks that require little
reconnaissance, we can still remedy them by enhancing PFV
with different security policies. The insight is that in random or
IoT-based attacks, adversaries rely on numerous control com-
mands to change power grids’ physical state, mainly through
active attacks. Without knowing the identities of real physical
devices, their malicious activities can access virtual nodes and
raise alerts. We leave the formal analysis of detecting those
attacks based on PFV to future work.

For Attacks on Data Privacy. Disrupting adversaries’
reconnaissance is different from protecting the privacy of
physical data. The proposed security policies are to achieve
RO1–RO3, which may not be consistent with policies to
prevent the leaking of physical data. We leave the design of
privacy-preserving policy to future work.

III. DESIGN OVERVIEW OF DEFREC BASED ON PFV

In Figure 3, we present the design of DefRec, including the
components of PFV and two security policies implemented on
top of it (details are presented in Section IV and Section V).
We position PFV as a complementary service to defense
mechanisms, such as the design and implementation of the
proposed security policies to disrupt and mislead adversaries’

reconnaissance. We believe that PFV’s functionality is not
limited to DefRec, but can be used in other security solutions.

A. Components of PFV

The objective of PFV is to build lightweight virtual nodes
that follow the implementation of network stack, system invari-
ants, and physical state variations of real devices. In Figure 4,
we present three components of PFV in detail.

Virtual Node Templates. We use these templates to
contain basic configurations of the target control networks.
For example, the templates include network stack information,
such as IP addresses that can be assigned to virtual nodes, and
the specification of application-layer protocols used to deliver
physical data and control operations. Configurations stored in
the templates are not specific to the context of a power grid.

Profile of Seed Devices. We select a few end devices as
seed devices and profile three aspects of each.

• The actual implementation of network stack can be different
from the protocol specification. For example, the DNP3 pro-
tocol used in power grids specifies 37 function codes [29],
but the SEL 751A relay used in our experiment implements
only 14 of them [60].

• System invariants refer to the characteristics that can be used
to identify or fingerprint real devices, such as the latency of
executing control commands [18].

• Physical state variations usually fall in a deterministic
range for a specific power system, such as voltage mag-
nitudes varying within the range of ±5% around a nominal
value [20].

The device profile includes a range of variations for a
certain property observed at runtime (e.g., command execution
time) and the probability distribution over that range. We
only need to select one seed device to represent each vendor
or model, based on which we profile the runtime behavior.
The device profile makes network flows from virtual nodes
follow the probabilistic behavior of real devices, rather than
replicating the same pattern. In this paper, DefRec focuses
on the reconnaissance of power grids’ applications. As such,
we build virtual nodes following these three aspects of seed
devices. When using DefRec for other applications, we can
profile other application-specific knowledge.
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Fig. 5: DNP3 configuration in Schneider Electric ION 7550 power
meters: specifying four data formats for analog inputs.

We can practically implement the profiles of seed devices
with a little storage overhead. We do not rely on proprietary
instrumentation on physical devices. Instead, we can select
existing IEDs as seed devices by reusing spare Ethernet ports
(e.g., the SEL 751A relay can include up to three Ethernet
ports [60]). Then we can extract knowledge from network
packets ( e© and f© in Figure 4) through the “protocol parser”
in the packet hooking component. Because a substation tends to
deploy devices from the same vendors to reduce configuration
complexity [18], we expect to profile a small number of models
in a substation. Also, many physical devices include a small
number of configurations for a few deterministic functions.
For example, as shown in Figure 5, the Schneider Electric
ION7550 power meter [58] used in our experiments only
allows at most four data formats for analog inputs, binary
inputs, and binary counters (due to space limitations, only the
tab of “analog inputs” is shown).

Packet Hooking. This component uses SDN’s programma-
bility to hook network packets from seed devices; it tailors
these packets based on the information from device profiles
and virtual node templates, and uses the resultant packets as
the network flows from virtual nodes.

As shown in Figure 4, when network packets reach an
edge switch, a protocol parser extracts header information
from the packets; a traffic regulator redirects them to a seed
device if their destinations are virtual nodes (network flow c©
and e© in Figure 4). Upon receiving the forwarded packets,
the seed device responds ( f©). The responding packets serve
two purposes: (i) building the device profile and (ii) serving
as the input to a protocol encoder, which tailors the network
packets according to the system invariants and physical state
variations profiled before. The tailored packets, which are not
deterministic but follow the same probabilistic properties of
seed devices, are sent out by virtual nodes as the responses
for the original request ( d©). The responses from seed devices
reflect the actual implementation of the whole network stack,
including the TCP/IP implementation. Consequently, virtual
nodes are able to respond to lower layer network probing, e.g.,
ARP requests.

There are two requirements for the packet hooking com-
ponent so that virtual nodes follow the runtime behavior of
seed devices without causing physical damage and revealing
the real physical state of a power grid.

• Tailor application-layer payloads. A protocol encoder tai-

lors the application-layer payloads of network packets sent
out by virtual nodes to (i) avoid leaking real physical data
and (ii) introduce entropy (according to the device profile) to
the data sent out by virtual nodes. A method for tailoring the
payloads is beyond the range of PFV design. In Section V,
we craft decoy data for virtual nodes to mislead adversaries.

• Redirect control operation without physical impact. If a
control operation (e.g., turn off a circuit switch) reaches
a virtual node, we redirect it to a seed device, connecting
to a switch that is already turned off, such that the operation
introduces no physical impacts on the power grid.

To reduce the implementation complexity and runtime
overhead (caused by SDN), we further enhance the packet
hooking component with two design options.

• Take advantage of edge switches. As shown in Figure 4, we
choose to attach PFV components to edge switches, which
brings two benefits. First, we can reduce controller-switch
latency. The latency of fewer than 2 milliseconds (found in
our experiments and specified in IEC 61850 [23]) is within
the range of the system invariant of seed devices. Second, we
can reduce the number of switches in the communication
path connecting the seed device and the packet hooking
component. Consequently, we only need to include the edge
switch in the TCB.

• “Cache” interactions with seed devices. Because commu-
nications in power grids experience little variation and
are repetitive in nature, we can optionally (determined by
system administrators) cache requests and the corresponding
responses. For example, we only need to cache “request-
response” pairs for around fourteen configurations for the
ION 7550 power meter shown in Figure 5. When an
incoming request matches an entry in the cache, we directly
respond according to the profile of the device model without
redirecting it to seed devices.

“Caching” can significantly reduce the frequency of the
interaction with seed devices, while making responses from
the virtual nodes still follow the network implementation,
system invariants, and physical state variations of real
devices. If we can perform sufficient caching in advance,
we can completely avoid the interaction with seed devices,
allowing us to further remove seed devices from the TCB.

Implementation. We can implement PFV based on any
network manipulation techniques. However, the network pro-
grammability and visibility enabled by SDN can significantly
benefit the design and implementation of PFV and security
policies. Also, SDN-enabled networks are being designed and
deployed for power system substations [59], which make it
feasible to deploy PFV in real utility environments (in our
testbed, we have successfully implemented them with real
physical devices).

Built on lightweight SDN controller applications, PFV
requires no modifications to (i) existing control operations
from energy management systems, (ii) physical configurations
of substations, or (iii) existing network routing/forwarding
configurations in control networks.

B. Security Policies based on PFV

Based on PFV, DefRec specifies security policies to achieve
anti-reconnaissance objectives defined in Section II-B. As
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shown in Figure 3, to achieve RO1 and RO2 related to
the reconnaissance of power grid networks, we present in
Section IV a disruption policy that randomizes network com-
munications. To achieve RO3, in Section V, we propose an
attack-misleading policy that crafts decoy data for virtual
nodes. Consequently, adversaries collect misleading informa-
tion about a power grid different from the one under protection
(e.g., the power grid with virtual nodes highlighted in orange
in Figure 3). Based on such information, adversaries design
ineffective attacks.

