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Abstract—Voice Processing Systems (VPSes), now widely de-
ployed, have been made significantly more accurate through the
application of recent advances in machine learning. However,
adversarial machine learning has similarly advanced and has
been used to demonstrate that VPSes are vulnerable to the
injection of hidden commands - audio obscured by noise that
is correctly recognized by a VPS but not by human beings. Such
attacks, though, are often highly dependent on white-box knowl-
edge of a specific machine learning model and limited to specific
microphones and speakers, making their use across different
acoustic hardware platforms (and thus their practicality) limited.
In this paper, we break these dependencies and make hidden
command attacks more practical through model-agnostic (black-
box) attacks, which exploit knowledge of the signal processing
algorithms commonly used by VPSes to generate the data fed
into machine learning systems. Specifically, we exploit the fact
that multiple source audio samples have similar feature vectors
when transformed by acoustic feature extraction algorithms (e.g.,
FFTs). We develop four classes of perturbations that create
unintelligible audio and test them against 12 machine learning
models, including 7 proprietary models (e.g., Google Speech API,
Bing Speech API, IBM Speech API, Azure Speaker API, etc), and
demonstrate successful attacks against all targets. Moreover, we
successfully use our maliciously generated audio samples in mul-
tiple hardware configurations, demonstrating effectiveness across
both models and real systems. In so doing, we demonstrate that
domain-specific knowledge of audio signal processing represents
a practical means of generating successful hidden voice command
attacks.

I. INTRODUCTION

Voice Processing Systems (VPSes) are rapidly becoming
the primary means by which users interface with devices. In
particular, the increasing use of constrained/headless devices
(e.g., mobile phones, digital home assistants) has led to their
widespread deployment. These interfaces have been widely
heralded not only for simplifying interaction for traditional
users, but also for dramatically expanding inclusion for dis-
abled communities and the elderly [47], [65].

The driving force behind practical voice-driven systems
has been foundational advances in machine learning. Mod-
els incorporating seemingly ever-increasing complexity now
handle massive quantities of data with ease. When combined
with well-known techniques from signal processing for fea-
ture extraction, such systems now provide highly accurate

speech and speaker recognition. However, VPSes also intro-
duce substantial security problems. As has been demonstrated
intentionally [45] and unintentionally [52], these interfaces
often recognize and execute commands from any nearby
device capable of playing audio. Moreover, recent research
has demonstrated that attackers with white-box knowledge of
machine learning models can generate audio samples that are
correctly transcribed by VPSes but difficult for humans to
understand [24], [72].

This work takes a different approach. Instead of attacking
specific machine learning models, we instead take advantage of
the signal processing phase of VPSes. In particular, because
nearly all speech and speaker recognition models appear to
rely on a finite set of features from classical signal processing
(e.g., frequencies from FFTs, coefficients from MFCs), we
demonstrate that modifying audio to produce similar feature
vectors allows us to perform powerful attacks against machine
learning systems in a black-box fashion.

In so doing, we make the following contributions:

• Develop perturbations during the signal processing
phase: The key insight of this work is that many pieces
of source audio can be transformed into the same feature
vector used by machine learning models. That is, by
attacking the feature extraction of the signal processing
phase as opposed to the model itself, we are able to
generate over 20,000 audio samples that pass for mean-
ingful audio while sounding like unintelligible noise.
Accordingly, VPSes can be attacked quickly (i.e., in a
matter of seconds) and effectively in an entirely black-
box fashion.

• Demonstrate attack and hardware independence: Pre-
vious research has been highly dependent on knowledge
of the model being used and constrained to specific
pieces of hardware. For example, Yuan et al. evaluated
one white-box and two black-box models [72], while
Carlini et al. evaluated one black-box and one white-
box model [24]. We evaluate our attacks against 12
black-box models that use a variety of machine learning
algorithms, including seven proprietary and five local
models; however, in no case do we use any information
about the model or weights (i.e., we treat all models, even
if publicly available, as black boxes). We demonstrate
successful attacks using multiple sets of speakers and
microphones. Our attack evaluation is far more com-
prehensive than prior work in adversarial audio. Such
wide effectiveness of attacks has not previously been
demonstrated.

• Use psychoacoustics to worsen audio intelligibility:
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Fig. 1: This generic VPS workflow for audio transcription illustrates the various processing steps that are carried out on the audio
before it is passed to the Machine Learning Model for transcription. First, the audio is preprocessed to remove noise. Next, the
audio is passed through a signal processing algorithm that changes the format of the input, retains the important features and
discards the rest. Lastly, these features are given to a machine learning model for inference.

Prior work has focused on adding background noise to ob-
fuscate commands; however, such noise more often than
not reduces successful transcription. We take advantage of
the fact that humans have difficulties interpreting speech
in the presence of certain classes of noise within the
range of human hearing (unlike the Dolphin Attack which
injects ultrasonic audio [73] and can therefore easily be
filtered out).

We believe that by demonstrating the above contributions
we take hidden voice commands from the realm of possible to
practical. Moreover, it is our belief that such commands are
not easily countered by making machine learning models more
robust, because the feature vectors that the models receive
are virtually identical whether the VPS is being attacked or
not. Accordingly, it is crucial that system designers consider
adversaries with significant expertise in the domain in which
their machine learning model operates.

The remainder of the paper is organized as follows: Sec-
tion II provides background information on signal process-
ing, speech and speaker recognition, and machine learning;
Section III presents our hypothesis; Section IV discusses our
threat model, our methodology for generating perturbations,
and experimental setup; Section VI shows our experimental
results against a range of speech and speaker recognition
models; Section VII discusses psychoacoustics and potential
defenses; Section VIII presents related work; and Section IX
offers concluding remarks.

II. BACKGROUND

A. Voice Processing System (VPS)

Any machine learning based voice processing tool can be
considered a VPS. In this paper, we use the term to refer

to both Automatic Speech Recognition (ASR) and Speaker
Identification models.

1) ASRs: An ASR converts raw human audio to text.
Generally, most ASRs accomplish this task using the steps
shown in Figure 1: pre-processing, signal processing and
model inference.

Preprocessing involves applying filters to the audio in order
to remove background noise and any frequencies that are
outside the range of the human audio tract, (Figure 1a and
1b). Signal processing algorithms are then used to capture
the most important features and characteristics, reducing the
dimensionality of the audio. The signal processing step outputs
a feature vector. Most ASRs employ the Mel-Frequency Cep-
strum Coefficient (MFCC) algorithm, for feature extraction,
because of its ability to extrapolate important features, similar
to the human ear. The feature vector is then passed to the
model for either training or inferencing.

2) Speaker Identification model: Speaker Identification
models identify the speaker in a recording by comparing
voice samples of the speakers the model was trained on.
The internal workings of the Speaker Identification model are
largely similar to that of ASRs, with an additional voting
scheme. For each audio subsample, the model assigns a vote
for the speaker the subsample most likely belongs to. After
processing the entire audio file, the votes are tallied. The
speaker with the largest number of votes is designated as the
source of the input audio sample.

B. Signal Processing

Signal processing is a major components of all VPSes.
These algorithms capture only the most important aspects of
the data. The ability of the signal processing algorithm to
properly identify the important aspects of the data is directly
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related to the quality of training a machine learning model
undergoes.

