
Avoiding Gaps in Authorization Solutions for the
Internet of Things

Stefanie Gerdes
Universität Bremen TZI

gerdes@tzi.org

Olaf Bergmann
Universität Bremen TZI

bergmann@tzi.org

Carsten Bormann
Universität Bremen TZI

cabo@tzi.org

Abstract—Authorization in a network of things needs to define
how the involved endpoints securely obtain the authentication
and authorization information that they require to setup security
associations with their communication partners, and protect and
validate data exchanged as defined by their owners.

A prerequisite for the protection of the authorization process
is to identify how each component involved must protect the
security objectives of its owners. In this paper, we present the
tasks that an endpoint must perform to validate the authorization
of a communication partner. These tasks constitute a checklist
to analyze authorization solutions. We summarize an analysis
of a standardization proposal for the Internet of Things which
indicates that essential aspects of the authorization process are
not addressed by the current approach and suggests how the
solution should be fixed.

I. INTRODUCTION

When physical objects are equipped with computing capabilities
and interconnected with each other to form a network of
(communicating) things, various stakeholders can be involved
whose security objectives must be protected throughout the
devices’ life cycle. The stakeholders who are entitled to set rules
that specify what happens to their assets (e.g., by accessing
data on a device or changing the device state in some way)
constitute the root of any authorization decision regarding their
devices and thus need to be involved whenever data enters or
leaves a device.

Obviously, these stakeholders cannot always be present when
things communicate autonomously. The endpoints involved in
the communication therefore must protect their stakeholders’
security objectives. We call these stakeholders who control the
rules for protecting and validating the data exchanged between
endpoints their overseeing principals.

Authorization in this case must define how the required
information to authenticate and authorize involved endpoints
can be obtained in order to setup security associations with their
respective communication partners. The tasks that are required
if claims are received that influence the authentication and
authorization are always the same and thus can be investigated
without restricting the discussion to a specific solution. Many
existing proposals do not cover the whole authorization process

and leave aspects such as the initial provisioning of the
necessary keying material to other protocols. Gaps in the
authorization process occur when requirements concerning
obtained data, existing relationships with other entities, and
capabilities of underlying protocols and security mechanisms
exist which are not explicitly defined in the specification.
Without a clear guideline, implementers must provide their
own interpretation. If they do not fill in these gaps correctly,
vulnerabilities occur. We say that the protection is continuous
when no gaps and vulnerabilities exist and endpoints exchange
data only as defined by all overseeing principals.

Anderson and Needham demand that designers of cryptographic
protocols must make the necessary naming, typing and freshness
information explicit, and must state their starting assumptions
and goals [1, p. 438]. Solution designers must therefore define
which data the endpoints require, how this data must be obtained
and validated, and how the communication between the involved
endpoints must be secured.

Moreover, authorization solutions must explicitly define the
security associations that are expected to already exist between
endpoints, and specify which pieces of information must
already have been provided to the respective endpoints. If
the necessary information flows are not protected in each step
of the communication, the whole authorization process may be
compromised.

Identifying all relevant details and considering all assump-
tions and requirements that are necessary for the security of
the authorization process is difficult for solution designers.
Important facts may easily be overlooked. In this paper, we
present a generalized checklist of tasks that must be performed
to securely send and receive authentication and authorization
claims. This checklist helps solution designers to discover gaps
and vulnerabilities in their security specification. As an example
how the checklist is used, we provide the analysis of an IoT
authorization solution that is proposed for standardization.

The list of tasks is introduced in section II. The IoT authoriza-
tion solution is analyzed in section III. The analysis shows that
this standardization proposal does not consider essential parts
of the authorization process. Necessary improvements to fix
this solution derive directly from the results of the analysis. The
discussion in section IV details a set of issues that are inherent
to this approach and cannot be fixed easily. Our findings are
summarized in section V.