IV. DISRUPTION POLICY: RANDOMIZE
COMMUNICATIONS

The disruption policy deployed in DefRec is to achieve
the anti-reconnaissance objectives RO1 and RO2. To disrupt
passive attacks in RO1, we randomize network packets issued
to both real devices and virtual nodes, significantly increasing
the time for adversaries to stealthily identify real devices
(Section IV-A). To disrupt proactive attacks in RO2, we
introduce randomness when responding to probing of virtual
nodes, revealing adversaries’ existence with a high probability
while reducing the information an adversary can learn (Sec-
tion IV-B).

A. Randomize Request Patterns

Adversaries can use passive attacks to stealthily identify
real physical devices, if we issue requests only to real devices
(such as a© in Figure 4). To address this problem, we random-
ize request patterns as follows:

• Add requests to randomly selected virtual nodes. Because
accessing this set of virtual nodes is part of the disruption
policy, we regard them as “accessible virtual nodes” and
accessing them will not raise alerts. When we change the
addresses of accessible virtual nodes, we always leave the
addresses of a subset of virtual nodes unchanged. Otherwise,
adversaries can conveniently identify real devices because
their addresses remain unchanged.

• Issue requests to randomly selected real devices. This ran-
domization activity further balances the number of requests
sent to real devices and requests to accessible virtual nodes.
It prevents adversaries from identifying real devices based
on the biased distribution of the number of network packets
sent to the real devices.

Sending requests to randomly selected real devices has
become feasible as modern power grids deploy a large
number of devices to collect redundant measurements.
Consequently, we can issue requests to randomly selected
real devices as long as they collect the set of “necessary
measurements” (or basic measurements) [45]. As the set
of necessary measurements are not fixed but vary with
system state, the requests issued to the real devices are
continuously randomized. Currently, many work exploits
this property to reduce communication overhead with negli-
gible impact [21], [40], [47]. In Appendix A, we also show
that such impact is negligible, as the accuracy of common
control operation is at least 99.8%.

Security Argument. We assume that there are n real
devices and m virtual nodes, which include m1 accessible
nodes. The detailed derivation and evaluation of the following

security argument can be found in Appendix A. The probability
that an adversary will successfully identify all accessible
virtual nodes is (

(
n
n′

)
×
(
n′+m1

m1

)
)−1, if the adversary issues

requests to n′ randomly selected real devices and m1 randomly
selected virtual nodes; this probability decreases exponentially
with n′ and m1.

B. Probabilistic Dropping Protocol to Isolate Proactive At-
tacks

Adversaries can perform proactive attacks to probe physi-
cal devices or virtual nodes and use the responses to identify
real devices. Probing accessible virtual nodes always results
in responses. In this section, we present a procedure to han-
dle proactive probing destined to other “inaccessible” virtual
nodes, which is suspicious, as the requests are neither from
legitimate applications nor DefRec. However, directly isolating
the probing machine can immediately reveal the identity of an
inaccessible virtual node.

We propose a “probabilistic dropping” protocol that signif-
icantly reduces the effectiveness of adversaries’ probing activ-
ities, making it info-theoretically challenging for an adversary
to determine which devices are real.

• We label an identity as suspicious if it accesses an inaccessi-
ble virtual node and isolates this suspicious identity from the
network (e.g., dropping following incoming packets) with
the probability p0.

• For the k-th access from the suspicious identity to either
virtual or real devices (k ≥ 1), we isolate the suspicious
identity with a probability pk. If the suspicious identity is
not isolated on this access, it will receive a response.

• We set a threshold δ for the maximum number of accesses
allowed for the suspicious identity.

We model the event to isolate a suspicious identity after
the access to an inaccessible virtual node as a series of biased
coin flips with increasing probability. The probability that the
suspicious identity is isolated at its k-th access is Qk = pk ×∏k−1
j=0 (1− pj) for 1 ≤ k ≤ δ.

Security Argument. Following the assumption that there
are n real devices and m2 inaccessible virtual nodes, we
present a brief security argument here and leave the detailed
derivation and evaluation to Appendix A.

When an adversary finds that her compromised identity
is isolated from the network after a probing, she can guess
on which previous access (among up to δ + 1 accesses) she
probed an inaccessible virtual node. We want to make each
previous access have an equal chance of leading to the isolation
of the suspicious identity. In other words, we want to make
p0 = Q0 = Q1 = · · · = Qδ . Then pk = p0/(1 − k · p0)
for 0 ≤ k ≤ δ. To make pk < 1, we need to determine
p0 such that (1 − k · p0) > p0 always holds, which is
equivalent to p0 < 1/(1 + δ). Under this condition, the
probability that an adversary has accessed δ real devices is
Sδ = pδ0

∏δ
k=1

(
n+m2−1
n−k+1

)−1
. If the adversary accesses all

remaining real devices under this protocol, the probability
that they can obtain all real measurements through proactive

probing will be at least Sall = S
dnδ e
δ .
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Security-Performance Trade-off Argument. With more
virtual nodes, it is more difficult for adversaries to identify real
devices. Meanwhile, with more virtual nodes, we redirect more
packets to seed devices, which handle more requests compared
to the case without DefRec.

To meet a security-performance trade-off, we can adjust
the design parameters (i.e., m1, m2, and δ). For example,
we can increase the number of virtual nodes by varying their
identities, e.g., IP addresses, even infrequently, such as once
every multiple days. As we randomize the request patterns for
both real devices and virtual nodes, an adversary’s chances
of successfully identifying real devices can drop significantly,
e.g., less than 10−5 even the number of virtual nodes equal to
5% of the number of real devices (shown in Section VII-A).
If we use caching in PFV, we can further reduce the amount
of requests that are actually forwarded to seed devices.

V. ATTACK-MISLEADING POLICY: CRAFT DECOY DATA

In addition to disrupting the reconnaissance on network
configurations, we further use the “attack-misleading” policy
to achieve RO3: disrupting adversaries’ reconnaissance on
power grids’ physical infrastructure by providing misleading
knowledge. The core of this policy is an algorithm that crafts
decoy data for virtual nodes. Without careful design, data
piggybacked by network packets from virtual nodes can still
allow adversaries to learn grids’ physical knowledge, e.g.,
physical topology and measurements.

The decoy data construction algorithm takes the following
inputs: the states of real physical devices, the number of virtual
nodes, and the topology graph representing their connectivity.
We put those inputs into a power system’s mathematical
representation to obtain decoy states or decoy data for virtual
nodes, which follow the normal variations observed in real
physical devices. For example, in Figure 3, we add four virtual
nodes to represent substations with load units (Bus 6 and Bus
7) and two transmission lines connecting them to the power
system; we use the algorithm to obtain decoy data, such as the
impedance of the added lines and power consumption in the
added buses. We can implement the decoy data construction
algorithm in any power grid analysis tools running on general-
purpose computers, such as MATPOWER that we use for our
evaluations [79].