1) Mel-Frequency Cepstrum Coefficient (MFCC): The
method for obtaining an MFCC vector of an audio sample
begins by first breaking up the audio into 20 ms windows. Each
window goes through four major steps as seen in Figure 1.

Fast Fourier Transform (FFT) and Magnitude: For each
window, an FFT and its magnitude are taken which generates
a frequency domain representation of the audio (Figure 1c and
Figure 1d) called a magnitude spectrum. The magnitude spec-
trum details each frequency and the corresponding intensity
that make up a signal.

Mel Filtering: The Mel scale translates actual differences
in frequencies to perceived differences in frequencies by
the human ear. Frequency data is mapped to the Mel scale
(Figure 1e) using triangular overlapping windows, known as
Mel filter banks.

Logarithm of Powers: To mimic the way in which human
hearing perceives loudness, the energies of each Mel filter bank
are then put on a logarithmic scale (Figure 1f).

Discrete Cosine Transform (DCT): The final step in obtain-
ing the MFCCs is to take the discrete cosine transform of the
list of Mel filter bank energies (Figure 1g). The result is a
vector of the MFCCs.

2) Other Methods: There are a variety of other signal pro-
cessing techniques used in modern VPSes as well. Examples
of these include Mel-Frequency Spectral Coefficients (MFSC),
Linear Predictive Coding, and Perceptual Linear Prediction
(PLP) [61]. Much like MFCCs, these represent deterministic
techniques for signal processing. Other VPSes employ prob-
abilistic techniques, specifically transfer learning [69]. In this
case, one model is trained to learn how to extract features
from the input, while the other model is fed these features
for inferencing. This layered approach to VPSes is a recent
development [71]. Additionally, some VPSes, called “end-to-
end” systems, replace all intermediate modules between the
raw input and the model by removing pre-processing and
signal processing steps [35] [37]. These systems aim to remove
the increased engineering effort required in bootstrapping
additional modules, as well as increased processing time and
complicated system deployment [16].

C. Model Inference

Features gathered from the signal processing steps are then
passed onto the machine learning algorithms for inference.
VPSes make extensive use of machine learning algorithms for
speech recognition. However, the definition of such systems
varies due to the evolving nature of machine learning tech-
niques. In general, a machine learning system can be described
as a learned mapping between a set of inputs X ∈ IRD, for
some input dimensionality D, to a set of outputs Y that consist
of either continuous or categorical values, such that X → Y .
To learn such a mapping, the values are converted to the form
F (x) = y + ε, where ε is an error term to be minimized for
all inputs x ∈ X and known outputs y ∈ Y of a piece of
data known as the training set. A system is said to interpolate
between inputs and outputs of a training set to model the
mapping X → Y . Once the system is trained, it must then

extrapolate the knowledge it learned onto a new, unseen space
of inputs, known as the test set. Rate of error on the test set
is the most common measure of machine learning systems. In
general, any input X to the machine learning system is known
as a feature, as it constitutes a unique trait observable across all
input samples, and ideally, can be used to distinguish between
different samples.

Early machine learning systems specialized in specific
areas and were designed to interpolate knowledge of some
particular domain, and thus became domain experts [17]. Due
to the specificity of such systems, they required extensive
feature engineering, often involving human domain knowledge
in order to produce useful results. Thus, much of the early work
in this field revolves around feature design. With the advent of
ubiquitous methods of data collection, later methods focused
on data-driven approaches, opting for more general knowledge
rather than domain-specific inference. Modern systems are
now capable of automatically performing what was previously
known as feature engineering, instead opting for feature ex-
traction from a large, unstructured corpus of data. Thus, these
techniques can automatically learn the correct features relevant
to create the mapping and apply a pre-defined cost function to
minimize the error term. Due to the absence of specific feature
engineering, these systems are not only more flexible, but can
be split into independent modules to be used across different
domains or applications (i.e., transfer learning), and also offer
much better extrapolation performance.

D. Psychoacoustics

Psychoacoustics is the science of how humans perceive
audio. There is a broad and deep field of research dedicated
to this topic that continues to advance our understanding
of human hearing and the way the brain interprets acoustic
signals. Research in this field has found many subtleties in the
way people hear and interpret speech. Accordingly, successful
hidden commands must consider psychoacoustic effects.

Studies in psychoacoustics have demonstrated that human
hearing and perception of sound has areas of both robustness
and weakness. When in the presence of multiple sources of
sound, it is easy for humans to focus on a single source. This
is known as the Cocktail Party effect [26], where humans can
tune out sound that is not particularly pertinent. Human hearing
is also robust at interpreting speech in the presence of added
background noise [29]. This means that simply adding noise
to recorded speech will not decrease its intelligibility, only
suppress the volume of the speech.

Alternatively, human hearing and perception can also be
weak, particularly with higher frequencies. Humans hear sound
on a logarithmic scale and tend to perceive higher frequencies
as louder [15]. The Mel scale [46], as well as the concept
of similar frequency masking [32], show that people poorly
discern differences in high frequencies compared to low fre-
quencies. Humans are also poor at interpreting discontinuous
or random sound, whereas they tend to enjoy smooth and
continuous audio signals. However, discontinuous and more
erratic signals are, by definition, noise [42]. In addition to
being unintelligible, these signals tend to be jarring and
discomforting to most individuals.
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Fig. 2: The above figure shows the different perturbation techniques applied to the original signal (a). Signals (b) to (e) show
the result of applying the perturbation schemes to (a).

We can take advantage of psychoacoustics to better perturb
voice commands. We discuss our use of psychoacoustics more
in Section VII.

III. HYPOTHESIS

Human speech provides a limited set of features for training
and testing ASR models: most aspects of speech are filtered
out during preprocessing or feature extraction algorithms. This
reduced subset of the original input is passed as a feature
vector onto the model for training or testing. This provides
opportunities to introduce acoustic artifacts, via perturbation,
to the audio. Such artifacts are removed during the signal
processing steps. By using knowledge about psychoacoustics
and the physical characteristics of audio, we can develop
attack audio that is agnostic of any particular machine learning
model. While these artifacts will make human interpretability
of the audio difficult, they will have no impact on the ASR’s
recognition ability, leaving ASRs exposed to hidden voice
command attacks.

IV. METHODOLOGY

We develop perturbations to generate attack audio that
is uninterpretable by the user, but correctly inferred by the
VPS. This section describes the attack scenario, the capabilities
required to conduct a successful attack, perturbation schemes
that generate attack audio samples, and the VPSes we tested
the attacks against.

A. Attack Scenario

An adversary wants to execute an unauthorized command
on a VPS (e.g., Amazon Alexa, Google Home Assistant, or
any voice activated device). To do so, the adversary plays
an obfuscated audio command in the direction of the VPS.
The target VPS uses an ASR internally to transcribe the
audio commands in order to execute them. In addition to the
ASR, the VPS can also use a speaker identification model to
authenticate the speaker before executing the command. The
obfuscated audio could contain orders for example to initiate a

wire-transfer, unlock door, or generally cause the execution of
functionality available to a legitimate user. The attack audio is
played via a compromised IoT device or directional speaker.
Although the owner of the target VPS may be within audible
range, they will not recognize the attack audio as a voice
command. Hence, the owner will remain unaware that an attack
is in progress.