Workshop on Decentralized IoT Security and Standards (DISS) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-51-7
https://dx.doi.org/10.14722/diss.2018.23006
www.ndss-symposium.org

II. DELEGATION TASKS

As stated above, endpoints are deployed by human beings, their
overseeing principals, to perform certain tasks for them. If the
endpoints handle sensitive data, they must act in their overseeing
principals’ interest and protect it. To do so, the endpoints must
have a security association with their overseeing principals and
be informed about their authorization decisions. The process
of providing these decisions in the form of permissions to the
respective endpoints must be continuously secure.

Endpoints must be able to determine if a certain peer is
the holder of a certain permission. The authorization process
therefore includes an authentication process. We call this syn-
thesis of mechanism authenticated authorization. An endpoint
usually cannot perform all aspects of authenticated authorization
on its own and therefore delegates certain authentication
and authorization tasks to other entities (e.g., its overseeing
principal), that then provide the required input. We will call
these entities claimants and the input that they provide claims.
The delegating endpoint is called the delegator. Claims always
comprise a statement which is the purpose of the claim;
in this work, we distinguish attribute claims that inform
about attributes of a certain entity such as its affiliation, and
authorization claims that contain an entity’s permissions. The
entity that the claim refers to is called the holder of the claim.

In the following, we will describe the tasks that the involved
actors must perform for each claim. A claim statement such
as a certain attribute is not useful on its own. The claim must
directly or indirectly comprise all relevant relationships, i.e. the
holder, delegator and claimant. The endpoint must check that
the claim fits into the current communication context and must
ascertain that the claimant was authorized by its own overseeing
principal. Claims can only be secure if all relationships are
bound to the claim and checked by the endpoint. Omitting tasks
for a claim may compromise the whole authorization process.
An overview of the delegation tasks is presented in figure 1.
We can see that the tasks cover the relevant relationships of
the communication. Additionally, it must be assured that the
endpoint does not use outdated information (task Dg2) and that
all current information was considered (task Dg7).

The claimant must ascertain that the delegator is authorized by
the claimant’s overseeing principal to provide potential input for
a claim, and to then receive the output of the claim. Claimants
therefore must check the authorization of the communication
partner before sending or receiving a message concerning a
claim. We will call this task Dg0. If task Dg0 is omitted,
claimants may accept unauthorized data as input which may
compromise the claim. Also, the confidentiality of a claim may
be breached if it is sent to unauthorized entities.

The claimant must then bind all required claim information
together: a) the claim statement, b) the intended destination of
the claim, i.e., the delegator that is intended to make use of
the claim, and c) the holder of the claim which is represented
by a verifier, i.e., an attribute or cryptographic keying material
that can be used to identify the claim holder. Claimants must
endorse that they issued the whole claim. Attackers must be
prevented from cutting off or changing any part of the claim
information. We will call the claim binding task Dg1.

Fig. 1. Overview of the Delegation Tasks

The constructed claims and the verifiers must be securely
provided to the parties that require them. Also, the delegators
must ascertain that they have the most recent claims. This task
is not easy to perform: an endpoint will have difficulties to
determine if a claim got lost. But an authorization solution must
ascertain that all necessary authentication and authorization
claims are updated regularly. Even though the frequency in
which updates must occur depends on the application scenario,
a claim must not be infinitely valid in order to ensure a basic
level of security. The task of obtaining the most recent claim
is called Dg2.

The delegator must validate the claims it received. It must
check if all the required information is bound together in the
claim. We will call the task where the claim binding is checked
task Dg3.

As the delegator’s overseeing principal is the authority for
its data and devices, claimants must be authorized by the
respective overseeing principal to provide claims that influence
the authorization. The delegator must therefore validate that
the claim was issued by an authorized claimant (task Dg4).
This task requires an own authorization process.

The delegator must also validate that it actually is the intended
destination of a claim. Otherwise an attacker might trick the
delegator to accept a claim that was issued for a different entity.
We will call this task Dg5.