There are two requirements for constructing decoy data:
(i) mislead adversaries into designing ineffective strategies
(Section V-A3); and (ii) follow the physical model of power
grids to avoid suspicion from adversaries (Section V-A4). In
this section, we focus on crafting decoy data for false data
injection attacks (FDIAs). FDIAs, originally presented in [42],
can significantly downgrade the accuracy of state estimation
and the performance of many power grid applications. The
well-established theoretical model in this attack can help us to
formally prove the effectiveness of decoy data. In Appendix B,
we discuss how to apply the decoy data construction algorithm
for FDIAs in attacks targeting other control operations, show-
ing the potential impacts of the algorithm.
A. Decoy Data Construction to Mislead FDIAs

1) Background in State Estimation: Power grids use a
complicated mathematical model to correlate data collected
from substations. To be concrete, we use the DC power flow

analysis model shown in Equation (1) to relate state variables
to sensor measurements.

z = Hx + e (1)

where z = [z1, z2, . . . , zq]
T is a column vector representing

q measurements ([·]T represents the transpose of a vector);
x = [x1, x2, . . . , xp]

T represents p physical state or p phasor
angles at all buses; e = [e1, e2, . . . , eq] is the collection of q
measurement errors; and H is a q-by-p measurement matrix.
There are many sensor measurements, e.g., voltage, currents,
and power, that can be used to represent the physical state of
a power grid. For historical reasons, “sensor measurements”
refer to data that can be efficiently measured by legacy sensors,
e.g., active power injected at each substation or active power
delivered by transmission lines (measuring current can be very
expensive). “State variables,” indirectly estimated via “state
estimation,” refer to voltage angles at each substation, as their
variations are sensitive to the grid stability [20], [45].

We follow the derivation in [35] to determine the mea-
surement matrix H , whose entries are determined by the
topology of the transmission network, the susceptance of each
transmission line (i.e., the imaginary part of admittance, which
is the inverse of impedance), and the placement of sensors.
We assume that a line sensor measures the active power flow
of each transmission line and a bus sensor measures the net
active power injected into that bus. Therefore, the matrix H is
generated as follows. The row of H associated with the sensor
of transmission line k connecting bus i and j is

Hk:(i,j) = [0 Bij 0 −Bij 0]

(i-th entry) (j-th entry) (2)
where the index k : (i, j) represents a transmission line
connecting buses i and j, 0 is a zero-vector of an appropriate
size, and Bij is the susceptance of the transmission line. In
this row of H , Bij and −Bij are the i-th and j-th entries.

The row of H associated with the sensor at bus j is∑
i: incident to j

Hk:(i,j) (3)

where i refers to the index of a bus incident to bus j.

When measurement error e follows a normal distribution
with zero mean, the estimation of state variable x̂ can be
obtained through statistical criteria, e.g., the weighted least-
square criterion. When estimating x̂, state estimation detects
and removes bad sensor measurements to ensure that the
estimated state variable comes “closer” to the actual state.
Specifically, if an L2-norm of the data residual used by state
estimation is larger than a threshold, i.e.,||z−Hx̂|| > τ , state
estimation declares the presence of bad data and raises an alert.

2) Attack Preparation: In FDIAs, adversaries’ objective is
to compromise measurements z so that the estimated state
variable x̂ becomes a different value x̂a = x̂ + c, which is
“further” away from the actual state by c, without triggering
alerts in state estimation [35], [42].

To make FDIAs successful, adversaries can inject an attack
vector a into the original measurement z. With the full knowl-
edge of H , adversaries can construct a such that a = Hc
and determine the corresponding compromised measurements
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Fig. 6: Misleading FDIAs in a 3-bus power system. The decoy data
is highlighted in orange.

as za = z + a. In that case, the L2-norm of the measurement
residual becomes:

||za −Hx̂a|| = ||z + a−H(x̂ + c)|| = ||z−Hx̂|| ≤ τ (4)

Because L2-norm of measurement residual of compro-
mised measurement za is less than τ , state estimation raises
no alerts on the compromised measurements.

3) Crafting Decoy Data to Mislead FDIAs: Because ad-
versaries rely on measurement matrix H to determine com-
promised measurements, we add virtual nodes to build a new
power grid with a different measurement matrix; the compro-
mised measurements determined based on this measurement
matrix (which is decoy data) would always raise alerts in state
estimation (see the following derivations).

Grid Configurations based on Virtual Nodes. When
adding virtual nodes into a power system, dimensions of state
variable x and sensor data z increase correspondingly. We rep-
resent new state variable and sensor data as the combination of
real data and decoy data (from virtual nodes): x′ = [xT xd

T ]T

and z′ = [zT zd
T ]T , where (·)d represents decoy data.

After decoy data is added, the measurement matrix also
changes from H to H ′. We use Figure 6 to show the construc-
tion of H ′. In this figure, we mark the value of susceptance of
each transmission line in a 3-bus system. We add two virtual
nodes: Bus 4 and a transmission line connecting it to Bus 3.
The decoy data of interest is B34, the susceptance of line (3,
4) (other decoy data, e.g., active line power and bus power
are not needed in this discussion). In the figure, we associate
each row of H and H ′ with the corresponding line or bus (at
the end of that row), based on which entries in that row are
determined according to formulas (2) and (3).

To better understand the relationship between H and H ′,
we divide H into two sub-matrices H1 and H2. Sub-matrix
H2 corresponds to real physical components that are affected
by decoy data, while H1 corresponds to real components that
are not. In the example shown in Figure 6, because we connect
virtual Bus 4 to real Bus 3, H2 includes a single row associated
with Bus 3.

After we add Bus 4 and line (3, 4), matrix H changes to
H ′ as follows. Each row of H ′1 is constructed by appending
an appropriate number of 0 at the end of each row in H1.

This is because physical components associated with rows in
H1 are not affected by decoy data xd. In H2, we first append
two rows (i.e., rows 6 and 7 of H ′) corresponding to virtual
Bus 4 and virtual transmission line (3, 4). Because of this
virtual line, the rows associated with Bus 3 and Bus 4 in matrix
H ′2 is changed correspondingly, per formula (3). To see those
changes explicitly, we further divide H ′2 into four sub-matrices,
i.e., H ′21, H ′22, H ′23, and H ′24 in Figure 6, such that H ′21 has
the same dimensions as H2.

How Adversaries Prepare FDIAs based on Decoy Data.
With an attack objective being c′, an adversary determines
an attack strategy a′ according to the condition a′ = H ′c′

based on decoy matrix H ′, where a′ = [aT aTd ]T and c′ =
[cT cTd ]T . Here, ad and cd are changes made on decoy data
zd and xd correspondingly.

How FDIAs Become Ineffective. When state estimation of
a power grid receives compromised measurements, it verifies
the integrity of measurements using condition a = Hc, which
is different from the one (i.e., a′ = H ′c′) used by adver-
saries to determine the compromised measurements. While
the adversary thinks she has designed a successful attack, the
involvement of decoy data makes it detectable even based on
existing state estimation.

Is it Possible for FDIAs to Bypass DefRec (False
Negative)? We used mathematical representations of attack
preparations of FDIAs to demonstrate that it is challenging, if
not impossible, for FDIAs to bypass DefRec.

In Equation (5), we expand the condition that adversaries
use to determine compromised measurements.

a′ = H ′c′ ⇒
[
a
ad

]
=

[
H1 0
H ′21 H ′22
H ′23 H ′24

] [
c
cd

]
⇒

a =

[
H1

H ′21

]
c +

[
0
H ′22

]
cd

ad = [H ′23] c + [H ′24] cd (5)

To avoid alerts from state estimation used in power grids,
FDIAs determined based on decoy data need to satisfy the
condition a = Hc. By putting Equation (5) into this condition,
we have:

[
H1

H ′21

]
c +

[
0
H ′22

]
cd =

[
H1

H2

]
c (6)

Equation (6) indicates the necessary condition for adver-
saries to bypass DefRec, i.e., performing successful FDIAs
even with injections of decoy data. In practice, this corresponds
to one of the following two conditions, which are difficult to
satisfy:

• Adversaries are forced to change their attack strategies,
to satisfy the condition H ′21c+H ′22cd = H2c. Even adver-
saries are successful to satisfy the condition, forcing them to
change attack strategies can directly affect effectiveness and
stealthiness of the original attacks. As the scale of power
grids increases, dimensions of Equation 6 also increase,
making the condition difficult to satisfy according to our
evaluation (see Section VII-A3).
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• A power grid fails to deploy sufficient sensors. If there are
no sensors deployed at the physical component associated
with H2 (e.g., Bus 3 whose sensor measurements are
affected by decoy data), we have H2 = H ′21 = H ′22 = Φ,
which is an empty matrix. This is very unlikely to happen, as
modern power grids usually deploy many redundant sensors
to ensure accurate state estimation [45].