An attack against these systems will occur based on the
standard exploit development, probe, and attack strategy. That
is, we expect an attacker to develop a corpus of attack audio
that successfully activates one or more models. They will
then probe a potential target, learning which model they are
targeting either through direct information or via probing. The
adversary will then select sample attack audio from its corpus
and execute the attack.

B. Threat Model

We assume no knowledge of the model (i.e., black-box
attack). The attacker does not need to know the type or internal
architecture of the victim model (i.e., the number of layers or
the internal weights). However, the adversary is familiar with
audio and speech processing.

Our attack generates noise-like attack audio that will be
effective against VPSes: in transcription tasks, the perturbed
audio is transcribed the same as original unperturbed audio,
while in identification tasks, the system will identify the
perturbed audio as the voice of the original speaker. The
perturbation methods are designed to exploit assumptions that
VPSes make about acoustic properties.

In transcription tasks, the adversary has a sample of
correctly transcribed audio. Similarly, for attacking a speaker
model, the adversary has a voice sample of the victim speaker
that the target VPS will correctly identify. The perturbation
methods are designed to maintain the normal audio sample’s
important acoustic properties while altering its audible per-
ception. If the audio sample is incomprehensible to the target
model without the perturbation, it will remain so with the
perturbation. The threat model is designed to emulate that
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of previous attack papers, specifically Carlini et al [24]. The
attacker is not located in the room, but is able to use the
speaker remotely. The victim is in close vicinity of the attack
speakers but is not actively listening for or expecting an attack.
The victim might hear the attack audio, but is unable to
decipher it, thus would not know that an attack is in progress.

The attacker has no knowledge of the acoustic hardware
used by the victim. We assume that target ASR is close
to the attack speaker. Homes are being equipped with an
increasing number of speaker enabled IoT devices. This num-
ber is expected to rise in order for users to be able to
continuously interact with the home assistant during their daily
routine throughout the house. These speakers can be exploited
remotely and then used by the attacker to play the attack audio.
Additionally, the victim ASR devices, like Alexa, have an array
of high quality microphones that can detect audio from a wide
variety of locations and angles. In order to accommodate for
the above factors, we assume that the target ASR is one foot
away from the attack speaker.

C. Types of Perturbations

We propose four perturbation techniques. Each resulting
attack sample includes one or more perturbations applied in
succession which can be used against the target VPS. We use
Figure 2 as an exemplar source and show each perturbation
detailed below.

1) Time Domain Inversion (TDI): Most VPSes use FFTs
(Figure 1c) to decompose a signal into its composite frequen-
cies, called a spectrum. The FFT is a many-to-one function.
This means two completely different signals in the time
domain can have similar spectra. Our TDI perturbation method
exploits this property by modifying the audio in the time
domain while preserving its spectrum, by inverting the win-
dowed signal. As shown in Figure 2b, inverting small windows
across the entire signal removes the smoothness. Due to the
principles of psychoacoustics, this perturbed audio is difficult
to understand as the human ear interprets any discontinuous
signal as noisy [42].

2) Random Phase Generation (RPG): For each frequency
in the spectrum, the FFT returns the value in complex form
a0 + b0i, where a0 and b0 define the phase of a signal. To get
the intensity at each frequency, the magnitude (Figure 1d) of
the complex spectrum is taken to yield a magnitude spectrum
using the equation below:

magnitudeoriginal = Y =
√
a20 + b20i (1)

Because the magnitude function is many-to-one, there
are multiple values of a and b that have the same
magnitudeoriginal. Informally, two signals of different phases
can have the same magnitude spectrum. This second perturba-
tion method picks two random numbers an and bn such that:

magnitudeoriginal = Y =
√
a2n + b2ni (2)

This outputs a new signal with a different phase, yet with
the same magnitude spectrum as the original signal as shown

in Figure 2c. This will introduce similar discontinuities in the
signal, which makes the perturbed audio harder to interpret
due to the fundamentals of psychoacoustics.

3) High Frequency Addition (HFA): During preprocessing,
frequencies beyond the range of the human voice are removed
from the audio using a low-pass filter (Figure 1a) in order to
improve VPS accuracy. In most cases, this cut-off point is at
least 8000 Hz, for two reasons: the majority of spoken content
is below this level, and speech is typically sampled at 16000
Hz1. The third perturbation method adds high frequencies
to the audio that are filtered out during the preprocessing
stage. We create high frequency sine waves and add it to
the real audio (Figure 2d). If the sine waves have enough
intensity, it has the potential to mask the underlying audio
command to the human ear. The resulting audio may also
become potentially painful to listen to as the human ear is
sensitive to high frequencies. The psychoacoustic reasoning
behind this is further discussed in Section VII.

4) Time Scaling (TS): Speaker and speech recognition
models need to account for the speed of human speech. It
is harder for humans to comprehend words spoken at a faster
rate, relative to the same words spoken at a slower rate [36]. In
the fourth and final perturbation, we can accelerate the voice
commands to a point where they are still able to be properly
transcribed. We do so by compressing the audio in the time
domain by discarding unnecessary samples and maintaining
the same sample rate. As a result, the audio is shorter in time,
but retains the same spectrum as the original.

We generate a set of audio files that contain the same
voice command but vary in the degree of the audio’s speed
(Figure 2e). We then run these files against all of the speech
recognition models we observe and record the file with the
highest speed that was still properly transcribed. Though ap-
plying this perturbation by itself may not completely hinder the
ability of a human to comprehend the original voice command,
applying this in conjunction with the other perturbations makes
interpreting the audio difficult.

D. Attack Audio Generation

This section details how the attack audio is generated using
the Perturbation Engine (PE), shown in Figure 3. The PE works
for any model given our black-box assumption.

1) Generic Attack Method: Attack audio generation com-
prises of the following steps: parameter selection, attack audio
generation, model inference, and audio selection. An overview
of this section is illustrated in Figure 3.

First, the attacker selects the parameters with which to
perturb the audio: audio speed, high frequency intensity, and
window size (for TDI and RPG). The attacker does not know
which parameters will give the most distorted attack audio the
VPS will still accept. The PE distorts the audio based on the
input parameters.

Second, the attacker feeds these parameters along with
the normal audio to the PE. The PE generates attack audio
samples, perturbing the entire length of the audio for each

1If the system does not have hardware low pass filters, the audio signal will
alias.
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Voice Processing System Model Type Task Feature Extraction Phrase ID Online/Local
Azure Verification API [4] Unknown Identification Unknown D Online
Azure Attestation API [3] Unknown Identification Unknown A,B,C Online
Bing Speech API [6] Unknown Transcription Unknown E,F,G,H Online
Google Client Speech API [7] Unknown Transcription Unknown E,F,G,H Online
Houndify Speech API [8] Unknown Transcription Unknown E,F,G,H Online
IBM Speech API [9] Unknown Transcription Unknown E,F,G,H Online
Mozilla DeepSpeech [12] RNN Transcription End-to-End E,F,G,H Local
Intel Neon DeepSpeech [10] RNN Transcription MFSC I,J,K,L Local
Kaldi [58] HMM-GMM Transcription MFCC E,F,G,H Local
Kaldi-DNN [11] DNN Transcription MFCC E,F,G,H Local
Sphinx [41] HMM-GMM Transcription MFCC E,F Local
Wit.ai Speech API [14] Unknown Transcription Unknown E,F,G,H Online

TABLE I: The models we tested our perturbation attack scheme against. The Phrase ID is referenced from Table II. The proprietary
VPSes are in bold.

