
NAUTILUS:
Fishing for Deep Bugs with Grammars

Cornelius Aschermann
Ruhr-Universität Bochum

cornelius.aschermann@rub.de

Patrick Jauernig
Technische Universität Darmstadt

patrick.jauernig@trust.tu-darmstadt.de

Tommaso Frassetto
Technische Universität Darmstadt

tommaso.frassetto@trust.tu-darmstadt.de

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

ahmad.sadeghi@trust.tu-darmstadt.de

Thorsten Holz
Ruhr-Universität Bochum

thorsten.holz@rub.de

Daniel Teuchert
Ruhr-Universität Bochum

daniel.teuchert@rub.de

Abstract—Fuzz testing is a well-known method for efficiently
identifying bugs in programs. Unfortunately, when programs
that require highly-structured inputs such as interpreters are
fuzzed, many fuzzing methods struggle to pass the syntax checks:
interpreters often process inputs in multiple stages, first syntactic
and then semantic correctness is checked. Only if both checks
are passed, the interpreted code gets executed. This prevents
fuzzers from executing “deeper” — and hence potentially more
interesting — code. Typically, two valid inputs that lead to the
execution of different features in the target program require too
many mutations for simple mutation-based fuzzers to discover:
making small changes like bit flips usually only leads to the
execution of error paths in the parsing engine. So-called grammar
fuzzers are able to pass the syntax checks by using Context-
Free Grammars. Feedback can significantly increase the efficiency
of fuzzing engines and is commonly used in state-of-the-art
mutational fuzzers which do not use grammars. Yet, current
grammar fuzzers do not make use of code coverage, i.e., they
do not know whether any input triggers new functionality.

In this paper, we propose NAUTILUS, a method to efficiently
fuzz programs that require highly-structured inputs by combining
the use of grammars with the use of code coverage feedback.
This allows us to recombine aspects of interesting inputs, and
to increase the probability that any generated input will be
syntactically and semantically correct. We implemented a proof-
of-concept fuzzer that we tested on multiple targets, including
ChakraCore (the JavaScript engine of Microsoft Edge), PHP,
mruby, and Lua. NAUTILUS identified multiple bugs in all of
the targets: Seven in mruby, three in PHP, two in ChakraCore,
and one in Lua. Reporting these bugs was awarded with a sum of
2600 USD and 6 CVEs were assigned. Our experiments show that
combining context-free grammars and feedback-driven fuzzing
significantly outperforms state-of-the-art approaches like AFL by
an order of magnitude and grammar fuzzers by more than a
factor of two when measuring code coverage.

I. INTRODUCTION

Software controls more and more aspects of the modern
life. Hence, the importance of software testing is increasing

at a similar pace. Human-written tests (e.g., unit tests) are
an important part of the software development life cycle; yet,
many software projects have no or limited testing suites due
to a variety of reasons. Even for projects with comprehensive
testing suites, tests usually revolve around expected inputs
in order to test the intended functionality of code. However,
unexpected inputs are one of the primary attack vectors
used to exploit applications using their intended functionality,
whereas automated software testing excels at finding inputs
with unexpected characteristics that can be leveraged to trigger
vulnerabilities.

One popular approach to automatically test programs is
fuzzing, i.e., automatically testing programs by generating
inputs and feeding them to the program while monitoring
crashes and other unexpected conditions. In recent years, many
different fuzzers were developed, covering a variety of ap-
proaches and goals. General-purpose fuzzers [18] usually rely
on low-level binary transformations to generate new inputs,
thus, they struggle with programs which only accept highly
structured files, such as interpreters for scripting languages.
Binary transformations generate inputs that struggle to pass
initial lexical and syntactic analysis [36] and reach the code
that executes after those checks, i.e., the deep code.

An intuitive solution to this problem is to use (context-free)
grammars to generate syntactically-correct inputs. Previous
works [5], [17], [36], [47] use this approach, but they do not
leverage instrumentation feedback, which allows the fuzzer to
distinguish inputs that reach a new part of the code base from
inputs that reach no new code.

Leveraging feedback led to a great improvement in the
performance of general-purpose fuzzers. One of the most
popular feedback-oriented fuzzers is AFL [19], which was used
to identify bugs in hundreds of applications and tools. Using
code coverage feedback, AFL is able to intelligently combine
interesting inputs to explore deeper code, which would take
an unreasonable amount of time without feedback. In contrast,
AFL struggles with heavily-structured file formats since it is
optimized for binary formats and does not support grammars.
Note that AFL can be provided with a list of strings, which it
will try to use to generate inputs. However, this list does not
support any kind of grammar-like semantics.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23412
www.ndss-symposium.org

Most coverage-driven fuzzers, including AFL, require a
corpus of inputs which they use as a basis to start the fuzzing
process. A good-quality corpus is crucial to the performance
and effectiveness of the fuzzer: any code path that is used
by the corpus does not have to be discovered by the fuzzer
and can be combined with other inputs from the beginning.
Getting such a high-quality corpus is not trivial: if the language
accepted by the target application is widely used, one approach
is to crawl publicly available examples from the Web [49]
or from public code repositories. However, those examples
are likely to skew towards very commonly-used parts of the
grammar, which use well-tested parts of the target application.
Naturally, security researchers often want to test features which
are rarely used or were introduced very recently, which are
more likely to lead to bugs in the target application. Acquiring
a corpus to test those features is clearly harder, while writing
examples manually is very expensive.

Goals and contributions. In this paper, we present the de-
sign and implementation of a fuzzing method that combines
description-based input generation and feedback-based fuzzing
to find bugs deep in the applications’ semantics, i.e., bugs
that happen after lexical and syntactical checks. Our prototype
implementation of this concept called NAUTILUS requires no
corpus, only the source code of an application and a grammar
to generate inputs for it. One can start fuzzing with NAUTILUS
using publicly-available grammars [6]. The fuzzing process
can then be fine-tuned by removing uninteresting parts of
the grammar and adding additional information about the
language, e.g., by incorporating function names and parameter
types taken from the language documentation, which can be
easily automated. Additionally, NAUTILUS allows the user to
extended grammars with additional script. These scripts allow
NAUTILUS to generate any decidable input language to further
improve its ability to generate semantically correct inputs.

However, NAUTILUS does not just generate interesting
initial inputs. The fuzzing process itself also leverages the
grammar by performing high-level semantic transformations
on the inputs, e.g., swapping an expression for a different
expression in a program. By combining these mutations with
the coverage feedback, NAUTILUS can create a corpus of
semantically interesting and diverse inputs and recombine them
in a way that drastically increases the probability of finding
new inputs which are both syntactically and semantically
valid. As we evaluate in Section VI, those two advantages
give NAUTILUS a significant advantage over state-of-the-art
fuzzers. Additionally, NAUTILUS was able to find new bugs in
all the targets it was tested on: seven in mruby1, three in PHP,
one in Lua, and two in ChakraCore.

In summary, our contributions in this paper are:

• We introduce and evaluate NAUTILUS, the first fuzzer that
combines grammar-based input generation with feedback-
directed fuzzing. NAUTILUS significantly improves the
efficiency and effectiveness of fuzzing on targets that
require highly-structured inputs—without requiring any
corpus. To increase expressiveness, NAUTILUS supports
Turing-complete scripts as an extension to the grammar
for input language descriptions. This can be used to

1CVE-2018-10191, CVE-2018-10199, CVE-2018-11743, CVE-2018-
12247, CVE-2018-12248, and CVE-2018-12249.

create descriptions for complex, non-context-free input
languages.

• We describe and evaluate several grammar-based muta-
tion, minimization and generation techniques. By com-
bining coverage feedback and grammar-based splicing,
NAUTILUS is able to generate syntactically and often
semantically correct programs, outperforming traditional
purely-generational fuzzers that spend significant time
generating and testing semantically invalid inputs.

• We found and reported several security bugs in multiple
widely-used software projects which no other fuzzer in
our evaluation found.

To foster research on this topic, we release our fuzzer at
https://github.com/RUB-SysSec/nautilus.

II. BACKGROUND

A. Fuzzing

Fuzzing is a quick and cost-effective technique to find
coding flaws in applications. Traditionally, there are two ways
for fuzzers to generate input for target applications: mutation
or generation.