4) Refine Decoy Data to Follow Physical Model: The
initial values of decoy data determined in Section V-A3 may be
invalid, i.e., they may fail to follow the mathematical model of
a power grid, raising suspicions to adversaries. To solve this
problem, we refine decoy data such that the combination of
decoy and real data becomes valid, which makes them appear
to be measured from a real power grid. In other words, the
combination of decoy and real data raises no alerts in state
estimation.

We use Algorithm 1 to refine decoy data by going through
iterations of two operations: (i) putting decoy and real data
into state estimation (lines 5 and 8), and (ii) using resultant
errors to adjust the value of decoy data while leaving the value
of real data unchanged (line 7). Typically, state estimation
removes data with big measurement errors due to accidents
like misconfigurations in sensors [45]. In Algorithm 1, we
use errors differently: modify decoy data instead of removing
them. Using the resultant errors to slightly adjust the values
of decoy data makes them move closer to valid ones, still
achieving the misleading objective (e.g., making Equation (6)
challenging to hold).

B. Discussion: Decoy Data for Other Attacks

In this section, we used a theoretical model of FDIAs
to demonstrate decoy data construction. In Figure 24 in Ap-
pendix B, we further show that by replacing the theoretical
model with ones in other control operations, we can generalize
decoy data construction for other attacks.

Towards Future Smart Grids. DefRec aims at disrupting
adversaries who need global knowledge of a power grid. In
future microgrid infrastructure, distributed energy resources,
such as solar power, decentralize control operations in multiple
regions [36]. Consequently, DefRec may become less effective
against adversaries that restrict their malicious activities in a
region. To solve this problem, we can deploy multiple DefRec

Algorithm 1 Pseudocode of REFINEDECOY that refines decoy
data such that the combination of decoy and real data is valid

1: Input: zinit = [z zinitd ] . combination of real and initial
decoy data

2: τ . the threshold to identify bad data in state
estimation

3: procedure REFINEDECOY(zinit)
4: zd = zinitd
5: [r rd] = SE(zinit) = SE([z zinitd ]) .

state estimation SE returns measurement errors r and rd
for real and decoy data

6: while ||[r rd]|| > τ do
7: zd = zd − rd
8: [r rd] = SE([z zd])

return zd

instances independently in concerned regions to disrupt and
mislead adversaries’ preparations relying on knowledge of
those regions.

In future smart grids, we can also experience increased data
acquisition frequency. For example, phasormeasurement units
can collect data at up to 200 times per second [7]. Crafting
decoy data in such frequency can be challenging. However,
those technical advancements are faced by both existing state
estimation application and adversaries, who may down-sample
data to prepare attacks. Consequently, instead of catching up
with advanced data acquisitions, DefRec needs to compete
with adversaries or existing state estimation application, craft-
ing decoy data at a pace quicker than the pace of adversaries’
preparations. Also, based on our evaluation in Figure 17,
the latency of decoy data construction, built on top of state
estimation, is on the same order of magnitude as the latency
of state estimation. As future smart grids introduce advanced
state estimation algorithms, we can increase the efficiency of
decoy data construction correspondingly.

VI. IMPLEMENTATION

To evaluate security policies included in DefRec, we im-
plemented PFV as an SDN application in the ONOS network
operating system and developed a testbed (shown in Figure 7)
that simulates both cyber and physical infrastructures of power
grids.

Communication Networks. The network implementation
follows typical setups for SDN evaluations [78]. Specifically,
we used five HP ProCurve 3500yl switches and seven HP
ProLiant DL3600 servers. Each switch has 48 ports, and we
extended each server by deploying four PCI 4-port Ethernet
adapters [26]. By grouping switch ports into different VLANs,
we built six networks of different sizes (up to 124 nodes)
from TopologyZoo dataset [34], which includes topology of
real networks managed by different Internet Service Providers
(ISPs) (see Table I).

Implementation of PFV & DefRec. PFV does not require
a dedicated virtual environment; we implemented PFV as
an SDN application in ONOS [4], including around 1,500
lines of code (LOC). We present storage overhead of PFV in
Appendix C. Based on PFV, we also implemented DefRec’s
disruption policy in ONOS, using less than 200 LOC. For De-
fRec’s attack-misleading policy, we implemented decoy data
construction algorithm by using MATPOWER, an open-source
MATLAB toolbox [79]; the implementation uses around 400
LOC. All implementations were carried out on a 64-bit Ubuntu
18.04, deployed in a workstation with four Intel Xeon 2.8 GHz
processors and 16 GB RAM.

Physical Devices (Seed Devices). We used IEDs from
three different vendors as end devices: Schweitzer Engineering
Laboratories (SEL) 751A feeder protection relay [60], Allen
Bradley (AB) MicroLogix 1400 PLC [1], and Schneider Elec-
tric (SE) ION7550 power meters [58]. To communicate with
those devices, we implemented a DNP3 master by using the
openDNP3 library [49]. For each evaluation case, we used
an DNP3 master to issue requests, including data acquisition
retrieving analog data and control operations opening/closing
breakers, to both real devices and virtual nodes.
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Fig. 7: Cyber-physical testbed for evaluation. We set the delay of network links to a normal
distribution with 20 milliseconds (ms) mean and 5 ms jitter, adjusting settings of general-purpose
wide-area networks [31] to meet the requirements of power grids [28].

TABLE I: Evaluation cases. We
include the number of nodes for
each network in parentheses.

Case Power Grid
Simulation

Network (# of
nodes)

1 IEEE 24-bus Datax (11)
2 IEEE 30-bus Abilene (22)
3 RTS96 73-bus Hurricane (30)
4 IEEE 118-bus Chinanet (56)
5 Poland 406-bus Cesnet (78)
6 Poland 1153-bus Forthnet (124)

Power Grid Simulations. To provide physical data for
network traffic, we used MATPOWER to simulate six power
systems [79], shown in Table I. The latter two systems rep-
resent the biggest two areas of Polish 400-, 220-, and 110-
kV national transmission networks. To simulate the normal
variation of operational data, we developed a benchmark
profile based on data from real utilities [16], [52]. We extracted
one month of real data on power generation and calculated
the ratio between actual data value at each timestamp to the
peak value of that month. For each simulated system, we
randomly selected power generators and load units, adjusting
measurements for each unit according to the benchmark.

VII. EVALUATION

In this section, we perform security and performance
evaluation for both PFV and security policies in DefRec.

A. Security Evaluation

Security evaluation focuses on the effectiveness of: (i)
PFV’s virtualization on network flows of real devices, (ii)
disruption policy to delay passive attacks and isolate proactive
attacks (RO1 and RO2 in Section II-B), and (iii) attack-
misleading policy causing adversaries to design ineffective
attacks (RO3).

1) Effectiveness of PFV’s Virtualization: We evaluate
PFV’s effectiveness on actual implementation of network
stacks, system invariants, and physical state variations of real
devices.

Evaluation of Network Stack Implementation. We used
three outputs from experiments to verify this implementation.
First, outputs in the DNP3 master triggered by responses
from real devices and virtual nodes were always consistent.
Second, network packets showed no errors in common network
analysis tools, such as Wireshark and Zeek runtime network
analyzer [50], [73]. Last, SDN controllers recorded lower-layer
network information of all virtual nodes, e.g., their entries in
ARP caches and corresponding flow entries.