Perturbation  
Engine 

. 

. 

. 

Multiple Attack 
Audio Samples

Transcribe 
Audio

Input Perturb
Audio

Parameters

Audio

Fig. 3: The workflow for our Attack Audio Generation. The
Perturbation Engine takes as input the perturbation parameters
and an audio file. It generates attack audio samples that that
sound like noise to the human ear, but are transcribed correctly
by the transcription model.

parameter set using the perturbations described in the previous
section. For each set of parameters, the PE will generate a
single audio sample. The TDI and RPG perturbation schemes
take the window size as input. The HFA perturbation scheme
will take as input the frequency one wants to add to the
audio signal. TS perturbation scheme will take as input the
percentage by which to increase the tempo.

The PE will apply the schemes, using the designated input
parameter values, to generate a unique attack audio for each
set of parameters. Generating individual attack audio samples
using our PE takes fractions of a second.

Third, attack audio samples are passed to the target VPS,
via queries. The VPS will not accept all attack audio samples,
as some might be distorted beyond recognition. A trade-off
exists between the degree of distortion and model transcription.
If the audio distortion is high, the VPS might not accept
or incorrectly transcribe the audio. On the other hand, too
little distortion will increase audio decipherability by a human
observer.

2) Improved Attack Method: VPSes recognize some words
better than others. At times, this property is intentionally built
into models. For example, home assistants are specifically
trained to be sensitive to activation phrases. Therefore, some
words can be degraded more than others and still be recognized
by a VPS.

Fig. 4: The audio recording of the word “pay” before and after
it has been distorted by our perturbation techniques.

The attacker can exploit this model bias towards certain
words and phrases by running the PE at a finer granularity, for
each word rather than the entire sentence. For example, rather
than perturbing the entire phrase “pay money”, the words
“pay” and “money” can be perturbed individually as shown in
Figure 4. Next, the perturbed audio samples for each word are
concatenated to create all the possible combinations, resulting
in a much larger set of attack audio samples.

E. Over-the-Line and Over-the-Air

We define two scenarios to test the perturbation attacks
against models: Over-the-Line and Over-the-Air. In an Over-
the-Line attack the attack audio is passed to the model directly,
as a .wav file. Conversely, an Over-the-Air attack requires the
adversary to play the attack audio via a speaker towards the
target VPS. It is not necessarily the case that an attack audio
that is successful Over-the-Line will also be successful Over-
the-Air. Playing the attack audio via a speaker will degrade
the attack audio’s fine perturbations due to natural factors
that include acoustic hardware’s frequency response, static
interference, and environmental noise. For a practical attack,
the attack audio should be resistant to these factors.

This limitation is evident in all state-of-the-art attacks
against VPSes. While Carlini et al.’s [24] attack audio cannot
be used over any speaker systems other than the one used
during the attack generation process, Yuan et al.’s [72] attack
method assumes knowledge and access to the attack speaker
and the victim’s acoustic hardware. Although both cases
present strong threat models in the real world, our attacks have
no such limitations, as we will demonstrate.
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F. Models

Our proposed attack is aimed at the state of the art in
publicly available VPS implementations. We test our attack
against the VPSes listed in Table I. Our selection captures
a wide range of known architectures, black-box APIs, and
feature extraction techniques. We give a brief overview of the
different categories these VPSes reside in and why they were
chosen. Note that although the architecture of some systems
are known, only acoustic properties are used to construct
attack audio rather than any available information about the
underlying model.

1) Traditional Models: We treat Kaldi’s Hidden Markov
Model-Gaussian Mixture Model (HMM-GMM) combination
as an example of a traditional speech transcription model.
Kaldi is well known due to its open-source nature, reasonable
performance, and flexible configurations. An HMM is a multi-
state statistical model which can serve as a temporal model
in the context of speech transcription. Each state in the HMM
holds a unique GMM, which takes MFCC-based features as
input, and models phonemes in the context of other phonemes.
The HMM models state transitions and can account for differ-
ent clusters of temporal phoneme information to produce an
alignment between speech and text. HMM-based approaches
are relevant because modern architectures mimic their multi-
state behavior. We refer to [60] for a general primer on Hidden
Markov Models.

2) Modern Models: More recently, speech recognition and
transcription tasks have begun to employ some combination
of Deep Neural Networks (DNNs) and Recurrent Neural
Networks (RNNs). These architectures are popular due to
their performance and flexibility in complex automation tasks.
Neural networks consist of one or more hidden layers of
stateful neurons sandwiched between an input layer and an
output layer. Layers are connected together and act as inputs
into subsequent layers, such that connections are activated
according to certain inputs. DNNs are neural networks with
more hidden layers and carefully designed deep architectures.
Convolutional Neural Networks (CNNs) are a popular DNN
architecture due to their performance in image classification
tasks, which derives from its ability to automatically per-
form feature extraction using convolution filters. RNNs differ
slightly from DNNs, and can be thought of as a chain of
independent neural networks, such that hidden layers of one
neural network connect to the hidden layers of a subsequent
network. However, a basic RNN is susceptible to the problems
of vanishing or exploding gradients [56]. Thus, RNNs are often
implemented with special neuronal activation functions, such
as Long Short Term Memory (LSTM) or Gated Recurrent
Units (GRU). In either case, the inputs and outputs of an RNN
may form sequences, making them ideal for many sequence-
to-sequence tasks. These include language modeling and audio
transcription, which are key components of modern ASRs.

The selected neural network models differ in terms of
feature extraction. Kaldi-DNN and Intel Neon DeepSpeech
use MFCC-based features as input to the model. Until re-
cently, MFCC-based features have been the most powerful
feature extraction technique for VPS-related tasks. However,
DeepSpeech-style models rely on an approach known as end-
to-end learning. In this system, both feature extraction and
inference are performed by the neural network model. In the

ID Model Phrase Success Rate (%)
A

Identification

When suitably lighted 100

B Don’t ask me to carry
an oily rag like that 100

C What would it look like 100

D My name is unknown
to you 100

E

ASR

Pay money 100
F Run browser 100
G Open the door 100
H Turn on the computer 100
I Spinning indeed 100
J Very Well 100
K The university 100
L Now to bed boy 100

TABLE II: We used sentences from the TIMIT corpus [31],
which provides phonetically balanced sentences used widely
in the audio testing community.

case of Mozilla DeepSpeech, the RNN is trained to translate
raw audio spectrograms into word transcriptions. The goal of
end-to-end audio transcription models is to learn a new feature
space that will be more performant than traditional MFCC-
based encodings. This feature space is used as input into the
model’s RNN, which performs inference based on the encoded
data. At the decoding stage, an optional language model
may be used to improve transcription performance. Thus,
neural networks are used between each end of the system. In
practice, this system exhibits state-of-the-art results for speech
transcription metrics, rivalling complex HMM-GMM methods.