Due to the binding performed as part of task Dg1, attribute and
authorization claims refer to a certain holder. The delegator must
validate if the claim actually belongs to an entity that it currently
interacts with. E.g., if the delegator currently communicates
with a certain peer, it must check if the claim refers to that peer
(task Dg6). This may be done using cryptographic methods,
e.g., the claim could be bound directly to cryptographic keying
material by the claimant. The delegator then may perform
this task by checking if the entity, e.g., the peer, is able to
use this keying material. If the claim is bound to an attribute,
e.g., a hostname, the delegator requires an additional attribute
claim that binds this attribute to certain cryptographic keying
material, e.g., an X.509 certificate. The binding between the
claim and the respective cryptographic keying material must
provide continuity: there must be no missing link if multiple
claims are used.

2

When multiple claims for the same issue exist, e.g., because
a claimant provides several claims, or a delegator has several
claimants, the delegator must evaluate all claims (task Dg7).
This might, e.g., be the case if an endpoint has multiple
overseeing principals and must consider the decisions of every
one of them. For this paper, we will assume that every endpoint
only has a single overseeing principal and a single claimant for
each fact, and that therefore no additional effort is necessary
to perform task Dg7.

For an effective authorization process, all tasks must be
performed correctly. The enumeration below shows what
happens if tasks are omitted.

Dg0 Delegator Authorization: disclosure of confidential
information.

Dg1 Claim Configuration: claim contains wrong informa-
tion.

Dg2 Obtainment: critical information is missing.
Dg3 Binding & Endorsement: attackers can manipulate or

forge claims.
Dg4 Authorization: unauthorized entities can issue claims.
Dg5 Destination: man-in-the-middle attacks.
Dg6 Holder: claim may be associated with the wrong

holder.
Dg7 Evaluation: critical information is not considered.

III. IOT AUTHORIZATION SOLUTION ANALYSIS

In the Internet Engineering Task Force (IETF), the work-
ing group Authentication and Authorization for Constrained
Environments (ACE) is in the process of standardizing an
authentication and authorization framework for the IoT [9].
The framework is loosely based on OAuth [6] and addresses
scenarios where a client (C) contacts an authorization server
(AS) to obtain an access token that it then can use to prove
its authorization to a resource server (RS). The overseeing
principal for the RS and AS is called resource owner (RO)
in this architecture. The client’s overseeing principal is the
requesting party (RqP).

Targeting the Internet of Things, the ACE framework allows C
and RS to be constrained devices (c.f. [2]), i.e. both may be very
limited regarding their processing power, energy consumption,
and storage.

In the ACE architecture [5] each constrained device is sup-
ported by a less-constrained device that helps with difficult
authentication and authorization tasks. The authors of the ACE
framework decided to only implement the server side AS. On
the client side, AS helps only with authenticating RS. The ACE
framework architecture is depicted in figure 2.

The ACE access token comprises an OAuth scope parameter
that indicates the authorization rules, and a confirmation (cnf)
structure that contains information about the associated keying
material [9, p. 32]. C must present the access token to RS and
show that it is able to use the keying material specified in the
token to prove that it is authorized as specified in the scope.
Both symmetric and asymmetric keys may be used. The ACE
framework is not designed for direct use but instead requires
so-called profiles to specify certain details of the protocol flow.
One example is the Datagram Transport Layer Security (DTLS)

Overs. Principal Level:
Individuals / Companies

Less-Constrained Level

Constrained Level

RS keying material

requests resource
provides resource

in charge of

in charge of

RSC

authenticated
authorization
support

RORqP

AS

Fig. 2. ACE Framework Architecture

profile [4] that specifies how authorization information can be
associated with a DTLS session between C and RS.

In this section we will analyze if the components that use
the DTLS profile perform the necessary delegation tasks we
introduced above. In cases where information is not provided
in the DTLS profile, we also consider the ACE framework
specification. We do not provide a complete analysis of the
ACE framework in this work.

AS acts as a claimant for RS and provides it with the
necessary authorization information and keying material for
the communication with C. We will analyze the tasks for this
delegation in section III-A. Additionally, AS acts in most cases
as a claimant for C since it provides C with the necessary
keying material for RS. The analysis for C’s delegation to AS
is shown in section III-B.