For mutational fuzzing [15], [19], a well-formed corpus
of seed inputs, e.g., test cases, is modified using genetics-
inspired operations like bit flips, or recombination of two
inputs (splicing). These modifications can be either random
(brute force), or guided using a heuristic. More advanced
techniques are either taint-based [24], [27], [29], [43], [50],
symbolic [26], or concolic [31], [32], [46] (a portmanteau
of concrete and symbolic). Taint-based fuzzers try to track
down input bytes that, e.g., influence function arguments, while
symbolic analysis treats some of the input bytes symbolically,
and uses symbolic execution to explore new paths. Concolic
execution combines these techniques: dynamic analysis (e.g.,
guided or taint-based fuzzers) is used to get as many new paths
as possible, then, corresponding concrete values are passed to
a symbolic execution engine to take new branches (guarded
by more complex checks) to explore new paths. These new
paths are the input for the next iteration of dynamic analysis.
A popular mutation-based fuzzer is the heuristically-guided
fuzzer AFL [18]. AFL uses new basic block transitions as a
heuristic for coverage.

In contrast, generation-based fuzzers can generate input
based on a given specification, usually provided as a model or
a grammar. For example, if the target application is an inter-
preter, the underlying grammar of the programming language
can be used to generate syntactically valid input. This allows
them to pass complex input processing, while semantic checks
remain challenging for these approaches. Furthermore, many
generation-based fuzzers not only require a grammar, but also a
corpus [36], [47]. Creating such a corpus may be cumbersome,
since the corpus should ideally contain valid as well as invalid
test cases, since together they can be recombined to valid,
crashing inputs [36].

Orthogonally, fuzzers generally can be divided into black-
box and white-box fuzzers. While black-box fuzzers do not
require insight in an application, only needing a (large) cor-
pus, white-box fuzzers leverage extensive instrumentation and
analysis techniques to overcome conditional branches and track

2

https://github.com/RUB-SysSec/nautilus

code paths taken. White-box approaches try to systematically
explore new code paths that are harder to find for black-box
fuzzers, however, increasing analysis also induces a decreasing
number of test cycles per second.

B. Context-Free Grammars

Applications often require highly-structured input, which
a conventional mutation-based fuzzer cannot easily provide.
Context-free grammars (CFGs) are well-suited to specify
highly structured input languages. Here we give a short defi-
nition of CFGs and an introduction to how they can be used
to describe input languages. Intuitively, a CFG is a set of
production rules of the form “Some variable X (non-terminal
symbol) can be replaced by the following array of strings
(terminal-symbols) and variables”. Additionally, a special start
non-terminal specifies where to begin applying these rules. The
input language described by the CFG is the set of all strings
that can be derived by applying any number of rules until no
more non-terminals are present.

More formally, a CFG is defined as a tuple: G =
(N,T,R, S) with:

• N is a finite set of non-terminals. Non-terminals can
be thought of as intermediate states of the language
specification.

• T is a finite set of terminal symbols. N and T are disjoint.

• R is a finite set containing the production rules of the
form A→ a where A ∈ N and a ∈∗ T ∪N

• S ∈ N is a non-terminal which is the start symbol. Every
word generated by the CFG needs to be derivable from
S.

Since the left-hand side of each rule consists of exactly one
non-terminal, the possible derivations only depend on one non-
terminal and no context, therefore these grammars are called
context free.

To derive a string, a matching production rule, i.e., one
with the respective non-terminal on the left-hand side, has to
be applied to the start symbol S. As long as the right-hand
side of that rule contains a non-terminal, another derivation
step is executed. For each step, one non-terminal is replaced
by the right-hand side of a rule matching the non-terminal.

Example II.1 shows a possible input generation given a
grammar G1.

Example II.1. Consider the following grammar (G1):

N: {PROG, STMNT, EXPR, VAR, NUMBER}
T : {a , 1 , 2 , = , re turn 1}
R : {

PROG → STMT (1)
PROG → STMT ; PROG (2)
STMT → return 1 (3)
STMT → VAR = EXPR (4)

VAR → a (5)
EXPR → NUMBER (6)
EXPR → EXPR + EXPR (7)

NUMBER → 1 (8)
NUMBER → 2 (9)

}
S : PROG

Therefore, one possible derivation from G1 would be: PROG
(1)−−→ STMT

(4)−−→ VAR = EXPR
(5)−−→ a = EXPR

(6)−−→ a = NUMBER
(8)−−→ a = 1. Numbers over arrows denote applied production

rules. The derived string is a=1.

Each string generated by a CFG can be represented by its
derivation tree. A derivation tree t of a CFG G is a tree whose
vertices are labeled by either non-terminals or terminals. The
root of t is labeled with the start symbol, all terminal vertices
are labeled with terminals from G [52]. NAUTILUS mostly
operates on these derivation trees instead of the trees’ string
representation which we call unparsed strings. Derivation trees
are NAUTILUS’s internal representation for inputs to which
it applies structural mutations. However, as many common
language constructs are not context free (e.g., checksums, or
generating proper XML as the opening and the closing tags
need to contain the same identifier), we extend upon CFGs by
allowing additional scripts to be used to transform the input.

Since the set of production rules must contain all (rele-
vant) non-terminals and terminals, in the following we define
CFGs only through their production rules and a start symbol.
To distinguish between non-terminals and terminals, we use
uppercase names for non-terminals.

III. CHALLENGES

Designing a fuzzer requires thorough consideration in order
to minimize the effort required from the user and maximize
effectiveness of the fuzzer. In particular, we identified four key
aspects that are desirable:

C1: Generation of syntactically and semantically valid in-
puts. Generated inputs need to pass the syntactic and semantic
checks of the target application to reach the next stages of
computation. The subset of syntactically and semantically valid
inputs is usually much smaller than the set of all possible
inputs [49]. Therefore, it is often hard for fuzzers to go
“deeper” and find bugs in the application logic that is guarded
by the input validation. Additionally, in many cases the input
language cannot be modeled by simpler formalisms such as
CFGs.
C2: Independence from corpora. Current fuzzers often need
an initial corpus of inputs, i.e., a set of seed files. Even with
well-known software, where a corpus is usually available,
acquiring a corpus which targets the new and obscure parts
of the application is hard. Acquiring a corpus for internal

3

Instrumented
Binary

Parser

Input
Generation

Minimization

Mutation

Scheduler

Q
u

e
u

e

tr
ig

ge
r

tr
ig

ge
r

Grammar

𝑆 → 𝑥𝐴 | 𝑦𝑆
𝐴 → 𝑦𝐴 | 𝑧𝐵
𝐵 → 𝑧

Feedback

NAUTILUS

2

3
5

4

76

8

9

InstrumentationSource
1

Fig. 1: High-level overview of NAUTILUS.

or unreleased software is even harder. Hence, presence of a
(proper) corpus should not be required to fuzz the application.
However, many software projects have a specification of al-
lowed inputs (or a grammar) that can be leveraged instead.
In addition, techniques that try to combine seed corpora
with input specifications typically need to restrict their input
languages to enable parsing, hence, reducing the usefulness of
seed corpora when using input specifications.
C3: High coverage of target functionality. Achieving a high
coverage in the target application is desirable to find a higher
number of bugs. This mainly relates to two aspects: (1) passing
input processing, and (2) steering analysis to explore new
paths.
C4: Good performance. Fast testing cycles, which imply a
high number of tested inputs per fuzzing window, is one of the
key aspects to increase effectiveness of fuzzers. To ensure high
execution rates, the inputs need to be small and the generation
method needs to be fast.

We designed NAUTILUS with these challenges in mind:
grammar-only input derivation tackles C1 and C2, while
we use feedback-driven input generation to address C3, and
steering input derivation length as well as minimization of
interesting inputs to take on C4. In the following section, we
explain the design of these high-level concepts.