3) Online APIs: We validate our attack against several
Internet-hosted models. The architecture of these models is
unknown, but we assume them to be near state-of-the-art
due to their popularity and widespread use. Of these models,
two are dedicated to speaker classification tasks: the Azure
Attestation API, is meant to classify a speaker among some
known group, while the Azure Verification API is meant to
perform attestation based on a user’s voice. All other models
are designed for speech transcription tasks.

V. EXPERIMENTAL SETUP

A. Phrase Selection

The full list of phrases used for the experiments is shown
in Table II. For attacks against Speaker Identification models,
we chose phrases A, B, C and D. Phrases A, B and C are
phonetically balanced sentences from the TIMIT dataset [31].
The phrases E, F, G, and H are command phrases used for
attacks against ASRs. These represent commands an adversary
would potentially want to use. Because these phrases were
not interpretable by the Intel DeepSpeech model, we replaced
them with phrases I, J, K and L. These additional phrases
were collected from the LibriSpeech Dataset that the model
was trained on [54]. We did not include any activation phrases
such as “Ok Google”, as every major VPS is tuned to detect its
own activation phrase. This would mean we could perturb the
activation phrase more than others, leading to biased results.

B. Speech Transcription

We tested our audio perturbation attack methodology
against ten ASRs shown in Table I. If our hypothesis is correct,
the attack audio should work against any ASR, regardless of
the underlying model type or feature extraction algorithm.
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We ran the generic attack method (described in Sec-
tion IV-D1), against proprietary models that include 7 propri-
etary (e.g., Google Speech API, Bing Speech API, IBM Speech
API, Azure API etc) [13]. These models were hosted on-line
and could only be queried a limited number of times. We
ran the improved attack method (described in Section IV-D2),
against locally hosted models, which could be queried without
limits.

1) Over-the-Line: For each phrase, we generated multiple
attack audio samples using various perturbation parameters.
These were then passed to the model as .wav files for
transcription. We then picked the single worst sounding au-
dio as the final attack audio, based on criteria we describe
Section VII. These steps were repeated for each model. At the
end of the process, for each of the 10 models, we had one
attack audio file for each phrase referenced in Table I.

2) Over-the-Air: We ran the attack audio samples in Over-
the-Air as described in Section IV-E. Of the ten ASRs,
we tested seven Over-the-Air. A single Audioengine A5
speaker [2] was placed on a conference room table to play the
attack audio. A Behringer microphone [5] was placed one foot
away to simulate an ASR device. The recorded audio was then
passed to the ASR for transcription as a .wav file. For each
model, we played the four attack audio samples, one for each
phrase. The Mozilla DeepSpeech model was tested extensively
by playing 15 randomly sampled attack audio files. This was
done to ascertain whether audio samples with generated with
larger window sizes to the PE still worked Over-the-Air. This
was done as a baseline test to ensure that the attack algorithm
did not inherently degrade the audio such that the attack audio
ceased to remain effective after it was played Over-the-Air.

To show that the attack was independent of the acoustic
hardware, we repeated the Over-the-Air experiment for the
Google Client Speech API. Additionally, we degraded the
acoustic environment with a white-noise generator playing at
55dB in the background. We replaced the previous speaker
with an iMac and the microphone with the Motorola Nexus 6.
The experiment occurred in a lab cubicle. This experimental
setup represents harsh, yet realistic, acoustic conditions that an
attacker faces in the modern world.

C. Speaker Verification and Attestation

Home assistant systems have begun to introduce voice bio-
metrics to authenticate users to prevent VPSes from accepting
audio commands from unauthorized individuals. Each audio
command is checked against a voice blueprint of the real
user to authenticate the source before it is carried out. This
rudimentary biometrics authentication poses an obstacle which
state-of-the-art audio obfuscation attacks can not overcome.
However, our obfuscation technique is designed to retain
the necessary voice information to pass the authentication
tests. To test this hypothesis, we ran our audio obfuscation
attack against two speaker recognition systems. We specifically
attacked the Azure Identification/Attestation (SA) model and
the Azure Verification (SV) model.

SA models are trained to identify the voices of multiple
speakers. For example, during training a model learns to
identify the voices of Alice and Bob. During testing, the
model infers which speaker a test audio sample belongs to.

Additionally, SA is text-independent. This means the audio
sample can contain the voice recording of the speaker reading
any text.

In contrast, SV models are trained to identify a single
speaker (i.e., just Bob). During testing, the model decides
whether a test audio belongs to Bob or not. Unlike SA, SV
is text-dependent as the test audio must contain the speaker
reading a phrase requested by the model. The model first
checks if the audio transcribes to the requested phrase. Only
then does it check whether the voice blueprint matches that of
Bob.

To attack an SA model, we first trained the Azure Iden-
tification model using the phrases from the TIMIT dataset.
We trained the model on the voices of eight male and eight
female speakers. Three male and three female speakers were
randomly selected for the attack. For each speaker, we ran
the perturbation scheme using the Generic Attack Method
(described in Section IV-D1) to generate 10 attack audio
samples as .wav.

To attack an SV model, we trained the Azure Verification
model. As the SV model is text-dependent, the TIMIT dataset
was insufficient, as it does not contain any of the phrases that
the Azure SV model requests. We gathered the audio data from
three men and three women. We recorded four audio samples
of each phrase per person: three samples to train the model
and one sample to test. After training the model, we checked
if the test audio authenticated correctly. The test audio was
then perturbed using the Generic Attack Method and passed
to the authentication model as .wav files. We repeated these
steps individually for all six participants.

VI. EXPERIMENTAL RESULTS

The Perturbation Engine takes as input a parameter set
and an audio sample. It then generates attack audio samples
according to the techniques outlined in Section IV-C. To
demonstrate its effectiveness, we first test the Over-the-Line
attack by providing the attack audio as a .wav file input to
the VPS and the Over-the-Air attack by playing the audio via
a commodity speaker.

A. Over-the-Line

1) ASR Models: We test our attack against ASR models. As
noted previously, perturbations introduce acoustic artifacts that
make the original message difficult for humans to understand.
However, the attack audio must still transcribe correctly when
passed to the ASR.

We ran our attacks against ten ASRs shown in Table I. The
attack was successful if the ASR transcribed the entire phrase
correctly. Minor spelling mistakes in the transcriptions were
ignored. In each case, it took a few minutes to find the first
attack audio that the ASR transcribed correctly. For each model
we were able to produce a sample audio that the ASR correctly
identified, as seen in Table II, despite having no information
about the ASR’s underlying model or pre-processing steps. In
total, we generated approximately 20,000 correctly transcribed
attack audio samples. By design, modern ASRs are susceptible
to replay attacks. Once an adversary generates an attack audio
that works, they can use it repeatedly against multiple victims
who use the same ASR.
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Models
Over
-the-
Air

Attack
Type

Min
TDI

Size (ms)

Max TS
Factor

(%)
Bing Speech API 4/4 TDI 3.36 -
Google Speech API 4/4 TDI 1.47 -
Houndify 3/4 TDI 1.00 -
IBM Speech API 3/4 TDI 2.42 -
Mozilla DeepSpeech 15/15 TDI 2.00 -
Kaldi-DNN 4/4 TDI+TS 1.00 300
Wit.ai Speech API 2/4 TDI 1.94 -

TABLE III: For phrases E-H in Table II, we generated 20
attack audio samples. Approximately 80% of those samples
successfully fooled the model for each of the 4 phrases. Man-
ual listening tests revealed that the most obfuscated samples
were generated using TDI and TS. These were then played
Over-the-Air and were able to trick the model in nearly every
case. Ambient noise is believed to have impacted the few non-
passing phrases.