A. AS’s Claim for RS

To perform task Dg0, AS must validate that RS is authorized
to receive the claim output, i.e., the access token. The token
is confidential since it may contain a symmetric key. The AS
therefore must encrypt the token with the keying material that
the resource owner provided for RS. Currently, confidentiality-
protecting the access token is only demanded in the security
considerations section of the ACE framework [9, p. 35]. The
DTLS profile should explicitly mandate the confidentiality-
protection of access tokens that contain confidential keying
material to ensure that task Dg0 is performed.

For task Dg1, AS must bind all necessary information, i.e.,
the claim statement, the intended destination and holder, to the
claim. The holder of the claim is defined in the cnf field, which
contains a key or a reference to a key. This field must either be
part of the access token or be retrieved using token introspection.
If performed correctly, the holder is thereby bound to the claim.

Determining the claim statement of the ACE access token
is difficult. AS may use the token as an attribute claim to
inform RS that a client with certain keying material has certain
attributes. But although ACE access tokens contain C’s keying
material, they do not necessarily contain additional information
about their holder. If the access token is supposed to be
an authorization claim, it must contain a scope field with
authorization information. The claim then states that the entity
with certain keying material has this authorization. But the ACE
framework does not clearly define if the token must contain

3

a scope. It is therefore possible that ACE access tokens do
not contain a claim statement at all. Without a statement, AS
would inform RS that a not further specified client has certain
keying material, which is useless. Even worse, a claim without
a statement leaves room for misinterpretation. How an RS
implementation must react to a missing statement is not clear
(see also task Dg3 below).

The intended destination of the access token can be specified
using the audience (aud) parameter. The ACE framework points
out that it is important for the AS to specify the audience in
the token. We therefore assume that the intended destination is
specified correctly. AS must bind the information together and
endorse the token. The ACE framework demands that the token
must be integrity-protected, but the DTLS profile does not yet
specify how this protection is accomplished. In summary, some
clarifications should be made by the ACE framework and the
DTLS profile to ascertain that AS performs task Dg1 when
issuing the access token.

RS must obtain the most recent claim from AS for task Dg2. To
determine the validity of an access token, the ACE framework
introduces three mechanisms depending on the capabilities of
the RS. If RS has a real-time clock and is time-synchronized
with AS, the token includes an expiration time. This helps RS
to detect if a token is expired. However, it is not clear how RS
determines which token is newer if several tokens exist, e.g.,
if a token is updated.

For the second approach, RS sends an introspection request to
AS. AS then sends an introspection message to help RS with this
task. The introspection message is an additional claim for which
the delegation tasks must be performed. The ACE framework
does not specify how RS determines that the introspection
message is fresh which is required for task Dg2. Also, if RS
has to send an introspection message to determine the validity
of each received access token, RS is vulnerable to Denial of
Service attacks.

For the third approach, RS and AS store a sequence number.
AS increments the sequence number for each token that it
issues and includes the number in the access token. RS may
have a set of valid tokens with sequence numbers that are
in range of the most recently received sequence number. It is
unclear how RS is supposed to resolve potentially contradicting
permissions in this case. But even if RS would only accept
tokens that have a higher sequence number then the token it
already has, this approach is still unusable: RS receives access
tokens from C. If C does not relay newly generated access
tokens to RS, the existing token may be infinitely valid. Since
C may have a strong interest to use an existing authorization
forever, RS cannot rely on C for task Dg2.

Task Dg3 requires RS to check if all necessary information
is bound to the access token and endorsed by AS. How RS
reacts if required fields are missing from the access token is
not specified. The ACE framework should define more clearly
how RS must react to malformed tokens; missing information
may be incorrectly filled in by implementations, which may
lead to vulnerabilities. RS must also check if the information is
endorsed by AS. The ACE framework states that access tokens
must be integrity-protected by AS. It should additionally specify
that RS must not accept unprotected tokens.

To perform task Dg4, RS must check if AS is authorized
to provide claims. How RS obtains this knowledge is out of
scope, but the ACE framework assumes that the RS has been
registered with the AS, and that keying material was established
between these entities. But the framework does not mention if
this keying material enables RS to validate if an access token
actually stems from an AS that is authorized by RO. It is
therefore not clear if RS can perform task Dg4.