Evaluation of System Invariants. We applied fingerprint-
ing methods proposed for ICSs on both real physical devices
and virtual nodes. As shown in [18], the time to execute
commands in ICS devices, e.g., data acquisition and control
commands, is an effective system invariant to identify device
types and models. Based on the methods presented in [18],
we measured the difference between the timestamp in the
response carrying measurement data and the timestamp in
the corresponding TCP acknowledgment, to accurately reveal
execution times in real devices or virtual nodes.

In Figure 8, we show the estimated execution times based
on responses from three IEDs and from corresponding virtual
nodes. Three IEDs show different characteristics if we consider
the combination of average and variations of execution times.
For example, SE ION 7550 has the largest execution time and
also the biggest variation. The execution times of SEL 751A
and AB MicroLogix 1400 have a close average but different
variations. Outbound packets of virtual nodes, tailored based
on profiles of those real devices, follow the communication
patterns, making it challenging for adversaries to distinguish
between real devices and virtual nodes.

In Figure 9, we show the probability density functions
(PDFs) of execution time measured for both data acquisition
and control operations. We can see that PDF patterns vary in
different operation types and devices. In all cases, virtual nodes
can follow the communication patterns of real devices. We
only observe minor differences in the execution time between
them, less than 2 ms, which falls within normal variations
caused by factors like locations and configurations of devices
and switches.

Evaluation of Physical State Variations. Power grids
use voltages at different locations to represent physical states.
Variation of these values is a critical metric of health condition
of a power grid. In Figure 10, we present the voltage magnitude
measured by the real devices and by the corresponding virtual
nodes, which is normalized to a reference substation (i.e., a
“slack bus”). Based on device profiles, virtual nodes can follow
physical state variations of real devices, with less than 1%
differences. Physical states of virtual nodes are not exactly the
same as ones of real devices, which are adjusted by the packet
hooking component according to device profiles.

2) Effectiveness of the Disruption Policy: The disruption
policy included in DefRec is to achieve RO1 and RO2, i.e.,
significantly delay passive and proactive attacks.

Effectiveness in RO1. We achieve RO1 by randomizing
network requests issued to both real devices and accessible
virtual nodes. Based on the analysis in Section IV, we estimate
the time for adversaries to obtain the identities of real devices
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Fig. 8: Comparing the execution time (with 99% confidence
interval) in physical devices and virtual nodes.
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(a) SEL 751A (b) AB MicroLogix 1400 (c) SE ION 7550

Fig. 9: PDF (y-axis) of execution time (x-axis) of data acquisition (at top) and control operations
(at bottom) for three IEDs.

Fig. 10: Voltage magnitude measured by
real devices and profiled in PFV (with 99%
confidence interval).

against the number of accessible virtual nodes. We make
such estimation by assuming that an adversary can passively
monitor up to 200 network packets every second (the most
frequent data acquisition that can be observed in modern power
grids [7]).

As shown in Figure 11, for each power grid, we present
the accessible-virtual-node to real-device ratio (shown in y-
axis) that is sufficient to delay adversaries’ inference of the
identities of real devices for at least 100, 1000, 10,000, and
100,000 years (illustrated in four plots). Even for a small 24-
bus power grid, we can delay passive attacks for 100 years
by adding a number of accessible virtual nodes equal to 15%
of the number of real devices. As the size of a power grid
increases, the ratio decreases exponentially. This is because the
probability that adversaries will make a correct guess about a
real device decreases significantly with the size of a power
grid (see Figure 19 in Appendix A).
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Fig. 11: Accessible-virtual-node
to real-device ratio sufficient to
delay passive attacks.
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Fig. 12: Inaccessible-virtual-
node to real-device ratio suffi-
cient to delay proactive attacks.

Effectiveness in RO2. Similar to passive IDSs detecting
malicious activities, we redefine false positive and negative (FP
and FN), to quantify the effectiveness of the disruption policy
in identifying and isolating proactive attacks.

Definition 3. RO2 FN: adversaries successfully obtain the
measurements from real devices.
Definition 4. RO2 FP: legitimate applications access inacces-
sible virtual nodes. Note that there are no FPs for properly-
configured applications that know the identities of real devices.
In Appendix A, we present FPs for applications that are
misconfigured or unaware of DefRec.

The proposed probabilistic dropping protocol makes FN
rate of RO2 very low, e.g., less than 10−10 even for a small
24-bus power grid (see Figure 21 in Appendix A). To better
interpret those results, we estimate the time for adversaries to
learn real measurements through proactive attacks against the
inaccessible-virtual-node to real-device ratio. Similar to the
evaluation of RO1, we assume that adversaries can actively
probe control networks with a throughput of 10 Gigabytes per
second. In practice, probing a network with such or bigger

throughput can easily trigger alerts in many IDSs, such as
Zeek [50].

In Figure 12, we present the inaccessible-virtual-node to
real-device ratio (shown in y-axis) that is sufficient to delay
adversaries’ acquisition of real measurements for at least 100,
1000, 10,000, and 100,000 years. Even for a small 24-bus
power grid, we need to add a number of inaccessible virtual
nodes equal to 4% of the number of real devices to achieve
RO2. Consequently, when the probabilistic dropping protocol
is used, adversaries must generate a large number of probes
to identify real measurements. If they use the combination of
real and decoy measurements to prepare attacks, the attack-
misleading policy (evaluated in Section VII-A3) can cause
adversaries to design ineffective strategies.

Discussion. Figure 11 and Figure 12 show that DefRec
can delay adversaries for a long latency. In that span of time,
adversaries can face other challenges. For example, operational
environments of power grids can experience changes with
deployment of new generators (see Figure 23 in Appendix A)
to satisfy increasing load demands [27], resulting in changes of
network and physical configurations. Those changes can make
the previously obtained knowledge of a power grid obsolete,
further increasing adversaries’ difficulty in reconnaissance.

3) Effectiveness of the Attack-Misleading Policy: When
adversaries implement active attacks on FDIAs based on real
data, vulnerable state estimation introduces no alerts.

When adversaries implement FDIAs based on decoy data
(in responses from inaccessible and/or accessible virtual
nodes), misled attacks trigger alerts in state estimation. In
this section, we quantify the effectiveness of decoy data and
confirm the theoretical findings. Based on the evaluations of
RO1 and RO2, we change the virtual-node to real-device ratio
from 0 to 20%. Also, we change the ratio of compromised
measurements (i.e., the ratio of non-zero entries in vector a;
see Section V-A for its definition) from 0 to 100%, quantifying
adversaries’ capability in active attacks. As discussed in [42],
more compromised measurements lead to a higher probability
of successful FDIAs, but can become easier to detect.

Definition 5. RO3 FN: FDIAs prepared based on decoy
data are successful. We consider an FDIA as successful if
compromised measurements determined based on decoy data
introduce no alerts in state estimation, i.e., L2-norm of mea-
surement residual satisfies the condition ||z′a −Hx̂′a|| ≤ τ .

Definition 6. RO3 FP: decoy data are not valid, meaning that
the combination of decoy and real data raises alerts in state
estimation without FDIAs. FPs of decoy data do not increase
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the overhead of state estimation, but require DefRec to craft a
different set of decoy data.

In Figure 13, we show that decoy data can restrict adver-
saries’ capability in active attacks. For each amount of decoy
data in the x-axis (measured by the virtual-node to real-device
ratio), we mark a ratio of compromised measurements used in
successful active attacks, above which FN rates become less
than or equal to 0.5%. Based on the results, we can see that
even if adversaries become very careful and compromise less
than 10% of measurements in their active attacks on a normal
scale power grid, the attack-misleading policy can still expose
their malicious activities in state estimation.