IV. DESIGN OF NAUTILUS

A high-level overview of the approach is shown in Figure 1.
The first step required to use NAUTILUS is to compile the
source code of the target application using our instrumen-
tation 1 to give feedback on coverage information while
running. Then, the fuzzer process itself is started, parses the
grammar the user provided 2 , then generates a small amount
(1000) of random initial inputs from scratch 3 and passes
them to the scheduler. Then, NAUTILUS tests whether that
newly generated input triggers any new coverage by executing
the instrumented binary 4 . If it did, NAUTILUS minimizes
it using the grammar, and adds it to the queue 5 . Based on

whether new paths can still be explored, the scheduler will
either trigger mutation of existing inputs 6 or derivation of
a new input 7 . For inputs in the queue, mutations based
on the grammar are applied. The mutation methods include
techniques like replacing subtrees with newly generated ones
or combining trees that found different interesting features of
the target application. After mutation, the input is added to
the queue 8 and used in subsequent analysis runs 9 . This
architecture allows us to combine the strength of both grammar
fuzzing and feedback fuzzing to recombine existing interesting
inputs into more semantically interesting inputs. In the follow-
ing, we explain the process of generation, minimization, and
mutation process in more detail.

A. Generation

The generation algorithm should produce inputs which
use distinct aspects of the grammar in order to maximize
coverage (Challenge C3). Our fuzzer internally only uses the
tree representation instead of the unparsed string representation
of the word. This allows us to operate on the tree and to define
custom unparsing routines. We use the grammar rules to derive
random trees from the set derivation trees. If there are multiple
rules for one non-terminal, there are multiple ways to select
a rule for further derivation. In this paper we evaluate two
different approaches: naive generation and uniform generation.

The naive generation approach is to randomly pick one of
the applicable rules. As shown below in Example IV.1, this
can lead to a lot of similar inputs being generated. For this
reason, we augmented this generation approach with a filter
that checks whether the generated input was already generated
in the recent past.

Example IV.1 (Naive Generation). When generating a tree
from grammar G1 from Example II.1, there are two rules
for the STMT non-terminal. If rule 3 is picked, the generation
immediately terminates. If rule 4 is chosen, the generation
continues, and multiple different trees can be generated. If both
rules are picked with 50% probability, half of the generated
inputs are return 1.

Our other approach, uniform generation, is able to uni-
formly draw trees from the set of all possible trees as proposed
by McKenzie [39]. This approach avoids the strong bias
introduced by the structure of the grammar. This algorithm
takes a CFG and an integer n ≥ 0 and returns strings of
length n, derived uniformly from the given input grammar.
This algorithm picks the rules based on the number of distinct
subtrees that they can generate: for each non-terminal n,
for each possible length l, for each production rule r of n
the amount of possible subtrees p(n, l, r) is calculated. As
an example, a rule that can generate four different subtrees
is picked twice as often as a rule which can generate two
subtrees.

B. Minimization

After an interesting input was found, NAUTILUS tries to
produce a smaller input that triggers the same new coverage.
Minimized inputs have the advantage of a shorter execution
time and a smaller set of potential mutations during further
processing. We use two different approaches to minimize
inputs that found new paths:

4

PROG

STMT

VAR

a

= EXPR

NUM

1

PROG

STMT

return 1

Example IV.2 (Subtree Minimization). The Subtree Minimization is executed
on a = 1, replacing the subtree of STMT with a smaller one.

PROG

STMT

VAR

a

= EXPR

EXPR

NUM

1

+ EXPR

NUM

2

PROG

STMT

VAR

a

= EXPR

NUM

1

Example IV.3. Recursive Minimization is executed on a = 1 + 2,
which contains a recursive EXPR: both the whole right-hand side, as
well as the individual numbers, are derivable from EXPR. Using either
of the two numbers instead of the addition yields a valid minimized
tree.

Subtree Minimization aims to make subtrees as short as pos-
sible while still triggering new path transitions. For each
nonterminal, we generate the smallest possible subtree.
Then, we sequentially replace each node’s subtree with
the smallest possible subtree at this position, and check
if the new transitions are still triggered by the changed
input. If the transitions are still taken, the changed input
replaces the original one, otherwise the changed input is
discarded (see Example IV.2).

Recursive Minimization This strategy is applied after Sub-
tree Minimization. Its goal is to reduce the amount of
recursions by identifying recursions and replacing them
one at a time. Example IV.3 displays how a nested
expression is minimized.

C. Mutation

After an input was minimized, NAUTILUS uses multiple
mutation methods to generate new tests. Unless specified
otherwise, whenever we pick some element randomly, we pick
uniformly amongst all options.

Random Mutation picks a random node of a tree and re-
places it with a randomly-generated new subtree rooted
in the same nonterminal. The size is chosen randomly
and the maximum size of the subtree is a configuration
parameter.

Rules Mutation sequentially replaces each node of the input
tree with one subtree generated by all other possible rules.

PROG

STMT

VAR

a

= EXPR

EXPR

NUM

1

+ EXPR

NUM

2

PROG

STMT

VAR

a

= EXPR

EXPR

NUM

1

+ EXPR

EXPR

NUM

1

+ EXPR

EXPR

NUM

1

+ EXPR

NUM

2

Example IV.4. This tree contains a recursion (an EXPR node has
EXPR child nodes). Random Recursive Mutation randomly repeats this
subtree recursion (two times in the example) and inserts the result in
the already existing recursion. This turns the simple a = 1 + 2 into
the more complex a = 1 + (1 + (1 + (1 + 2))).

This mutation resembles the deterministic phase used by
AFL.

Random Recursive Mutation picks a random recursion of a
tree and repeats that recursion 2n times (1 ≤ n ≤ 15).
This creates trees with higher degree of nesting. An
example application of this mutation can be seen in
Example IV.4.

Splicing Mutation combines inputs that found different paths
by taking a subtree from one interesting input and placing
it in another input: it replaces one of the subtrees with a
“fitting” subtree from another tree in the queue. To do so,
it picks a random internal node, which becomes the root
of the subtree to be replaced. Then it picks from a tree
in the queue a random subtree that is rooted in the same
nonterminal to replace the old subtree.

AFL Mutation performs mutations that are also used by AFL
such as bit flips or interesting integers. The AFL Mutation
operates on strings, so subtrees are converted into text
form before this mutation is applied. This mutation can
produce invalid trees which are sometimes interesting to
discover parser bugs. This mutation consists of several
different sub-mutations:
Bit Flips flip single or multiple bits at once;
Arithmetic Mutations add or subtract interesting values

to numeric values in the string;
Interesting Values replaces parts of the string with in-

teresting values.
Afterwards, the mutated terminal string is stored as a new
Custom Rule with the same originating non-terminal and
added to the tree, replacing the original subtree. Custom
Rules are not added to the grammar, they are saved locally
with the tree. This process is depicted in Example IV.5.

D. Unparsing

After NAUTILUS obtained a candidate derivation tree,
NAUTILUS needs to generate an actual input from it. This
step of turning the derivation tree into a binary file is typically

5

PROG

STMT

VAR

a

= EXPR

EXPR

NUM

1

+ EXPR

NUM

2

PROG

STMT

VAR

a

= EXPR

1xf

Example IV.5. In this example, AFL Mutation alters the terminal
string of the subtree of the topmost EXPR by flipping some bits from
1 + 2 to 1xf (not valid according to the grammar). Then, a custom
rule EXPR → "1xf" is created which replaces the subtree, resulting
in the input a = 1xf;

called unparsing. For true CFGs, this process is straightfor-
ward. The unparsing function is recursively defined to concate-
nate all unparsed subtrees. However, many real-world input
grammars are not context free, as mentioned earlier. Hence,
we extend rule definitions by an additional unparsing script
that can perform arbitrary computation on the results of all
unparsed subtrees. Scripting support is one of the big strengths
of our generative approach, as there is no need to parse inputs.
Therefore, we can freely venture beyond decidable grammars
without any disadvantages. Approaches such as Skyfire [49]
or IFuzzer [47] are restricted to grammars which support
parsing. Example IV.6 shows how this technique can produce
syntactically and semantically valid XML documents.

Example IV.6. Assume that the grammar for XML con-
tains a rule that specifies a simplified tag. Each tag has
an ID and a BODY. The corresponding rule is: TAG →
<ID>BODY </ID> In CFGs the opening and the closing ID
are independent. Therefore, we might produce inputs such as
"<a>foo" by performing the concatenation on the chil-
dren: ["<","a",">","foo","</","b",">"]. By extending
CFGs with unparsing scripts, the rule turns into TAG →
ID,BODY with the unparsing function lambda |id,body
| "<"+id+">"+body+"</"+id+">". Thus, we are able to
reuse the ID twice to produce a valid XML tag.