For task Dg5, RS must ascertain that it is the intended recipient
of the token. The ACE framework specifies that the RS must
reject tokens for which it is not the intended recipient [9, p. 33].
RS thereby performs task Dg5.

RS must check that the requesting C actually is the holder of the
access token to perform task Dg6. To do so, RS must ascertain
that C is able to use the keying material that is specified in
the token’s cnf field. Otherwise, an unauthorized C may access
resources on RS. The ACE framework does not specify that
RS must perform this check, which should be fixed. The DTLS
profile specifies how C and RS must use the information in
the cnf field [4, p. 11]; without the correct keying material, no
secure connection can be established. Since C’s requests are
only authorized if they are received on a secure connection [4,
p. 8], RS performs task Dg6 in the DTLS profile.

B. AS’s Claim for C

In AS’s response to C, AS may provide additional information
to C, which is called RS information. If symmetric keys are
used between C and RS, the RS information must provide C
with the keying material for the requested RS. If asymmetric
keys are used, AS provides C with RS’s public key, unless
C already knows it. It is not clear how AS determines if C
already knows RS’s credentials. Since AS provides C with
the required keying material for RS, the RS information is an
attribute claim. We will now analyze how AS and C perform
the necessary delegation tasks for this claim.

To perform task Dg0, AS must ascertain that C is an authorized
delegator. The ACE framework assumes that C has been
registered with the AS and that C and AS obtained keying
material for each other during this process. But, the framework
does not mention if AS obtained authorization information
for C from RO. It is therefore not clear if AS is able to
perform task Dg0 for C. Assuming that C is authorized, AS
must validate that input to the claim stem from the authorized
C. The ACE framework allows C to specify the raw public
key (RPK, [8]) that the token will be bound to in the cnf
field of the C-to-AS request. If C does not use the same RPK
for the integrity-protection of this message, AS is not able to
determine if the message actually stems from the C with this
key. C can thereby obtain valid access tokens for other clients;
this allows C to hand over its permissions to other clients
without disclosing its own keying material. The RS information
must be confidentiality-protected if it is sensitive, e.g., if it
contains a symmetric key. The ACE framework specifies that
AS must confidentiality-protect messages to the client [9, p. 35].

For task Dg1, AS must bind the necessary claim information to
the RS information. The claim statement must contain attributes
of the resource server. C specifies the resource server it wants
to communicate with in the Client-to-AS request, but the
ACE framework does not define how the resource server is

4

represented. C and AS must have a common understanding
how RS is identified, because otherwise AS may issue RS
information for the wrong RS, and C will not be able to detect
this mistake. How RS’s identity must be represented is a difficult
problem. IP addresses are not suitable for this purpose since they
may change between a request and its corresponding response.
Identifiers must be known to C which is difficult to accomplish
without manual configuration; but manually provisioning C with
all potential resource servers may not be feasible for typical
IoT scenarios. A scalable solution requires descriptive attributes
that are commonly understood and unique, e.g., a fully qualified
domain name. The ACE framework must define how C must
specify RS because otherwise C might communicate with the
wrong RS.

The ACE framework defines a field for RS’s attributes in the
Client-to-AS request but not in the RS information. Without
the information for which RS the access token was issued, C
might be lead to communicate with the wrong RS. One solution
would be if C can determine that the RS information was the
response to certain request. The underlying security solution
might enable C to do so, but the DTLS profile and the ACE
framework do not currently specify this requirement and do
also not prescribe which underlying security solution C and
AS must use. If C and AS use TLS or DTLS to secure the
communication, C is able to determine if the RS information
belongs into the current communication context.