In Figure 14, we combine FP and FN rates of decoy data.
Because there were no FPs and FNs in most evaluation cases,
we only present the case when either FP or FN rate is not
zero. For the small 24-bus system, we observe less than 0.5%
FN rate. We found that even in an FN event, Equation (6) did
not hold, but residual errors were accidentally small, especially
when a small ratio of measurements were compromised. As the
size of a power grid and the number of decoy data increase,
residual errors increase dramatically, at least 5,000 times of
detection threshold or ||z′a − Hx̂′a|| ≥ 5000τ (see Figure 22
in Appendix A).

As shown in the figure, we only found FP for the 73-
bus RTS96 system with less than 2% occurrences. This is
mainly because physical components of this system are closely
correlated (e.g., with some transmission lines delivering a large
amount of active/reactive power). Consequently, as we add
virtual nodes, adjusting the value of decoy data can have
comparatively more impact on real devices than other systems.

B. Performance Evaluation

According to the security evaluations in Section VII-A, it
is sufficient to achieve RO1 and RO2 by varying the ratio
of accessible and inaccessible virtual nodes to real devices
from 5% to 20%. Consequently, we focus on performance
evaluation by varying the ratio of virtual nodes in this range.
The accessible virtual nodes are periodically accessed by
randomized requests, consuming network bandwidth. The in-
accessible virtual nodes introduce minimal runtime overhead,
as DefRec isolates proactive attacks after a few attempts.

1) The Capability of PFV: Two factors affect PFV’s per-
formance: the capability of virtualizing physical devices and
overhead of device profiles and caching network interactions.

Overhead of Packet Hooking. To quantify PFV’s capabil-
ity to hook network packets, we measured the goodput of the

SDN controller application implementing the packet hooking
component. In Figure 15, we show the average goodput (in
Megabits per second, Mbps) with 99% confidence interval.
We use the x-axis to separate results of six evaluation cases
and the ratio of virtual nodes.

Fig. 15: Capability of packet hooking. The goodput is between 1.5
and 3.0 Mbps.

The results show that the goodput is at least 1.5 Mbps
and does not vary significantly with the ratio of virtual nodes.
PFV’s performance benefits from the fact that its SDN ap-
plication performs simple tasks, compared to SDN controllers
that perform complicated tasks in general-purpose networks,
such as determining network topology and identifying machine
locations. For a DNP3 packet of 256 bytes, which can contain
more than 64 32-bit measurements, PFV can process around
600 packets per second, which is equivalent to processing
30,000 decoy data on a single site.

Overhead of Device Profiles & Caching. The storage
overhead of device profiles is closely related to the number of
physical state of a power grid and the number of virtual nodes,
while caching overhead is related to the types of network
requests and responses used by power grids. In Table II and
Table III in Appendix C, we present the estimated storage
overhead based on power system cases used in evaluations.
We expect to occupy around 370 KB to profile data of a large
power grid and 10 KB to cache network interactions with real
devices.

2) Impact of the Disruption Policy: The disruption policy
specified in DefRec introduces additional network traffic from
virtual nodes. We conducted experiments to understand the
impact of the injected packets on the performance of existing
networks.

We measured and compared round-trip time (RTT) of all
data acquisitions and control operations with and without
DefRec enabled. In Figure 16, we show average RTT (with
99% confidence interval) in milliseconds; we group results by
different evaluation cases, within which we use different bar
patterns to represent the ratio of virtual nodes.

Fig. 16: Comparing RTT with and without DefRec enabled. The
x-axis specifies evaluation cases and the ratio of virtual nodes; the
y-axis indicates RTT in milliseconds (ms).

As shown in Figure 16, we observed a negligible impact on
the RTT of normal communication. For each case, variations
are within ±3%, which is on the same order of magnitude as
normal jitters that we can observe in communication networks.
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Also because of those jitters, we found that average RTTs are
slightly smaller when DefRec randomizes network packets in
some networks. The results also suggest that RTT is not only
affected by the size of a network but also by its topology. For
example, even though “Cesnet” network has fewer nodes than
“Forthnet” network, the former has more paths with a longer
latency than the latter, which needs more time to deliver data.

3) Performance of the Attack-Misleading Policy: The
attack-misleading policy crafts decoy data; a long execution
time to craft them can make it less feasible to deploy DefRec
in power grids. In Figure 17, we show the execution time to
craft 20% decoy data (with 99% confidence interval that is
hardly noticeable). While constructing decoy data takes less
than 0.3 seconds for most power systems, it takes around 4.7
seconds for Poland 1153-bus system. In practice, we determine
a new set of decoy data when real data in a site experience
significant changes. Because of mechanical inertia in many
power grids and other ICSs, real data usually change slowly,
e.g., on the order of minutes [54]. Therefore, the execution
time is acceptable in practice for deploying DefRec in a real
utility environment.
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Fig. 17: The execution time to craft decoy data. We can craft the
decoy data within 5 seconds for large-scale Poland 1,153-bus system.

In Figure 17, we also compare the result with the execution
time of state estimation performed on the same power system.
Because we construct decoy data by using components in state
estimation (see Algorithm 1), the time to craft decoy data
is on the same order of magnitude as the execution time of
state estimation. In future smart grids, when state estimation
algorithm evolves, we can expect that decoy data construction
can take less time.

VIII. RELATED WORK

Network Function Virtualization (NFV). NFV is an
emerging technology to virtualize network nodes according
to specific functionality, such as load balancing and access
control [48]. NFV is not necessarily dependent on SDN, but
SDN’s network programmability and visibility can signifi-
cantly benefit its design. Recent work has applied NFV to
improve performance and flexibility of security designs. Li
et al. propose to use NFV to virtualize detection logic of
network IDSs, allowing efficient and flexible state sharing
and resource migration. Deng et al. leverage SDN and NFV
to overcome resource limitations of hardware-based firewall
applications, enabling elastic and scalable access control for
virtual computing environments. Inspired by NFV, PFV aims
at virtualizing physical devices by using SDN to hook network
packets from them and to tailor the packets with intelligently
crafted decoy data. By following actual behavior of real
devices, PFV can significantly disrupt passive and proactive
attacks.

Moving Target Defense (MTD) in ICSs. Traditional
MTD approaches disrupt adversaries by randomly changing

system and network configurations, e.g., IP addresses and port
numbers [3], [30], [33], [76]. Some recent work leverages
similar designs to disrupt control operations in ICSs. Rahman
et al. randomly change the set of physical data used for power
system analysis, attempting to remove some compromised data
and to reduce the effectiveness of FDIAs [51]. Another group
of MTD approaches intentionally disrupt physical process in an
ICS and use deviations from expected consequences to detect
attacks [2], [14], [46], [71]. Those approaches require physical
perturbations, which can harm the existing physical process. In
PFV, we require no modification on existing cyber and physical
infrastructures of a power grid; security policies included in
DefRec are preemptive, not passive, disrupting reconnaissance
before malicious activities occur.

Among current MTD approaches, RAINCOAT is the most
similar one to our approach, as it also manipulates net-
work packets to disrupt adversaries’ reconnaissance in power
grids [40]. However, RAINCOAT spoofs network packets from
existing physical devices and delivers both spoofed data and
real data from the same device in a time-sharing manner. This
approach can significantly increase the amount of network
traffic by at least 50%. DefRec, on the other hand, relies on
a small amount of decoy data from virtual nodes to disrupt
reconnaissance of both cyber and physical infrastructures,
significantly reducing interference in real devices.