V. IMPLEMENTATION

NAUTILUS is implemented in Rust and its overall archi-
tecture is similar to AFL. We use the mruby interpreter to
execute the scripts embeddable in our extended grammars.
Similar to AFL, NAUTILUS requires the target program to be
instrumented. It fuzzes the target in a number of phases. The
following sections describe those processes in more detail.

A. Target Application Instrumentation

NAUTILUS shares the concept of AFL’s source-code in-
strumentation: a 64 KB bitmap is shared with the application.
A custom compiler pass adds Instrumentations which updates
this bitmap based on information about basic blocks transitions
performed in the target application. Additionally, the compiler
pass adds some code that runs the application in a forkserver
to increase the rate at which inputs can be executed.

B. ANTLR Parser

NAUTILUS accepts grammar inputs as either JavaScript
Object Notation (JSON), the natural grammar representation
used by NAUTILUS, or grammars written for ANother Tool
for Language Recognition (ANTLR) [1], since more than 200
ANTLR grammars for a number of programming languages
are already publicly available [6]. In order to support ANTLR
grammars, we integrate an ANTLR Parser component that
converts the ANTLR grammar into the native NAUTILUS
format. The parser can convert most grammars automatically.
In some cases, ANTLR grammars do not specify whitespace,
since it is not relevant during parsing; however, whitespace is
relevant during input generation. Thus, one typically has to
add spaces in a few key rules in those grammars.

C. Preparation Phase

NAUTILUS precomputes some data based on the grammar
provided before the fuzzing begins. This data includes:

min(n) for each non-terminal n, the minimum number of
rules that need to be applied to generate a string which
uses n as the start non-terminal. This data is used by the
Rules Mutation (Section IV-C).

p(n, l, r) For each non-terminal n, for each possible length
l, for each production rule r of n, the number of possible
subtrees rooted in n, using r as the first rule, applying
l rules. This information is needed for the Uniform
Generation (Section IV-A).

p(n, l) For each non-terminal n, for each possible length
l, the number of possible subtrees. This represents how
many possible subtrees can be generated when applying
l rules starting from the non-terminal n, or, in other
words, the number of derivation trees with root n and
l edges. This information is also needed for the Uniform
Generation (Section IV-A).

The algorithm for calculating the minimum length for non-
terminals is very similar to the one proposed by Purdom [42].
The other values are calculated using the algorithm proposed
by McKenzie [39].

D. Fuzzing Phase

Figure 2 shows the workflow of NAUTILUS during the
fuzzing phase. After generating some initial inputs, the Sched-
uler decides which input should be tried next: either (i) mutate
an existing input with a certain mutation, or (ii) generate
a new input from scratch. The scheduler controls a queue
which contains all generated or mutated inputs that are still
considered interesting, i.e., each of them triggers at least one
transition between basic blocks in the application that no other
input triggers.

The scheduler processes every item in the queue sequen-
tially. Each item in the queue has a state which indicates how
it will be processed when taken from the queue. The state can
be one of these values:

init If an input triggered a new transition, it is saved in
the queue with the init state. When the scheduler
selects an item in the init state, the item is minimized

6

START

Generate
initial inputs

Select next input
i from queueQ

u
e
u
e

state of i?

Minimize i

Run Rules,
Splice, or Random

Mutator on i

Run AFL,
Splice, or Random

Mutator on i

Run Random
Mutator on i

Check for
duplicates

Execute input
in forkserver

Save inputAdd input
to queue

Discard
input

init

det

detafl

random

Crash

New
transitions

No new
transitions

Scheduler

Fig. 2: Workflow of the fuzzing phase.

(Section IV-B). After finishing the minimization of an
item, its state is set to det.

det Items in the det are mutated using the Rules Mutator, the
Random (Recursive) Mutator, and the Splice Mutator (see
Section IV-C). When the Rules Mutator is done with an
item because no more mutations of that type are possible,
the item moves to the detafl state.

detafl Items in the det are mutated using the AFL Mutator,
the Random (Recursive) Mutator, and the Splice Mutator.
When the AFL Mutator is done with an item, it moves
to the random state.

random This is the final state of each entry. Only the Ran-
dom Mutation, Random Recursive Mutation, and Splice
Mutation are applied on this entry. In contrast to AFL,
we do not finish each stage before we continue with
the next input. Instead NAUTILUS only spends a short
amount of time (typically a few seconds) on each input,
before we continue with the next one. Therefore, we
quickly explore those inputs that are very likely to yield
new coverage while not spending too much time on
unproductive inputs. This allows us to achieve an effect
similar to AFLFast [25].

After an input tree is selected for execution, it is unparsed
to an input string. Then, the target program is run with this
input using a fork server similar to the one used by AFL,
which can start the target application in a highly-efficient
way. There are three possible states that can follow: (i) the
target application crashes during the execution, then, the binary
representation of the input that caused the crash is saved in a
separate folder, (ii) the input caused the target application to
take a new path, then, the tree representation of the input is
added to the queue, or (iii) the input did not trigger any new
transition and the input is discarded.

VI. EVALUATION

We tested NAUTILUS on four real-world applications and
it found vulnerabilities in all of them. We chose four pro-
gramming language interpreters as targets since these had well
documented grammars. The efficiency of our prototype was
also evaluated against other state of the art fuzzers.

Our evaluation aimed at answering the following research
questions:

RQ 1 Can NAUTILUS identify new bugs in real-life applica-
tions?

RQ 2 Is NAUTILUS more efficient than other state-of-the-art
fuzzers?

RQ 3 How much does the use of grammars improve the
fuzzing efficiency for target applications with highly
structured inputs?

RQ 4 When using grammars, how much does the use of
feedback increase the fuzzing performance?

RQ 5 Does our complex generation method, which requires
more computational power than a naive approach,
actually increase fuzzing performance, and if so, how
much?

RQ 6 How much does each of the mutation methods used
contribute to find new paths?

Section VI-B describes the bugs NAUTILUS found and dis-
cusses RQ1. Section VI-C evaluates the efficiency of NAU-

7

Target Type CVE

mruby

Use after free caused by integer overflow CVE-2018-10191
Use after free in initialize_copy CVE-2018-10199
Use of uninitialized pointer in hash.c CVE-2018-11743
Segmentation fault in mrb_class_real CVE-2018-12247
Segmentation fault in cfree CVE-2018-12248
Heap buffer overflow caused by Fiber::transfer CVE-2018-12249
Stack overflow (not fixed yet) none yet

PHP
Division by Zero triggered by range() caused by a type conversion. -
Segmentation fault in zend_mm_alloc_small -
Stack overflow caused by using too many parameters in a function call. -

ChakraCore Wrong number of arguments emitted in JIT-compiled code -
Segmentation fault in out-of-memory conditions -

Lua Type confusion -

TABLE I: Vulnerabilities found by NAUTILUS in our targets

TILUS and discusses RQ2, RQ3, and RQ4. Section VI-D
evaluates our generation method and discusses RQ5, while
Section VI-E evaluates our mutation methods and discusses
RQ6.

A. Experimental Setup

For our evaluation we chose four widely-used scripting
languages: Ruby, Lua, PHP, and JavaScript:

• For Ruby, we chose the mruby implementation [8] since
it is used by Shopify in their infrastructure and they
have an open bug bounty program (see Section VI-B
for details). We fuzzed various versions of mruby during
the first half of 2018. The performance experiments were
performed using the version from Git commit 14c2179
on the official mruby repository [9].

• For Lua, we used version 5.3.4 from the official site [13].
• For PHP, we used version 7.2.6 from the official distri-

bution network [11].
• For JavaScript, we chose the ChakraCore implementa-

tion [2], since it was made public more recently. We
used the code from Git commit cf87c70 for performance
measurements and the code from commit 550d2ea for our
fuzzing campaign.

For our performance evaluation we used 14 identical ma-
chines, each with an Intel Core i5-650 CPU clocked at 3.2
GHz, 4 GB of RAM, and Ubuntu 16.04.4 LTS. Each fuzzer
was only allowed to use one core; we only ran one fuzzer on
any machine at any given time to avoid interferences. Each test
was performed 20 times (12 times for IFuzzer [47]) to enable
a statistical analysis of the results.