Almost all ASRs employ techniques that fall within the
categories we covered in Table I. We attack a diverse range of
ASRs and all ASRs make similar assumptions about human
speech. That is why it is reasonable to assume that our attack
is effective against other state of the art ASRs, irrespective of
the underlying mechanisms.

2) Speaker Identification Models: Table I shows the results
for the attacks against speaker identification models. For this
experiment, the attack was successful if the identification
model classified the attack audio as that of the original speaker.
In all cases, the models made the correct classification. The
speaker models do not return any information about the audio’s
success, other than the classification. This means there is no
information an attacker can rely on to improve the attack.
Therefore, an offline perturbation scheme, like the one we
propose, is preferable.

B. Over-the-Air

In addition to being easy to generate, the attack audio
must be correctly transcribed by the VPS after it has been
played Over-the-Air. To test this against a randomly sampled
set of seven of the ten ASRs, we use the same audio from
the previous section. Figure 5 shows an example of the attack.
The attack is a success if the model completely transcribed
the desired phrase. The attack is unsuccessful if the ASR
transcribes one or more words incorrectly. For example, if
the word “turn” in the phrase “turn on the computer” was
not transcribed, the attack is a failure. This is a conservative
approach as an adversary can overcome this by using any of
the 20,000 other attack audio samples that were created in the
previous section.

For the Over-the-air tests, we used the attack audio samples
generated during the Over-the-Line experiments. For each of
the four phrases E-H in Table II, we picked the single most
distorted audio sample. The attack parameters used to generate
the audio samples are shown in Table III. We used the TDI
method, as this method generated the most audible distortion.
For Kaldi-DNN, we performed TS in addition to TDI. Table III
shows the minimum window size for TDI. Any window size
greater than this would lead to a successful attack Over-the-Air.
Similarly, any TS factor smaller than the one in used Table III
led to a successful attack Over-the-Air.

As seen in Table III, almost all phrases are successfully
transcribed. This is expected as the attack is designed to
retain the acoustic properties that a state of the art speaker
model considers most important. The small drop in accuracy
Over-the-Air, like in the case for Wit.ai, can be attributed to
environmental factors (e.g. background noise etc).

Kaldi-DNN is the only model that did not transcribe any
of the initial Over-the-Air attack audio samples successfully.
Upon further inspection, we realized that the Kaldi-DNN
model was trained using the Fisher English Dataset [27]. We
believe that the audio training data does not contain enough
noisy audio. Therefore, when we introduce our own audio
artifacts, the attack fails. However, when choosing different
attack audio samples that are less perturbed, generated with
larger window sizes as input to PE, we can show that the model
transcribes them correctly. Failure of attack audio transcription
does not mean that the model is immune to the perturbation
attacks that we propose. Rather, it is possible the model is
simply less effective in noisy environments.

C. General Insights

Our preliminary results revealed insights about parameter
values that an attacker can use to reduce the attack generation
time. Accordingly, we have demonstrated our hypothesis to
hold for VPSes.

The experimental results show that perturbation parame-
ters, specifically window size (used for TDI and RPG), display
three important properties. First, the smaller the window size,
the greater the audible distortion. Second, if an attack audio
is successfully transcribed at a certain window size, then
all attack audio samples that were generated with greater
window sizes are also successfully transcribed. Third, no
attack audio samples generated with window sizes of below
of 1.00 ms are correctly transcribed. This parameter creates
the approximate upper bound for maximum distortion. Attack
audio files generated with a smaller window size parameter
did not transcribe correctly by any of the VPSes from Table I.
Adversaries can use these three properties in conjunction to
narrow down the number of attack audio samples they want
to generate. Adversaries can start by setting the window size
to 1.00 ms, when passing the perturbation parameters into the
PE. They can increase the window size until they get the first
attack audio that successfully transcribes.

Additionally, an audio sample can only be perturbed up to a
certain threshold before it is distorted beyond VPS recognition.
Attack audio samples that were generated with larger window
sizes could be sped up the most. If an attacker perturbs audio
by a single parameter’s lowest bound (e.g., window size of
1.00 ms), using additional perturbation parameters, like speed,
will reduce the likelihood of the audio being recognizable by
the VPS. Attackers can choose different parameter settings to
tune the attack audio to the victim and specific attack scenario
to maximize attack efficacy. In our preliminary experiments
we observed the TS factor of 150%, RPG or TDI window size
of near 1.00 ms, and HFA of sine waves of frequency above
8000 Hz produced the ideal attack audio.

As discussed in Section IV-D2, the PE can be used to
generate a large set of attack audio samples for a single
phrase. Each audio sample has a different degree of audible
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Fig. 5: The time and frequency domain representation of the original audio sample (TOP), the perturbed audio after being played
Over-the-Line (MIDDLE) and the perturbed audio after being played Over-the-Air (BOTTOM)

distortion. However, picking the single worst attack sample
is not straightforward, as there does not exist any widely
accepted metric to measure the degree of perceived audio
distortion. In our case, we identified the relationship between
the perturbation parameters and audio distortion. For TDI and
RPG, smaller window sizes correspond to greater distortion
and thus worse sounding audio. For HFA and TS, larger values
corresponded to worse sounding audio. These criteria allowed
us to narrow the space of 20,000 attack audio samples, that
we had generated previously, to less than ten. At this point,
the attacker can manually listen to the ten samples, and pick
the one that sounds the worst.

Some perturbations were more successful than others at
generating attack samples that the model could interpret. Of
the perturbations that we tested, RPG was less successful than
TDI. RPG requires us to take the FFT of the audio, followed
by an inverse FFT. As we treat the models as black-boxes,
we do not know the type or parameters (number of buckets)
of the FFT algorithm that the model employs. In contrast,
when using TDI, all the perturbations happen in the time
domain. During this perturbation, the audio is not converted
via a function like the FFT, though RPG did indeed work many
times. With additional information about the model, we believe
that the RPG mechanism could be tuned precisely; however,
our approach demonstrates that blackbox knowledge is more
than sufficient to launch successful attacks.

Additionally, the TDI perturbation does not require that
the discontinuities align with the time frames of the feature
extraction algorithm. This assumption is buttressed by the
fact that perturbation schemes are successful against black-
box models. In the case of these models, we do not have any
information about the time frame discontinuities.

When attacking an online model, an adversary is limited

by the number of queries they can make. This could be either
due to cost associated per each query or due to threat of being
detected. That is why it is important that an adversary should
be able to generate attack audio with the least number of
queries possible. Our attack algorithm allows for exactly that.
An adversary can use the RPG or TDI methods to generate
ten attack audio samples, starting at the window size of 1.00
ms and using increments of 0.50 ms. We observe that it was
almost always the case that at least one of the generated audio
samples, is correctly interpreted by the VPS. In our case, we
were able to successfully find an attack audio that worked for
proprietary models in less than ten queries to the model.