Honeypots for ICSs. Honeypots or honeynets interact
with adversaries with simulated network packets [56], [68].
Several honeypot projects aim at building separate computing
or network environments to trace adversaries’ activities on ICS
devices, e.g., PLCs [6], [11], [72]. Han et al. further propose
to use SDN to automate interactions with adversaries [22].
Those ICS honeypots can mimic a cyberinfrastructure of an
ICS. However, in their constructed networks, the honeypots
lack supports for constructing meaningful application-layer
payloads, e.g., measurements exchanged between ICS devices.

Instead of mimicking and simulating network packets, we
design PFV, a completely different technique, by virtualizing
physical devices. PFV is not a honeypot for ICSs: it does not
require interactions with adversaries to disrupt their reconnais-
sance. Adversaries that passively monitor network packets can
be significantly delayed; they can end up using decoy data to
design damage-free attack strategies.

Masquerading Attacks in Remote Attestations. Remote
attestation is a technique used by a device (verifier) to verify
properties of another remote device (prover), such as its
software integrity [53], policy enforcement [67], or physi-
cal locations [13]. Remote attestation can be vulnerable to
masquerading or relay attacks, in which a malicious prover
forwards requests from a verifier to another legitimate device
(victim) and then use the responses from this victim device as a
proof [44]. To disable masquerading attacks, it is necessary to
include device-specific information in the response, such that
the verifier can distinguish between responses from the victim
and the ones from the prover. This device-specific information
can be secret keys for a TPM (Trusted Platform Module) [67]
or round trip times used in distance bounding protocols [13],
[43].

In PFV, the packet hooking component forwards requests
destined to virtual nodes to real devices; this procedure is sim-
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ilar to masquerading attacks. However, in PFV, virtual nodes
and real devices are working collaboratively, e.g., allowing
virtual nodes to cache or tailor packets sent from real devices.
Also, communication channels between them can be encrypted
to avoid adversaries’ eavesdropping. Consequently, it is chal-
lenging for adversaries, playing a similar role as a verifier, to
use existing protection mechanisms for masquerading attacks
to distinguish between responses from virtual nodes and ones
from real devices.

Increasing SDN’s resilience. Rich capabilities provided
by SDN also make SDN controllers a popular target of
attacks [24], [57], [63], [69]; therefore, SDN-based approaches
require more complex protections. DefRec makes a very light
use of SDN’s network programmability, i.e., hooking a small
number of packets (this can be implemented by other network
manipulation techniques). Monitoring DefRec’s behavior and
verifying its integrity is efficient, compared to verifying full-
fledged SDN controllers.

IX. CONCLUSION

In this paper, we propose the concept of PFV, which hooks
network interactions with real devices to build virtual nodes.
Lightweight virtual nodes built by PFV follow actual imple-
mentations of network stacks, system invariants, and physical
state variations of real devices. Based on PFV, DefRec spec-
ifies two security policies, randomizing communications and
crafting decoy data for virtual nodes, to disrupt adversaries’
reconnaissance of power grids’ cyber-physical infrastructures.
Based on evaluations on real devices and large-scale power
grids, we find that DefRec can successfully delay passive and
proactive attacks for 100 years with a small number of virtual
nodes, and successfully mislead adversaries into designing
ineffective attacks. In addition, DefRec introduces negligible
overhead on existing network communications (e.g., less than
3% on RTTs) and control operations.

In future work, we will provide formal coverage analysis of
PFV’s functionalities and apply it into more ICS environments,
including parsers and encoders for protocols used in different
ICS networks. Also, we will extend PFV with other IDS
techniques to evaluate its performance on attacks requiring no
reconnaissance or targeting on data privacy.
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APPENDIX A
ADDITIONAL DETAILS ON DISRUPTION POLICY

A. Details of Probabilistic Dropping Protocol

In Section IV, we propose a probabilistic dropping protocol
to reduce the effectiveness of adversaries’ probing activities,
making successful guessing about real devices difficult. We
present the protocol in Figure 18. After an adversary accesses
an inaccessible virtual node (marked as device 0), we isolate
the adversary when she accesses a device k with the probability
pk (including device 0), regardless of whether device k is a

real device or a virtual node. We set a threshold δ such that
the adversary will be isolated at her access to the device δ+1.
In other words, the adversary can only access at most δ real
devices before it is isolated from control networks.

We model the protocol as a series of biased coin flips with
increasing probabilities, i.e., p0, . . . , pk. The probability that an
adversary is isolated at her k-th access is Qk = pk×

∏k−1
j=0 (1−

pj) for 1 ≤ k ≤ δ.

Fig. 18: Probabilistic dropping protocol.

Theorem 1. The chance that an adversary will be isolated
from control networks is evenly distributed, i.e., p0 = Q0 =

Q1 = · · · = Qδ , if pk =
p0

1− k · p0

Proof: We prove this theorem by mathematical induction.

By definition, when k = 0, we have p0 =
p0

1− 0 · p0
and

Q0 = p0.

Assuming that, this condition holds when k = i, i.e., if
pi =

p0
1− i · p0

, we have Qi = p0. When k = i + 1, we

have Qi+1 = pi+1 ×
∏i
j=0(1 − pj). Through the following

derivation, we can represent Qi+1 in terms of Qi:

Qi+1 = pi+1 ×
i∏

j=0

(1− pj)

=
pi+1

pi
× pi × (1− pi)×

i−1∏
j=0

(1− pj)

=
pi+1

pi
× (1− pi)× pi ×

i−1∏
j=0

(1− pj)

=
pi+1

pi
× (1− pi)×Qi (7)

Based on the inductive step, we can have the following
derivation by making Qi+1 = p0:

p0 = Qi+1 =
pi+1
p0

(1− i · p0)

· (1− p0
1− i · p0

) · p0 ⇒

pi+1 =
p0

1− (i+ 1) · p0
(8)

Consequently, if pk =
p0

1− k · p0
, we always have p0 =

Q0 = Q1 = · · · = Qδ .

Based on Theorem 1, we can derive the probability that
an adversary successfully obtains measurements from all real
devices through proactive attacks. When the adversary accesses
k-th device, the probability of not being isolated is 1−Qk or
1 − p0. We use m2 to represent the number of inaccessible
virtual nodes and n the number of real devices. Because there
are m2 − 1 remaining inaccessible virtual nodes (excluding
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device 0 that triggers the probabilistic dropping protocol),
the chance that the adversary is accessing a real device at

the k-th access is
1(

n+m2−1
n−k+1

) , if the previous k − 1 devices

are also real devices. Consequently, the probability that the
adversary has obtained measurements from δ real devices

is Sδ = pδ0
∏δ
k=1

1(
n+m2−1
n−k+1

) . If the adversary accesses all

remaining real devices under this protocol, the probability
that they can obtain all real measurements through proactive

probing will be at least Sall = S
dnδ e
δ .

B. Evaluation

In Section IV, we divide all virtual nodes in two groups.
One group is accessible by legitimate applications; we add
random communication to accessible virtual nodes such that
it is challenging for adversaries to identify real devices by
passively monitoring communication pattern. The other group
is inaccessible, and accessing them triggers the probabilistic
dropping protocol.

Effectiveness in RO1. In Figure 19, we show probabilities
that an adversary successfully guesses whether a device is
real based on randomized requests (see Section IV-A). In
our experiment, we issue requests to 95% randomly selected
real devices and to accessible virtual nodes, whose ratio to
real devices is increased from 1% to 10% (in x-axis). Even
with a small accessible-virtual-node to real-device ratio, the
probability is always lower than 0.001% (10−5), making it
challenging for adversaries to distinguish real devices from
virtual ones based on the randomized requests.
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Fig. 19: Probabilities that an adversary identifies real devices
based on randomized requests.