We based our grammars on existing ANTLR grammars [6].
We performed a set of changes to improve the performance: as
mentioned earlier, some cases required adding whitespaces, as
they are typically discarded during tokenization and not part of
the grammar. Additionally, we replaced the rules to generate
identifiers with a list of strings retrieved from the documenta-
tion or the program itself. Lastly, we often significantly shrunk
the grammar for strings and number literals; otherwise, the
fuzzer would spend a lot of time exploring random literals
that add very little interesting information.

B. Vulnerabilities Identified

To answer RQ1 we evaluated our prototype by fuzzing our
four target applications. Our fuzzer was able to find new bugs
in all four, while none of the other fuzzers did during the
evaluation period. All bugs were reported and acknowledged
by the various vendors. The vulnerabilities are summarized in
Table I and described below.

mruby: Mruby is an interpreter for the Ruby programming
language with the intention of being lightweight and easily
embeddable [8]. In total, we found 7 bugs in mruby, including
two use-after-free vulnerabilities2, two segmentation faults,
one use of an uninitialized pointer, one heap buffer overflow,
and a stack overflow (see Table I). 6 CVEs were assigned so
far. Reporting these bugs was awarded with a sum of 2,600
USD from the shopify-scripts bug bounty program [16].

Case Study: Finding CVEs. Given the bug bounty program
and the ease of the reporting process, we performed a more
thorough analysis of mruby. We started by inspecting previous
security issues and we noticed that nearly all bugs did not
rely on special strings or non-trivial integers. Therefore, we
built a grammar that only contains a small set of identifiers,
integers and strings. We also significantly reduced the variance
in the language, e.g., by including only one of the multiple
ways to invoke methods. Using this grammar allowed us to
find multiple CVEs.

PHP: PHP is a popular general-purpose scripting language
that is especially suited to web development [11]. NAUTILUS
found three bugs in PHP: a division by zero, a segmentation
fault, and a stack overflow (see Table I). The bugs were not
considered security bugs by the PHP developers since they
require “obviously malicious” code. For this reason, no CVEs
where obtained for the three identified bugs. However, those
bugs could be triggered in a sandboxed PHP environment and
all lead to a crash.

2 In a use-after-free vulnerability, a program calls free on a pointer, then
dereferences the pointer and uses the memory again. An adversary can force
the application to allocate some other data at that address and then run the
faulty code on data of the adversary’s choosing.

8

Target Baseline
Coverage Fuzzer Mean Median Median New

Coverage Found
Std

Deviation
Skewness Kurtosis

ChakraCore 14.7%

NAUTILUS 34.0% 34.1% 19.4 pp 0.60 pp −0.29 −0.44
NAUTILUS - No Feedback 18.6% 18.5% 3.8 pp 0.24 pp 1.42 0.53
AFL 15.8% 15.8% 1.1 pp 0.27 pp 0.10 −0.58
IFuzzer 15.9% 16.0% 1.3 pp 0.20 pp −1.08 0.35

mruby 25.7%
NAUTILUS 53.7% 53.8% 28.1 pp 1.60 pp −0.16 −0.38
NAUTILUS - No Feedback 37.7% 37.8% 12.1 pp 0.34 pp −0.81 −1.01
AFL 28.0% 27.6% 1.9 pp 1.28 pp 2.36 4.20

PHP 2.2%
NAUTILUS 11.7% 12.3% 10.0 pp 2.17 pp −0.65 −0.43
NAUTILUS - No Feedback 6.1% 6.1% 3.9 pp 0.09 pp 0.08 −1.69
AFL 2.2% 2.2% 0.0 pp 0.00 pp −1.40 0.61

Lua 39.4%
NAUTILUS 66.7% 66.6% 27.2 pp 1.33 pp −0.11 −0.72
NAUTILUS - No Feedback 47.9% 47.8% 8.4 pp 1.02 pp 0.11 −1.80
AFL 54.4% 54.6% 15.2 pp 0.54 pp −1.80 2.42

TABLE II: Statistics about branch coverage. The new coverage found is the additional coverage that was found by the fuzzer w.r.t. the initial corpus. “pp” stands
for “percentage points”. Note: AFL was able to find some coverage on PHP, but the results round to zero.

ChakraCore: ChakraCore is the JavaScript engine used by
the web browser Edge [2]. Our fuzzer identified two bugs
in ChakraCore: one bug in the Just In Time (JIT) compiler
where the wrong number of arguments were emitted for a
function call, and a segmentation fault caused by out of
memory conditions. The bug only affected the Linux branch of
ChakraCore, and therefore was not eligible for a bug bounty.

Lua: Lua is a lightweight, embeddable scripting language
[13]. NAUTILUS identified a bug caused by a type confusion,
which causes a crash in Lua. The issue was reported to the
Lua mailing list. Our example input relies on a debug feature,
therefore the bug was not considered a security issue.

C. Evaluation Against Other State-of-the-art Fuzzers

To answer RQ2, we ran our tool NAUTILUS and other
state-of-the-art fuzzers on the four targets mentioned in Sec-
tion VI-B over multiple runs with identical durations. To
measure how much of an application’s code was tested by the
fuzzer we use branch coverage, i.e., the percentage of branches
of the applications that were executed at least once during the
fuzzing run. A fuzzer which achieves a high code coverage can
often also identify more bugs, since it executes more possibly
faulty code.

In order to evaluate our approach, we compared to two
state-of-the-art fuzzers using different approaches, namely,
AFL [19] for feedback-directed fuzzing and IFuzzer [47] for
grammar-based fuzzing. Since IFuzzer is not as flexible as AFL
and NAUTILUS and only supports JavaScript, we only tested it
on ChakraCore. We provided AFL with a dictionary contain-
ing the same strings we used for the NAUTILUS grammars.
Moreover, for each target, we generated 1000 inputs from the
grammar, and provided them as a seed corpus. We chose to
run AFL with the generated inputs after we verified this corpus
lets AFL discover significantly more code than 10 hand-picked
examples containing real-world code. We also provided the
same corpus to IFuzzer. We used the naive generation mode
on NAUTILUS, AFL version 2.52b, and IFuzzer from commit
8debd78. We ran each configuration of fuzzer and target 20
times for 24 hours each.

To avoid relying on the different internal reporting methods
of the fuzzers, we configured them to save all interesting inputs
as files3 and we measured the branch coverage using standard
code coverage tools, namely GCOV [4] and Clang’s Source-
based Code Coverage [3].

The results of our experiments are summarized in Table II
and displayed in Figure 3. The baseline denotes the coverage
that was found by our generated corpus itself with no fuzzer
interaction. NAUTILUS is able to find significantly higher
amounts of additional coverage: while AFL and IFuzzer find
between 0 and 1.9 percentage points of additional coverage on
ChakraCore, mruby and PHP, NAUTILUS discovers between
10.0 and 28.1 percentage points of additional coverage. For
Lua, AFL discovers 15.2 additional percentage points, while
NAUTILUS discovers 27.2 additional percentage points. As we
provide AFL with a good dictionary and an extensive corpus
of cases to learn from, we consider this setup as a very strong
baseline and a significant bar to meet. This is also evident by
the fact that, even though IFuzzer is based on a good grammar,
it barely exceeds the performance of AFL.

We performed a Mann-Whitney U test as recommended by
Arcui et al. [21] to ensure statistical significance and we report
the results in Table III. In all cases, our worst run was better
than the best run of all other tools. Due to this, the p-Values
obtained by the U test are extremely small, and we can exclude
the possibility that the observed differences are the result of
random chance. All statistics were computed using the Python
scipy [38] and numpy [40] libraries.

To address the relative merit of grammar-based input gener-
ation (RQ3) and feedback-directed fuzzing (RQ4) we disabled
the coverage feedback mechanism in NAUTILUS and we ran it
in the same environment as the full version. This experiment
is meant to prove that the combination of feedback and
grammar fuzzing does indeed create a significant performance
advantage, everything else being equal (performance of the
implementation and grammars). We consider this experiment
as a proxy to evaluate fuzzers such as Peach [10] or Sulley

3Since IFuzzer does not support saving input cases, we modified it slightly
to add this functionality.

9

Baseline AFL IFuzzer Nautilus

15.0%

17.5%

20.0%

22.5%

25.0%

27.5%

30.0%

32.5%

35.0%
ChakraCore

Baseline AFL Nautilus
25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

mruby

Baseline AFL Nautilus
2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

PHP

Baseline AFL Nautilus

40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

70.0%
Lua

Fig. 3: Branch coverage generated by our corpus of 1000 generated inputs (Baseline) and by the different fuzzers over 20 runs of 24 hours each.