This paper includes the largest evaluation of an attack in
terms of number and variety of models attacked. Our model
list exceeds that of any other published work in the area of
adversarial audio by an order of magnitude. However, due to
the evolving landscape of ML, new models will be released
continuously. We show that the attack is sufficiently general-
ized by being effective on the existing, publicly available state-
of-the-art models. The attack is ‘universal’ in that it is designed
to work against any model by only targeting the feature ex-
traction phase. Intuitively, future models will be derived from
the same feature extraction techniques available in the public
domain. An additional obstacle lies in choosing a reasonable
amount of phrases to test against. Running experiments against
every phrase is intractable due to the amount of data ASRs are
normally trained on. Instead we constructed a list of phrases
that mirror the variety of real-world use cases.

VII. DISCUSSION

A. Improvements on Previous Work

Our audio perturbation methods make attack audio samples
difficult for humans to interpret due to psychoacoustic prin-
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Fig. 6: This figure displays an STFT of an audio file containing speech, Carlini’s perturbation of the audio file, our perturbation
of the audio file, and white noise. The lighter colors indicates a higher intensity at a given frequency and time. We can see that
Carlini’s perturbed audio has high intensities in lower frequencies and our perturbed audio has high intensities in the higher
frequencies.

ciples. Carlini et al. [24] proposed a method with a similar
goal to ours; however, their work adds background noise to
the audio. Because humans can better recover speech from
noise than our perturbations, our generated speech commands
are comparatively harder for humans to interpret. We reinforce
this claim both quantitatively and qualitatively.

High frequencies Figure 6 displays a Short-time Fourier
Transform (STFT) of original audio sample, white noise, and
both our and Carlini’s attack on this original audio sample.2
The STFT plot provides information about the intensity of
frequencies over time for each audio sample. The higher
the intensity, the lighter the color. By looking at these plots
we can see that the audio produced by Carlini et al. has
greater intensities in the lower frequencies than in the higher
frequencies. In contrast, our attack audio has greater intensities
across the spectrum.

Humans perceive loudness of audio on a logarithmic
scale [30], and higher frequencies are perceived as being
louder [15]. This increase in perceived relative volume will

2We are grateful to these authors, who willingly provided us with a small
number of attack and original samples

lead listeners to concentrate more on high frequency compo-
nents to the exclusion of low frequency components, which
are normally associated with speech. Increasing the volume
may also result in reaching the listener’s pain tolerance [43].
If the volume of the audio is decreased in order to hear the
higher frequencies at a comfortable level, the lower frequencies
become harder to hear.

The addition of higher frequencies in our attack audio also
reduces intelligibility due to the Cocktail Party Effect [26],
[33], [22]. This psychoacoustic phenomenon allows us to
focus on a conversation while ignoring other conversation
and background noise. By the similar concept of selective
attention [57], humans are more likely to properly interpret
speech that is more familiar to them (such as a friendly voice).
These familiar stimuli can cause a listener to switch their
attention to interpreting other speech.

Though normally seen as robust qualities of human hearing,
our attack audio capitalizes on these principles. The dominant
high frequencies in our attacks are above are in the typical
range of human speech [43]. When heard by a human, our
attack audio will most likely be considered background noise,
and thus ignored. Additionally, treating the audio as unimpor-
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tant background noise will reduce the chance that the speech
will be a familiar stimuli and trigger a listener’s attention. The
high frequencies that exploit these psychoacoustic principles
will be filtered out during the preprocessing stage of a VPS
and will still result in an accurate transcription.

Noise Though adding noise may seem like a reasonable
method of increasing the unintelligibility of audio, studies in
psychoacoustics have demonstrated the robustness of speech in
the presence of noise [29]. When noise is added to otherwise
normal speech, the auditory properties of speech stand out
above the added noise thus ensuring intelligibility. If enough
noise is added to speech, interpretation will become more
difficult, because original speech becomes suppressed by the
large amount of noise. Adding noise to speech as a perturbation
method will have little benefit in terms of making the audio
harder for humans to interpret. Additionally, as additional noise
is added to the attack audio, it also becomes difficult for a VPS
to accurately transcribe the audio, due to the suppression of
the speech.

To evaluate their attack audio intelligibility, Carlini et al.
used Amazon Mechanical Turk [1], asking participants to listen
to their attack audio and attempt to transcribe it. Though this
may seem like a suitable evaluation method, this presents many
uncontrolled variables that could have a significant impact
on their results. The issue with using Amazon Turk is that
the experiment was not conducted locally, resulting in many
uncontrollable variables that could affect a participant’s ability
to transcribe their attack audio. These variables include, but
are not limited to, age [57], [53], first language [59], range
of hearing [43], listening environment, audio equipment, and
visual stimuli [64].

Quantifying the intelligibility of speech is challenging [66],
but these survey results have too many uncontrollable vari-
ables to make an accurate conclusion. There does not exist
any widely accepted metric to measure unintelligibility of
an audio sample. The L2 norm has been used in previous
works, discussed in Section VIII, to quantify the distortion of
adversarial images when attacking image classifiers. However,
to use the L2 norm to measure attack audio distortion would
be incorrect. This is because we base the unintelligibility of
our audio on principles of psychoacoustics and the biology
of human hearing which is substantially and fundamentally
different from factors associated with image classification. We
have made our attack audio available to the public online.3
Carlini et al. also make their audio available online4,which we
encourage the reader use as a comparison.

Performing a small-scale study, rather than using the estab-
lished results from another scientific community, is redundant
and prone to error; in effect, we would be merely reporting
anecdotes. Instead, we validate our results by citing widely
accepted published work from psychoacoustics which shows
that our audio has the properties that make it unintelligible.
As Figure 6 clearly demonstrates, our audio better exhibits
the characteristics associated with unintelligibility than the
previous work.

Practical Limitations Carlini’s attack is only possible under
the assumption that the adversary has white-box knowledge of

3Our attack: https://sites.google.com/view/practicalhiddenvoice
4Carlini et al.’s attack: http://www.hiddenvoicecommands.com/black-box

the victim’s model. The attack can only be carried out against
HMM-GMM ASRs, meaning that the attack is insufficient
against state of the art DNN and RNN models, which are
increasingly being deployed. The attack has not been shown
to work against speaker identification models either. Carlini’s
attack audio can not be used with any speaker system other
than the one used during the attack audio generation. Lastly,
their white-box attack takes an upwards of 32 hours to gener-
ate. These additional factors severely limit the adversary’s ca-
pabilities. In contrast, our attack is black-box, model-agnostic,
effective against both ASRs and speaker identification models,
transferable across speaker systems and takes seconds to gener-
ate. Our attack algorithm provides greater capabilities to the at-
tacker, while simultaneously making fewer assumptions about
the victim model. Lastly, our work exploits the fundamental
nature of human audio perception to generate attack samples.
Our perturbations make use of simple operations, in the time
domain, without using any complex algorithms. In contrast,
Carlini’s work attempts to add noise to the MFCCs, which exist
in the frequency domain. The domains both attacks exploit
are fundamentally different, which impacts the effectiveness
of Carlini’s attack.