In Figure 20, we show the accuracy of state estimation
when we issue requests to 95% randomly selected real devices
and retrieve their physical data. We observed negligible differ-
ences, with less than 0.1%. In power grids, state estimation
often uses redundant data, e.g., 100% more than necessary
data, to ensure estimation accuracy. Even if we use 95% of
physical data, the accuracy of state estimation is not affected.
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Fig. 20: The accuracy of state estimation when we randomly retrieve
95% physical data from real devices.

Effectiveness in RO2. In Figure 21, we show FN rates
of the probabilistic dropping protocol, the chances that an
adversary successfully obtains measurements of real devices by

proactive probing. In this experiment, we set design parameters
as δ = 4 and p0 = 0.18. From the figure, we can see that the
chance to obtain all measurements through proactive probing
is low, less than 10−30 for small- or medium-size power
systems. Because FN rates are lower than 10−200 for large
power systems, we did not include the rates in the figure.
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Fig. 21: False negative rate of the probabilistic dropping protocol
with δ = 4 and p0 = 0.18.

Because only accesses to inaccessible virtual nodes trigger
the probabilistic dropping protocol, there are no false positives
(FP) for legitimate applications, which already know iden-
tities of real devices. In rare cases, faulty devices (physical
devices used by power grids usually have the probability of
misconfiguration between 30 × 10−6 to 600 × 10−6 [55]) or
devices unaware of DefRec can accidentally send requests
to inaccessible virtual nodes. Assuming that there are n real
devices and m2 inaccessible virtual nodes, the probability of
accessing one of the inaccessible virtual nodes is m2/(n+m2).
If we present m2 = r×n with 0 < r < 1, then this probability
becomes r/(1+ r), which is not related to the size of a power
grid. Based on the analysis in Figure 12, we can achieve RO2
with r ≤ 10%, which makes the probability of accidentally
accessing inaccessible virtual nodes 9.1% or less.
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Fig. 22: Normalized residual errors of state estimation when
adversaries use decoy data to prepare FDIAs (with 99% confidence
interval).

Effectiveness in RO3. In Section VII-A3, we demonstrate
FP and FN rates of RO3. In Figure 22, we demonstrate the
normalized residual errors of state estimation when adversaries
use decoy data to prepare FDIAs. As discussed in Section V, if
adversaries obtain correct knowledge about power grids, they
can design active attacks on the FDIAs such that normalized
residual errors are smaller than 1. However, if adversaries
use decoy data crafted by DefRec, normalized residual errors
are amplified to at least 5,000. As we increase the ratio of
virtual nodes, adversaries will use more decoy data for attack
reconnaissance. Correspondingly, normalized residual errors
increase significantly, reaching around 10,000 for all six power
grid cases.

Variations in Power Systems. Figure 11 and Figure 12
show that DefRec can delay adversaries for a long latency,
e.g., 100 years. In that span of time, operational environ-
ments of power grids can experience significant changes. In
Figure 23, we show normal variations of real communication
networks or transmission networks in power systems from
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Fig. 23: Variations in communication networks or power systems:
the x-axis represents a time span specified in the legend during
which the data is recorded; the y-axis specifies the number of nodes
normalized to the first record in the dataset.

public datasets, including InternetZoo [34], Rocketfuel [66],
and MATPOWER [79]. We select six of these networks that
contain at least five records at different times.

Because different networks can have various sizes, Fig-
ure 23 normalizes the number of nodes in each network with
the number appearing in the first record. We can observe signif-
icant changes in communication networks, such as Arpanet and
Cesnet. In transmission networks used by Polish and French
national power grids, we can also see around 10% increase of
physical devices in ten years. Variations in a long time interval
make it difficult, if not impossible, for adversaries to achieve
reconnaissance objectives.

APPENDIX B
GENERALIZATION OF DECOY DATA CONSTRUCTION

In this section, we show how the decoy data construction
procedure designed for FDIAs is applied to other attacks.
Most power grid control operations are formulated as an
optimization problem. For example, FDIAs aim at minimizing
the errors of state estimation while optimal power flow analysis
aims at minimizing operational costs [45].

Fig. 24: Formulating decoy data construction. Misleading adver-
saries into targeting virtual nodes.

In this work, we focus on intelligent adversaries causing
physical damage by disrupting control operations, usually
formulated in optimization problems. Compared to random
disruptions, these attacks, determined based on theoretical
analysis of control operations, can introduce severe physical
damage without raising alerts [19], [61].

In Figure 24, we present a general format of those op-
timization problems with the objective specified by g′. In
FDIAs, adversaries’ objectives are to minimize estimation
errors, with compromised measurements leading to wrongly
estimated system state (i.e., z+a in the figure). In another at-
tack that disrupts optimal power flow analysis, adversaries can
maximize the costs of power generation instead of minimizing
them, to reduce economical revenues [19], [61].

DefRec mixes decoy data with real one (specified by zd),
such that (i) no solutions exist to achieve attack objectives;

and/or (ii) achieving attack objectives requires modifying de-
coy data with significant changes (indicated by a threshold
|ad| ≥ ε). In other words, adversaries will prepare attack
strategies involving operations of virtual nodes that, when
executed, will easily expose the adversaries.

APPENDIX C
STORAGE OVERHEAD OF DEVICE PROFILE AND CACHING

In Table II, we show storage overhead of device profiles.
By following meter deployment in [35], we assume that
for each power grid, there are two meters measuring the
active and reactive power injected at each substation and four
meters measuring the active and reactive power flows at the
receiving and sending ends of each transmission line. For each
meter, we used ten 32-bit numbers to record the range of the
measurements and their probability distribution. In Table II, we
can see that even for an 1153-bus power grid, we can record
a total of 367.8 KB in the machine implementing PFV.

TABLE II: Storage overhead of device profile: classified based on
power systems and the ratio of virtual nodes to physical devices.

Power Grid Base
Ratio of Virtual Nodes to

Physical Devices
10% 15% 20% 25%

IEEE 24-bus 8.1KB 8.9KB 9.3KB 9.7KB 10.1KB
IEEE 30-bus 9.0KB 9.9KB 10.4KB 10.8KB 11.3KB

RTS96 73-bus 25.1KB 27.6KB 28.9KB 30.1KB 31.4KB
IEEE 118-bus 38.1KB 41.2KB 43.8KB 45.7KB 47.6KB

Poland 406-bus 107.2KB 117.9KB 123.3KB 128.6KB 134.0KB
Poland 1153-bus 301.4KB 331.5KB 346.6KB 361.7KB 367.8KB

TABLE III: Storage overhead of caching network interactions.
Supported

Function Codes
Devices

SEL 751A AB 1400 ION 7550
CONFIRM

READ (4) (2) (2)
WRITE

SELECT

OPERATE

DIRECT OPERATE

COLD RESTART

WARM RESTART
ENABLE

UNSOLICITED
DISABLE

UNSOLICITED
Total

Storage Overhead
≤ 8KB ≤ 5KB ≤ 5KB

In Table III, we present storage overhead of caching
network interactions with three physical devices used in our
evaluations. We include all network interactions that are sup-
ported by those devices and a DNP3 master implemented
based on the openDNP3 library [49]. Even though the DNP3
protocol specifies a large amount of data formats, a physical
device usually selects a single data format for each function
code (see the DNP3 protocol specification for details [29]).
Consequently, we cache one request and the corresponding
response for each function code. One exception is the “READ”
operation, for which we have cached multiple pairs of requests
and responses (the amount is included in parentheses). To be
compatible with legacy devices, the size of a single DNP3
packet cannot be more than 292 bytes [29]. Consequently,
we estimate the total storage overhead for caching network
interactions with those three devices, usually occupying less
than 8 KB.
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