Experiment Effect size
(∆ = Ā− B̄)

p-Value
(×10−6)

ChakraCore (vs. AFL) 18.3 pp 0.033
ChakraCore (vs. IFuzzer) 18.1 pp 1.6
mruby (vs. AFL) 26.2 pp 0.033
PHP (vs. AFL) 10.0 pp 0.017
Lua (vs. AFL) 12.0 pp 0.033

TABLE III: Confirmatory data analysis of our experiments. The effect size is
the difference of the medians in percentage points. Due to storage require-
ments, we only performed 12 runs for IFuzzer, hence the slightly higher p-
Value. In the case of PHP, AFL generated the exact same coverage multiple
times, which explains the slight change in the p-Value compared to the other
configurations. In all cases the effect size is relevant and the changes are
highly significant: the p-Value is about ten thousand times smaller than the
usual bound of p < 0.05.

[17]. We could not directly evaluate these tools since they need
manually written generators instead of grammars.

The results can be seen in Figure 4 as well as Table II
(labeled No feedback). In all cases, we observed that using
a purely generational grammar fuzzer resulted in significant
coverage increases over AFL.

As expected, blind grammar fuzzing improves upon the
mutational fuzzing performed by AFL (In the case of mruby,
by more than one order of magnitude), even when a large
number of seeds is given. This shows that grammar fuzzing
remains highly relevant even after AFL and related tools have
been published (RQ3). Yet, adding feedback to the grammar
fuzzing approach results in even greater improvements: In
all cases we found more than twice as many new branches
than the blind grammar fuzzer. Therefore, we conclude that
adding feedback to grammar fuzzing is a very important step
to improve the performance of fuzzing (RQ4).

Case Study: Feedback Grammar Fuzzing. When fuzzing
mruby, NAUTILUS automatically learned the following
interesting code fragment: ObjectSpace.each{|a|
a.method(...) } It allows the fuzzer to test a method
call on any object in existence. This greatly amplifies the
chance of finding the right receiver for a method. Any time
the fuzzer guesses a correct method name, this construct
immediately produces new coverage. Then the fuzzer can
incrementally learn how to construct valid arguments to this
specific call. Lastly, if the fuzzer needs a specific receiver
object, it only has to create the object somewhere in the input,
as any object will receive the method call. An AFL-style fuzzer
is not able to make use of this. It is not able to construct

10

Baseline No feedback Naive gen Uniform gen

15.0%

17.5%

20.0%

22.5%

25.0%

27.5%

30.0%

32.5%

ChakraCore

Baseline No feedback Naive gen Uniform gen
25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

mruby

Baseline No feedback Naive gen Uniform gen
2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

PHP

Baseline No feedback Naive gen Uniform gen

40.0%

45.0%

50.0%

55.0%

60.0%

Lua

Fig. 4: Branch coverage generated by our corpus (Baseline) and by different configurations of NAUTILUS.

complex arguments for the call, even if a set of valid method
names is given as a dictionary. A blind grammar fuzzer is
unable to reliably produce this gadget with an interesting
call inside. NAUTILUS used this gadget to find two CVE’s
that would have been exceedingly hard to find using either
blind grammar fuzzing or AFL-style fuzzing without a proper
grammar.

D. Evaluation of Generation Methods

To analyze our generation methods and answer RQ5, we
analyzed the performance of NAUTILUS using naive and uni-
form generation (see Section IV-A), using the same configura-
tion as in Section VI-C. Figure 4 shows the difference between
the naive generation and the uniform generation methods.

The results are very similar. The naive generation achieves
very similar results for ChakraCore and mruby; it performs
slightly better on PHP, while it performs significantly worse
on Lua. This proves that the naive generation method, when
combined with the simple duplicate filter, performs very sim-
ilarly to the more complex uniform generation, making the
additional complexity of the latter unnecessary.

E. Evaluation of Mutation Methods

To answer RQ6 and to analyze the efficacy of the different
mutation methods, our fuzzer keeps a counter for each muta-
tion method, the minimization methods, and the generation.
These counters are increased if the corresponding method
created an input that found a new code path. Note that counters
will only be increased by one, regardless of the amount of new
transitions discovered by any specific input. Using the same
configuration of Section VI-C (using coverage feedback) our
fuzzer was run on each of the four targets. Figure 6 shows the
values of those counters at the end of each run.

Additionally, we evaluated the usefulness of the various
methods by computing the relative contribution of each method
over the 24 hours of each run. Due to the diminishing number
of new paths after the initial part of each run, we collected the
data in differently-sized bins: 1-minute bins for the first 16
minutes, 2-minute bins until 30 minutes from the beginning,
3-minute bins until 1 hour from the beginning, 5-minute bins
until the 3 hour mark, 10-minute bins until the 6 hour mark,
then 20-minute bins until the end. The result is shown in
Figure 5. It can be seen that splicing becomes more and more
relevant over time, as the basic mutation methods slowly fail to
produce more semantically valid inputs. Eventually splicing of

11

0 %

25 %

50 %

75 %

100 %

0
3m 6m 9m 12
m

15
m

20
m

26
m

33
m

42
m

51
m 1h

1h
 1

5m
1h

 3
0m

1h
 4

5m 2h
2h

 1
5m

2h
 3

0m
2h

 4
5m 3h

3h
 3

0m 4h
4h

 3
0m 5h

5h
 3

0m 6h 7h 8h 9h 10
h

11
h

12
h

13
h

14
h

15
h

16
h

17
h

18
h

19
h

20
h

21
h

22
h

23
h

Generation
Subtree Min.
Recursion Min.
Rules Mutation
AFL Mutation
Splicing Mutation
Random Mutation
Random Rec. Mut.

Fig. 5: Percentage of identified new paths for each mutation method, over 20 runs on each target.

0

625

1250

1875

2500

3125

3750

4375

5000

mruby PHP ChakraCore Lua

Generation
Subtree Minimization
Recursion Minimization
Rules Mutation
AFL Mutation
Splicing Mutation
Random Mutation
Random Recursive Mutation

Fig. 6: Inputs that triggered new transitions for each target, grouped by
generation/mutation method, for four specific runs.

interesting code fragments becomes by far the most effective
mutation technique.

A similar behavior can be observed for the rules mutation.
This mutation is only used after the minimization is done, and
therefore it starts finding new paths only later in the fuzzing
process. The generation and minimization methods find many
new paths at the beginning, but after a couple of hours the
splicing and random mutation make up more than 50% of the
new identified paths. The Random Recursive Mutation finds
less paths than the other mutations, but it finds paths that
no other of our mutation methods can find: the PHP stack
overflow vulnerability and two vulnerabilities of mruby (CVE-
2018-10191 and CVE-2018-12248) have been found only by
the Random Recursive Mutation.

4Skyfire is not an actual fuzzer, only a seed generator.

VII. RELATED WORK

In the following, we discuss fuzzing approaches based
on mutation or generation, where the latter are conceptually
closer to NAUTILUS. Hence, we explain commonalities and
differences of generation-based approaches in more detail.
Table IV provides an overview of characteristics of most
relevant existing approaches.