AS can specify the intended destination of the claim by
encrypting it, using the keying material of the respective C.
Since only C is then able to decrypt the message, it can
assume that it is the intended destination of the message. AS
must first encrypt the RS information before the integrity-
protection is applied, or use a combined algorithm. Otherwise,
the intended recipient is not integrity-protected and may be
modified, which allows for man-in-the-middle attacks. In the
ACE framework, the communication between AS and C must be
confidentiality-protected. The ACE framework prefers the use of
an Authenticated Encryption with Associated Data (AEAD, [7])
algorithm for the access token, but not for the RS information.
For the latter, the claim destination therefore is not necessarily
set.

AS defines the holder by binding its keying material to the RS
information. The ACE framework specifies that AS must define
the symmetric communication key for proof-of-possession
tokens in the RS information. For asymmetric communication
between C and RS, AS may provide C with RS’s public key.
We assume that if the RS information does not contain RS’s
keying material, it is not an attribute or authorization claim. AS
therefore specifies the holder of the claim if it actually issues
a claim to C.

C must ascertain that the claims that it uses for the secure
communication with RS are up to date (task Dg2). The ACE
framework does not specify how this is accomplished. The RS
information does not necessarily contain information that helps
C to determine if the keying material for authenticating RS
is still valid. The RS information may (but does not have to)
contain an expires_in field that specifies when the token expires.
A constrained client without a synchronized clock will not be
able to interpret this value. The keying material therefore may
be infinitely valid. Also, the framework does not define how C
distinguishes old from new RS information; an attacker might

trick the client to accept outdated information. In summary, C
may not be able to perform task Dg2.

Task Dg3 requires C to ascertain that the claim information is
bound together and endorsed by AS. To do so, C must only
accept RS information that is integrity-protected. This is defined
in the framework. Since the claim statement is specified in C’s
request, C must be able to validate if the response belongs to
the request. The ACE framework does not explicitly state this
requirement. It is therefore not clear if C is able to perform
task Dg3.

For task Dg4, C must check AS’s authorization to provide the
RS information. The ACE framework suggests that C has a
list of authorized authorization servers that may be hard-coded.
If the list is never updated, authorization claims are infinitely
valid, which is not advisable. Also, the framework does not
specify that this list must be specified by C’s RqP. If these
problems are solved, C might be able to perform task Dg4.

C must check if it is the intended destination of the RS
information (task Dg5). As described for task Dg1, the intended
destination of the RS information is only set if the claim is
first encrypted and then integrity-protected or if a combined
algorithm is used. C must only accept messages from AS
which are thus protected, which is not clearly defined in the
framework. C may therefore not be able to perform task Dg5.

To perform task Dg6, C must validate that RS can use the
keying material that AS specified in the RS information. The
ACE framework states that RS and C mutually authenticate
each other, but it does not state that C must communicate only
with authenticated resource servers. If C does not ascertain that
the transmitted data is protected, the authorization rules of both
RqP and RO are not considered, and C does not participate in
the protection of their security objectives. It is not clear how
C determines if RS is authorized.

IV. DISCUSSION

If the identified gaps are filled in, the ACE framework helps RS
to protect RO’s security objectives. On the client side, important
changes are required before the RS information is a sufficiently
secure attribute claim that C can use to authenticate RS. How
RqP’s authorization rules are enforced is not addressed at all:
it is not clear how C can participate in the protection.

If RqP directly controls the client, it can decide which servers
the client accesses by manual intervention. But in the Internet
of Things, clients will often have to act autonomously and
cannot rely on their overseeing principal at the time of
access. Autonomous clients are not able to make authorization
decisions on their own. Constrained clients may have difficulties
to store vast amounts of authorization rules, and manually
provisioning clients with the required authentication and
authorization information is often not feasible. Also, such
a solution is very inflexible and does not allow for quick
adaptions of authentication and authorization data if unexpected
changes are required, e.g., when a communication partner was
compromised.

The Internet of Things requires an authenticated authorization
solution that fully supports autonomous clients and provides
them with the necessary authentication and authorization claims.
Installing an additional authorization solution requires extra

5

Overs. Principal Level:
Individuals / Companies

Less-Constrained Level

Constrained Level

authentication and
authorization

requests resource
provides resource

in charge of in charge of

authenticated
authorization

support

RSC

authenticated
authorization
support

RORqP

ASCAS

Fig. 3. Complete ACE Architecture

message exchanges, more code and potentially additional keying
material. It puts more strain on the client and may, depending
on the solution, also require action from the resource server. A
combined authenticated authorization solution for both client
and resource server is a much more suitable solution for the
IoT since it reduces the overall effort.