B. Defenses

Voice Activity Detection (VAD) VAD is a commonly im-
plemented speech processing algorithm that is used to detect
the presence of human voices in samples of audio. It has
applications in cellular communications [50], Voice-over-IP
(VoIP) [38] and VPSes [62]. VAD differentiates between the
regions of human speech and regions of silence or noise in
audio. By identifying silence and noise, those regions can
be eliminated from the audio. This includes the regions of
noise and silence between words, reducing the audio being
transmitted to just individual words that make up the entire
recording. This is particularly useful for VPSes as using
VAD in preprocessing results in giving a model only the
necessary speech data, potentially reducing processing cost and
improving transcription results.

Based on this description, VAD may be suggested as a
potential defense against the attacks we present in this paper.
If a VPS is using VAD, this would cause the attack audio to
be classified as noise and not be further processed. As we will
demonstrate, this is not the case.

To test this potential defensive mechanism, we ran a VAD
algorithm on a set of 36 randomly selected attack audio files.
We executed a MATLAB implementation of the ITU-T G.729
VAD algorithm on the audio files and observed which regions
were classified as speech. In all 36 cases, the VAD algorithm
accurately located the speech in the audio.

In addition, we also ran the VAD algorithm over two5

attack audio files produced by Carlini et al. For both files
almost all of the audio, including sections between the words
consisting of pure noise, was determined to be speech. We
believe this is the result of the added noise suppressing the
speech, and in turn, “blurring” the lines between speech and
noise. While this does not prevent their attack audio from being

5The VAD experiment requires both an attack audio file and the original
source speech file. We could only run the VAD experiment for what was
available to us of Carlini’s attack files.
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given to an VPS, this does increase the chance that the audio
will not be transcribed correctly. The noise that is considered
to be speech, especially that between the words, will be sent
along with the actual speech. This increases the chance that
some or all of the speech could be mistranslated, preventing
the attack.

As more systems start to deploy VAD to reduce processing
time and server load, the attack audio produced by Carlini et al.
may not continue to be transcribed correctly. Meanwhile, our
attack audio will continue to work whether or not a system uses
VAD for preprocessing because we did not introduce additional
noise.

Classifier Training The defensive method of training a clas-
sifier model to detect adversarial attacks on VPSes has pre-
viously been suggested [24]. We believe this technique to be
impractical and brittle. Machine learning models are imperfect
regardless of training or tasks they are given. Adding a model
to preemptively determine if audio is malicious would most
likely result in usability issues. Legitimate speech commands
may be incorrectly classified as malicious and ignored because
of imperfections in the model. This would decrease the quality
of the user experience and could potentially result in users
looking to alternative VPS systems.

Altering the VPS Another potential defense mechanism would
be to modify the construction of the VPS in order to hinder
our attack. This could consist of steps such as altering or
removing signal processing or preprocessing steps. However,
tailoring a VPS to not detect or discard the attack audio is not a
viable solution. This will result in a decrease in accuracy of the
VPS. Additionally, we have demonstrated the effectiveness of
our attack audio against Mozilla DeepSpeech, which does not
use any predefined signal processing. Due to our perturbations
being rooted in psychoacoustics, in order to impede our attack,
a defense mechanism would have to be placed at or before the
preprocessing steps.

Such a system has been recently proposed [21] and could
potentially have an effect on the success of our attack. The
idea behind this system is that audio produced by an electro-
acoustic transducer (loudspeaker) will contain low frequencies
in the sub-bass region (20-60 HZ). This is below the speaking
range of most humans and is a good indicator that the speech
was played by a loudspeaker. If this were to be implemented
during preprocessing, this could identify our attack as being
produced by a non-human speaker and prevent it from being
given to the VPS. Similarly, ASRs that use liveness detec-
tion [74] [75] will also be relatively robust against our attack.
However, using such defenses to identify malicious commands
might generate false-positives, which degrade user experience
and product popularity.

C. Limitations

The attack audio will have reduced effectiveness when
used in noisy environments. This is because noise interferes
with the attack audio making it difficult for VPSs to interpret.
However, legitimate commands also do not work well in noisy
environments. Readers who have attempted to use their voice
assistants in a noisy environment have likely experienced such
a degradation.

VIII. RELATED WORK

From personal assistant systems to speaker identification
and investments, machine learning (ML) is becoming increas-
ingly incorporated into our daily lives. Unfortunately, ML
models are inherently vulnerable to a wide spectrum of attacks.
Early research focused on enhancing train-time resilience for
scenarios where the adversary is capable of poisoning training
data (e.g., spam and worm detection) [28], [49]. These early
works exhibited attack vectors that were later formalized into
three axes: i) influence of the adversary (causative, train-
time attacks vs. exploratory, test-time attacks), ii) type of
security violation (integrity vs. denial of service), and iii)
attack specificity (targeted vs. indiscriminate) [20], [19]. A
detailed overview of each axis is provided by Huang et al. [39].
Although all axes provide utility to an adversary, recent attacks
have focused on a narrow subsection of these axes.

Following this categorization, much of the work in adver-
sarial machine learning has focused on exploratory targeted
attacks against image classifiers in terms of both availability
and integrity. These attacks vary from changing particular
pixels [40], [68], [34], [18], [67], [48] or patches of pixels [23],
[63], [55], [25] to creating entirely new images that will
classify to a chosen target [51], [44]. Although these attacks
are very successful against image models, they do not suffice
for attacking audio models. Modern image models operate
directly on the supplied image pixels to derive relevant spatial
features [55], [51]. Audio models, in contrast, do not operate
on individual samples, and instead derive representations of
the original temporal space using acoustic properties of the
human voice. This layer of temporal feature extraction adds
a layer of complexity to potential attacks, which means that
small changes to individual samples will likely never propagate
to the final feature space used for inference.

Current attacks against audio models can be broken down
into three broad categories. The first involves generating ma-
licious audio commands that are completely inaudible to the
human ear but are recognized by the audio model [73]. The
second embeds malicious commands into piece of legitimate
audio (e.g., a song) [72]. The third obfuscates an audio
command to such a degree that the casual human observer
would think of the audio as mere noise but would be correctly
interpreted by the victim audio model [70], [24]. Our work
falls within the third category and closest attack to ours is that
of Carlini et al. [24]. The success of this earlier work is limited
due to the following reasons: i) the attack can only be using
against an Hidden Markov Model-Gaussian Mixture Model
architecture; ii) the attack assumes the attacker has white-box
access to the model; and iii) the attack is slow, taking at least
32 hours of execution. Our attack is designed to overcome
these limitations.

IX. CONCLUSION

The security community has recently discovered a num-
ber of weaknesses in specific machine learning models that
underpin multiple VPSes. Such weaknesses allow an attacker
to inject commands that are unintelligible to humans, but are
still transcribed correctly by VPSes. While effective against
particular models using particular speakers and microphones,
these previous attack are not acoustic hardware independent
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or widely practical. Instead of attacking underlying machine
learning models, this paper instead investigates generating
attack audio based on the feature vectors created by sig-
nal processing algorithms. With this black-box approach, we
demonstrate experimentally that our techniques work against
a wide array of both speech detection and speaker recogni-
tion systems both Over-the-Wire and Over-the-Air. Moreover,
because we treat psychoacoustics as a principal element of
our design, we are able to explain why our attacks are less
intelligible than prior work. In so doing, we not only argue that
hidden command attacks are practical, but also that securing
such systems must therefore take greater domain knowledge
of audio processing into consideration.
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