A. Mutation-Based Approaches

Mutation-based fuzzing has been a popular way to quickly
find bugs, especially in input parsing. In contrast to generation-
based fuzzing, only a test corpus is needed. Many of these
approaches are based on AFL [18], a fuzzer that, while
also supporting brute force, leverages genetic input mutation,
guided by unique code coverage (counting only yet unseen
execution paths). AFL is still popular, as it continues to beat
competing fuzzers because of its sheer analysis cycle speed.
However, it lacks syntactic insight for input generation, thus,
paths guarded by complex syntactic or semantic checks remain
unexplored. This is what other approaches try to solve by
adding an interacting module with higher syntactic insight.
Taint-based fuzzers like BuzzFuzz [29] or TaintScope [50] try
to increase insight by leveraging taint tracing to map input
bytes to function arguments or branch checks [24], [29], [43],
[50]. This allows them to reduce input bytes that need to be
mutated. However, taint-based mutations may still be syntac-
tically (and even worse semantically) incorrect. NAUTILUS
instead generates syntactically and semantically correct inputs.
Instead of using (only) a taint-based companion module,
there are also approaches that leverage computation-intensive
symbolic execution that relies on constraint solving [22], [31],
[32]. Because of its complexity, many approaches use symbolic
execution only if is inevitable. For example, Dowser [35] only
concentrates on interesting regions, i.e. loops with complex
array accesses, and uses dynamic taint analysis to trace input

12

Fuzzer Input Generation Guided
Fuzzing

Works w/o
corpus

Bypasses
input parsing

Bypasses
semantic checks

Generally
applicable

Radamsa Corpus 5 5 5 5 3
AFL Mutation 3 5 5 5 3
CSmith CFG 5 3 3 5 5
LangFuzz Generation (corpus) 5 5 3 5 3
IFuzzer CFG + Corpus 5 5 3 3 5
Skyfire CFG + Corpus4 5 5 3 3 3

NAUTILUS loose CFG 3 3 3 3 3

TABLE IV: Comparison of important related approaches.

bytes that map to these accesses. These bytes are analyzed
symbolically, while bytes are treated as concrete values.
Dowser’s symbolic analysis is more likely to produce well-
formed inputs, however, its limitation to buffer overflows pre-
vents widespread use. In contrast, NAUTILUS can find arbitrary
crashes, and can focus on a certain aspect of a program by
adjusting the grammar accordingly. Driller combines aspects
of all aforementioned mutation-based fuzzing approaches by
leveraging dynamic and concolic execution. Driller [46] uses
directed fuzzing until it is not able to generate new paths. Then,
the concrete fuzzing input is passed to the symbolic execution
engine that explores new paths that the fuzzer can continue to
analyze. In comparison to NAUTILUS, Driller needs expensive
symbolic execution to continue, while still not being able to
easily generate semantically correct inputs.

B. Generation-Based Approaches

Generation-based fuzzers leverage either a grammar (or
model), a corpus, or both to generate highly-structured,
syntactically correct input. This is useful to analyze file
viewers (like media players), interpreters, compilers, or
e.g. XML parsers. While there are several general-purpose
generation-based fuzzers [10], [41], [48], many approaches
directly target a specific use case: CSmith [51] for C,
LangFuzz [36] and IFuzzer [47] for JavaScript interpreters,
and many more [7], [14], [20], [28], [44], [45]. In contrast,
NAUTILUS is versatile and can be used to fuzz any application
where the source code is available. In the following, we take a
deeper look into important representatives of aforementioned
categories.

CSmith [51] generates randomized test cases for C compil-
ers based on a grammar. This grammar derives a subset of C
programs by randomly applying production rules that avoids
undefined/unspecified behavior in the C standard. CSmith, like
NAUTILUS, is able to work without a corpus. Yet, it just derives
inputs randomly, whereas NAUTILUS uses mutations based on
subtrees to generate diverse input that allows a path to be
further explored.

Radamsa [48] uses corpus to derive a CFG to represent its
structure, then generates new inputs derived by this grammar.
It also applies mutation to generate more diverse inputs: global
mutations mutate the CFG, while point mutations are applied
during input derivation. CFG creation as well as mutation
may however introduce semantic errors. NAUTILUS directly
leverages grammars that are for example provided by the

ANTLR project [6], hence, can bypass semantic checks easily.
Moreover, subtree mutations ensure that this is always the case.

LangFuzz [36] and IFuzzer [47] leverage a provided
(context-free) language grammar to extract code fragments
from a corpus. These code fragments are recombined to new
inputs. In contrast to LangFuzz, IFuzzer uses genetic program-
ming with a fitness function (for diversity) to generate more
uncommon, but syntactically and semantically valid input.
Skyfire [49] is a seed generator that uses a grammar and a
corpus. The samples from the corpus are parsed (using the
grammar) to get selection probabilities for each production
rule. Then, low-probability rules are preferably used to derive
uncommon seeds. Leaves in seeds’ parsing tree representation
are then replaced with other terminals that can be generated
by the same rule. These seeds can then be used by fuzzers like
AFL.

The key aspect of the aforementioned fuzzers is grammar-
based recombination of samples to get uncommon, syntac-
tically and hopefully semantically correct input (see again
Table IV for an overview). NAUTILUS does not rely on a
corpus that may already encode what behavior is interesting.
Instead, it generates and recombines inputs guided by coverage
feedback. This allows NAUTILUS to make use of its growing
internal storage of (mostly) semantically correct inputs to
greatly increase the chance of producing new additional inputs
that are also semantically correct. In addition, NAUTILUS
integrates techniques from mutation-based fuzzing: coverage
feedback guides mutation and derivation of inputs. This allows
NAUTILUS to find interesting inputs without relying on a
corpus.

Additionally, some research has been conducted in the
field of automatic grammar generation for fuzzing. Godefroid
et al. [34] use neural networks to construct PDF grammar
partially (limited to non-binary PDF data objects). Another
approach by Godefroid et al. [30] leverages SMT solvers to
generate a grammar. Similarly, Bastani et al. [23] implemented
a grammar synthesis tool based on an oracle (the target
program). Lastly, AUTOGRAM [37] automatically learns
grammars from Java code, however, the approach does not
seem to be adaptable to binary-only targets easily. These
techniques might further simplify generation of grammars used
in future fuzzing runs.

VIII. LIMITATIONS

NAUTILUS is significantly faster and more flexible than
current alternative approaches, yet it has some limitations

13

that we discuss in the following. Similar to AFL and related
tools, it needs source level access to add the instrumentations
needed for coverage feedback. However, the methods described
themselves could just as easily be implemented on top of
Dynamic Binary Instrumentation [12], [43] or feedback mech-
anisms based on Intel PT [45]. Other grammar-based fuzzers
typically require both a grammar as well as a set of good inputs
that can be parsed with this grammar. NAUTILUS reduces
this limitation, but still requires a grammar. Additionally, for
maximum efficiency the grammar needs to contain a list of
important symbols such as identifiers or class names. Lastly,
while the scripting support is a very powerful primitive that
can generate a multitude of non-context-free constructs, there
are some common features (mostly file offsets) that sometimes
require a significant restructuring of the grammar. While these
are nontrivial issues, the next section details how they can be
fixed using existent techniques.

IX. FUTURE WORK

To further ease the use of our fuzzer, one could switch
the instrumentation-based backend with the AFL-QEMU mode
backend. Then even binary targets that use highly structured
input languages can be fuzzed effectively. When extending
the grammars by important symbols, we manually added the
output of the strings utility to the grammar. This step could
be easily automated to further reduce the amount of manual
work needed. Additionally, the dependence on a grammar
can be drastically reduced by techniques that automatically
infer a grammar from the program itself such as the tools
proposed by Höschel et al. [37] or Bastani et al. [23], or by
using machine learning techniques [33]. While our scriptable
grammars are able to generate any decidable language, some
common language features need complex scripts. For example,
file offsets are hard to implement as the exact offset of a given
substring is typically not known at the time of script execution.
Thus, the script for the start rule needs to manually compute
all offsets. Adding support for labels would probably ease the
process of writing grammars for binary file formats. There
are also interesting research directions that might increase
fuzzing efficiency even more. As an example, other generation
methods might be developed that perform better than the naive
approach.

X. CONCLUSION

This work confirms that the use of grammars increases the
effectiveness of fuzzing programs that interpret complex input.
Combining grammar fuzzing with the use of instrumentation
feedback improves the fuzzing process even more. Typically,
adding feedback to grammar-based fuzzing increases the code
coverage by at least a factor of two for our four targets: mruby,
PHP, Lua, and ChakraCore. When comparing against tools not
based on grammars, such as AFL, that only employ feedback
driven fuzzing, the improvements over the seed corpus are even
more drastic: In many cases we find more than ten times as
much new coverage. Our results show that it is the combination
of grammars and instrumentation that leads to this significantly
increase in performance. This combination allows the fuzzer
to automatically identify and recombine semantically valid
fragments of code to drastically increase the performance.
Additionally, we were found and reported thirteen new bugs
in those four targets and received 2,600 USD in bug bounties.