According to Fielding and Taylor, “the Internet is about inter-
connecting information networks across multiple organizational
boundaries” [3, p. 119]. A centralized authorization server must
have a trust relationship with the client and the resource server;
in the ACE framework, clients and resource servers are expected
to register with the AS. A spontaneous communication between
two entities that do not previously know each other is not
possible. The deployment of centralized authorization servers
conflicts with the Internet’s scalability and multiorganizational
domain requirements. The proposed ACE architecture (see
figure 3) allows each constrained device to have its own less-
constrained helper [5]. An authorization solution for the IoT
should fully implement this architecture.

V. CONCLUSION

In this paper, we have introduced tasks for authenticated
authorization that describe how each endpoint must act in order
to communicate securely in a network of things. Any data
exchanged with other entities—irrespective of the direction
(send or receive)—must be authorized by the overseeing
principals of the communicating devices. To protect their
security objectives, it is crucial that all authorization decisions

can be traced back continuously to the respective overseeing
principals. We have shown that the quality of security solutions
can be increased if protocol designers ascertain that the
delegation tasks are performed by all involved endpoints.

Our analysis of a current proposal for standardization reveals
gaps in this chain of authorization-related steps. While some
of these gaps can be closed easily by revising the ACE
framework and the related profile document, some design
decisions were made that fundamentally limit its applicability to
scenarios where clients and servers belong to the same security
domain. Future standardization efforts in the IETF concerning
authorization in the IoT therefore should also address global-
scale, multiorganizational use-cases.

REFERENCES

[1] R. J. Anderson and R. Needham, “Programming Satan’s Computer,”
in Computer Science Today: Recent Trends and Developments, J. van
Leeuwen, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp.
426–440.

[2] C. Bormann, M. Ersue, and A. Keranen, “Terminology for Constrained-
Node Networks,” RFC 7228, May 2014, Internet Request for Comments.

[3] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web
Architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115–150, May 2002.

[4] S. Gerdes, O. Bergmann, C. Bormann, G. Selander, and L. Seitz,
“Datagram Transport Layer Security (DTLS) Profile for Authentication
and Authorization for Constrained Environments (ACE),” draft-ietf-ace-
dtls-authorize-01, July 2017, Internet-Draft (Work in Progress).

[5] S. Gerdes, L. Seitz, G. Selander, and C. Bormann, “An architecture
for authorization in constrained environments,” draft-ietf-ace-actors-06,
November 2017, Internet-Draft (Work in Progress).

[6] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, October
2012, Internet Request for Comments.

[7] ISO/IEC, “Information technology – Security techniques – Authenticated
encryption,” February 2009, ISO/IEC 19772:2009.

[8] P. Wouters (Ed.), H. Tschofenig (Ed.), J. Gilmore, S. Weiler, and
T. Kivinen, “Using Raw Public Keys in Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS),” RFC 7250, June 2014,
Internet Request for Comments.

[9] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authentication and Authorization for Constrained Environments (ACE),”
draft-ietf-ace-oauth-authz-09, November 2017, Internet-Draft (Work in
Progress).

6

http://www.rfc-editor.org/rfc/rfc7228.txt
https://tools.ietf.org/id/draft-ietf-ace-dtls-authorize-01.txt
https://tools.ietf.org/id/draft-ietf-ace-dtls-authorize-01.txt
https://tools.ietf.org/id/draft-ietf-ace-actors-06.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc7250.txt
https://tools.ietf.org/id/draft-ietf-ace-oauth-authz-09.txt

	Introduction
	Delegation Tasks
	IoT Authorization Solution Analysis
	AS's Claim for RS
	AS's Claim for C

	Discussion
	Conclusion
	References