ACKNOWLEDGMENTS

This work was supported by Intel as part of the Intel
Collaborative Research Institute “Collaborative Autonomous &
Resilient Systems” (ICRI-CARS). This work was co-funded by
the DFG (projects P3 and S2 within CRC 1119 CROSSING,
and HWSec), by the German Federal Ministry of Education
and Research (BMBF, projects HWSec and iBlockchain) and
the Hessen State Ministry for Higher Education, Research
and the Arts (HMWK) within CRISP. The research leading
to these results has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 786669. The content of this
document reflect the views only of their authors. The European
Commission/Research Executive Agency are not responsible
for any use that may be made of the information it contains.
Finally, we would like to thank Joel Frank for his valuable
feedback.

REFERENCES

[1] About the antlr parser generator [online]. http://www.antlr.org/
about.html. Accessed: 2018-04-17.

[2] Chakracore is the core part of the chakra javascript engine that
powers microsoft edge [online]. https://github.com/Microsoft/
ChakraCore. Accessed: 2018-06-13.

[3] Clang’s source-base code coverage [online]. http:
//releases.llvm.org/6.0.0/tools/clang/docs/
SourceBasedCodeCoverage.html. Accessed: 2018-07-11.

[4] gcov [online]. https://gcc.gnu.org/onlinedocs/gcc/Gcov.
html. Accessed: 2018-07-11.

[5] gramfuzz is a grammar-based fuzzer that lets one define complex
grammars to generate text and binary data formats. [online]. https:
//github.com/d0c-s4vage/gramfuzz. Accessed: 2018-06-11.

[6] Grammars written for antlr v4 [online]. https://github.com/
antlr/grammars-v4. Accessed: 2018-04-17.

[7] mangleme. Accessed: 2018-08-03.
[8] mruby. http://mruby.org. Accessed: 2018-06-13.
[9] mruby/mruby: Lightweight ruby [online]. https://github.com/

mruby/mruby. Accessed: 2018-06-13.
[10] Peach fuzzer: Discover unknown vulnerabilities. [online]. https://

www.peach.tech/. Accessed: 2018-07-10.
[11] Php: Hypertext preprocessor [online]. http://php.net/. Accessed:

2018-06-13.
[12] Pin - a dynamic binary instrumentation tool [online].

https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool. Accessed:
2018-07-03.

[13] The programming language lua [online]. https://www.lua.org/.
Accessed: 2018-06-13.

[14] PROTOS. http://www.ee.oulu.fi/research/ouspg/protos.
Accessed: 2018-08-03.

[15] Security oriented fuzzer with powerful analysis options. https://
github.com/google/honggfuzz. Accessed: 2018-08-07.

[16] shopify-scripts: Bug bounty program on hackerone. https://
hackerone.com/shopify-scripts/. Accessed: 2018-06-13.

[17] Sulley: A pure-python fully automated and unattended fuzzing frame-
work. [online]. https://github.com/OpenRCE/sulley. Accessed:
2018-06-11.

[18] Technical "whitepaper" for afl-fuzz [online]. http://lcamtuf.
coredump.cx/afl/technical_details.txt. Accessed: 2018-06-
12.

[19] american fuzzy loop. https://github.com/mirrorer/afl, 2017.
[20] syzkaller: Linux syscall fuzzer. https://github.com/google/syzkaller,

2017.

14

http://www.antlr.org/about.html
http://www.antlr.org/about.html
https://github.com/Microsoft/ChakraCore
https://github.com/Microsoft/ChakraCore
http://releases.llvm.org/6.0.0/tools/clang/docs/SourceBasedCodeCoverage.html
http://releases.llvm.org/6.0.0/tools/clang/docs/SourceBasedCodeCoverage.html
http://releases.llvm.org/6.0.0/tools/clang/docs/SourceBasedCodeCoverage.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/d0c-s4vage/gramfuzz
https://github.com/d0c-s4vage/gramfuzz
https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4
http://mruby.org
https://github.com/mruby/mruby
https://github.com/mruby/mruby
https://www.peach.tech/
https://www.peach.tech/
http://php.net/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://www.lua.org/
http://www.ee.oulu.fi/research/ouspg/protos
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://hackerone.com/shopify-scripts/
https://hackerone.com/shopify-scripts/
https://github.com/OpenRCE/sulley
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

[21] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24(3):219–250, 2014.

[22] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn
Song. Statically-directed dynamic automated test generation. In
Proceedings of the 2011 International Symposium on Software Testing
and Analysis, pages 12–22. ACM, 2011.

[23] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Syn-
thesizing program input grammars. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2017.

[24] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. A
taint based approach for smart fuzzing. In Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on,
pages 818–825. IEEE, 2012.

[25] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[26] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. 2008.

[27] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy, 2018.

[28] Kyle Dewey, Jared Roesch, and Ben Hardekopf. Language fuzzing
using constraint logic programming. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineer-
ing, pages 725–730. ACM, 2014.

[29] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In Proceedings of the 31st International Conference
on Software Engineering, pages 474–484. IEEE Computer Society,
2009.

[30] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. SIGPLAN Not., 43(6):206–215, June 2008.

[31] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox
fuzzing for security testing. Queue, 10(1):20, 2012.

[32] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated
whitebox fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[33] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz:
Machine learning for input fuzzing. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2017.

[34] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&Fuzz: Ma-
chine learning for input fuzzing. In Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ASE
2017, pages 50–59, Piscataway, NJ, USA, 2017. IEEE Press.

[35] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert
Bos. Dowsing for overflows: a guided fuzzer to find buffer boundary
violations. In USENIX Security Symposium, pages 49–64, 2013.

[36] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code
fragments. In USENIX Security Symposium, pages 445–458, 2012.

[37] Matthias Höschele and Andreas Zeller. Mining input grammars from
dynamic taints. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, 2016.

[38] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python. http://www.scipy.org/. Accessed:
2018-08-03.

[39] Bruce McKenzie. Generating strings at random from a context free
grammar. 1997.

[40] Travis Oliphant et al. NumPy: Open source scientific tools for Python.
http://www.numpy.org/. Accessed: 2018-08-03.

[41] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Model-
based whitebox fuzzing for program binaries. In Automated Software
Engineering (ASE), 2016 31st IEEE/ACM International Conference on,
pages 543–553. IEEE, 2016.

[42] Paul Purdom. A sentence generator for testing parsers. BIT Numerical
Mathematics, 12(3):366–375, Sep 1972.

[43] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2017.

[44] Jesse Ruderman. Introducing jsfunfuzz. URL
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz, 2007.

[45] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kafl: Hardware-assisted feedback fuzzing
for os kernels. 2017.

[46] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective sym-
bolic execution. In NDSS, volume 16, pages 1–16, 2016.

[47] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos.
Ifuzzer: An evolutionary interpreter fuzzer using genetic programming.
In European Symposium on Research in Computer Security, pages 581–
601. Springer, 2016.

[48] Joachim Viide, Aki Helin, Marko Laakso, Pekka Pietikäinen, Mika Sep-
pänen, Kimmo Halunen, Rauli Puuperä, and Juha Röning. Experiences
with model inference assisted fuzzing. WOOT, 2:1–2, 2008.

[49] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-driven
seed generation for fuzzing. In Security and Privacy (SP), 2017 IEEE
Symposium on, pages 579–594. IEEE, 2017.

[50] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A
checksum-aware directed fuzzing tool for automatic software vulner-
ability detection. In Security and privacy (SP), 2010 IEEE symposium
on, pages 497–512. IEEE, 2010.

[51] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding
and understanding bugs in c compilers. In ACM SIGPLAN Notices,
volume 46, pages 283–294. ACM, 2011.

[52] Zoltán Ésik and Szabolcs Iván. Büchi context-free languages. Theoret-
ical Computer Science, 412(8):805–821, 2011.

15

http://www.scipy.org/
http://www.numpy.org/

	Introduction
	Background
	Fuzzing
	Context-Free Grammars

	Challenges
	Design of Nautilus
	Generation
	Minimization
	Mutation
	Unparsing

	Implementation
	Target Application Instrumentation
	ANTLR Parser
	Preparation Phase
	Fuzzing Phase

	Evaluation
	Experimental Setup
	Vulnerabilities Identified
	Evaluation Against Other State-of-the-art Fuzzers
	Evaluation of Generation Methods
	Evaluation of Mutation Methods

	Related Work
	Mutation-Based Approaches
	Generation-Based Approaches

	Limitations
	Future Work
	Conclusion
	References

