

I’d Like to Have an Argument, Please
Using Dialectic for Effective App Security

Charles Weir, Awais Rashid

Security Lancaster

Lancaster University

UK

{c.weir1, a.rashid}@lancaster.ac.uk

James Noble

ECS

Victoria University

Wellington, NZ

kjx@ecs.vuw.ac.nz

Abstract— The lack of good secure development practice for app

developers threatens everyone who uses mobile software. Current

practice emphasizes checklists of processes and security errors to

avoid, and has not proved effective in the application development

domain. Based on analysis of interviews with relevant security

experts, we suggest that secure app development requires ‘dialectic’:

challenging dialog with a range of counterparties, continued

throughout the development cycle. By further studying the different

dialectic techniques possible in programmers’ communications, we

shall be able to empower app developers to produce the secure

software that we need.

I. INTRODUCTION

There are now more than 2 billion smartphone users in the
world. We use apps to communicate, apps to plan, apps to
manage our finances, apps to do our shopping, and apps to
remember our security credentials. Increasingly those apps are
handling our sensitive personal information, and thus it is
becoming vital to ensure our security and privacy.

Unfortunately, there is evidence that the developers of
smartphone apps are not delivering this security. Enck et al.
[19] used static analysis to study 1100 commercial Android
apps in 2011, and found privacy issues in a majority of apps
available to download. App security solution provider Bluebox
analyzed the top five payment apps in 2015 [8] and found
vulnerabilities permitting financial theft in all of them, along
with further privacy issues. Both surveys suggested that the
errors were avoidable; app programmers could have made
choices that would have prevented the issues.

In addition, there is widespread concern about the problem.
The Ponemon Institute carried out a IBM-funded survey in
2015 of 640 individuals from organizations developing apps in
the US [41], and found that 77% believed that securing mobile
apps was ‘very hard’, and that 73% percent believed that

developer lack of understanding of security issues was a major
contributor to the problem.

These studies demonstrate that existing industry practices
are insufficient to provide the application security and privacy
we need. To address this problem we could look for
improvements to environments and APIs; we could look at
tools to automate security improvements; or we can look at
ways in which we can help app programmers themselves to
improve security given existing constraints. All are valuable
approaches; we chose the third option. The research question
we formulated during the work is therefore:

What techniques and ideas lead to the development of better

secure app software?

We found little existing research on what works well.
Current practice emphasizes checklists of processes and errors,
along with static analysis of code. To improve practice,
however, we need an understanding of what works in the real
world.

Since there is little existing theory on this subject, we had
no basis for an experimental approach; we have no hypotheses
to test. Written or email surveys could be useful to find out
current practice from a list of options, but are unsuitable of the
kinds of open question that generates theory. We therefore
conducted a Constructivist Grounded Theory [11] study,
involving face-to-face interviews with a dozen experts whose
cumulative experience totaled well over 100 years of secure
app development, to develop theory on the best techniques
available for developers.

Our early analysis of the interviews [48,49] found a wide
range of difference between interviewees, and concluded that
the discipline is relatively immature. This paper builds on this
earlier work and goes beyond by contributing a catalogue of
techniques to empower app developers to deliver secure
software. In identifying these techniques, we found surprising
discrepancies between the current industry understanding of the
approach required by app developers, and the experts’
recommendations. Specifically we concluded that the
management approach of process checklists offers little help to
app developers; and that even ‘whole system security’
approaches do not get close enough to day-to-day programmer
experience to be very useful.

Instead, we identified that the most important and
successful secure development techniques share a quality we

Permission to freely reproduce all or part of this paper for non-commercial

purposes is granted provided that copies bear this notice and the full
citation on the first page. Reproduction for commercial purposes is strictly

prohibited without the prior written consent of the Internet Society, the

first-named author (for reproduction of an entire paper only), and the
author’s employer if the paper was prepared within the scope of

employment.

EuroUSEC ’17, 29 April 2017, Paris, France
Copyright 2017 Internet Society, ISBN 1-891562-48-7

http://dx.doi.org/10.14722/eurousec.2017.23002

2

call ‘dialectic’, meaning learning by challenging. These
techniques use dialog with a range of counterparties to achieve
security in an effective and economical way. The increase in
security comes from the developers’ continued interaction with
the resulting challenges, not from passive learning.

This suggests that, like the Monty Python character who
requests an argument [35], in the words in the paper’s title, we
need developers to actively seek out arguments and challenges.

The novel contribution of this work is to provide:

 A shift in perspective from artifacts to communication,

 An analysis of secure development practices that
challenges conventional processes and checklists, and

 A theory linking a range of practices that encourage
secure behaviors by app developers,

In the rest of this paper, section II explores existing work;
section III explains the methodology in more detail; sections IV
to X explore the techniques in detail, examining the problem
each solves, and suggesting how teams typically implement
each one; then section XI explores the techniques as a whole
and suggests approaches for future research.

II. RELATED WORK

We looked for related work in three areas:

 How programmers learn security,

 Resources to help programmers improve security, and

 Techniques to help teams improve

A. How Programmers Learn Security

We first consider work on how app developers learn about
security. Balebako et al. surveyed and interviewed over 200
app developers, and concluded that most approached security
issues using web search, or by consulting peers [5].

A survey by Acar et al. reached similar conclusions; and
they also determined experimentally the surprising result that
programmers using digital books achieved better security than
those using web search [1]. Yskout et al. tested experimentally
the effect of using security patterns in server design; the results
suggested a benefit but were statistically inconclusive [52].

There are a number of papers exploring the reasons why
programmers introduce weaknesses in mobile apps, especially
Android, and possible reasons for them. For example, Egele et
al. [17] studied the misuse of cryptographic APIs, concluding
that it was widespread and required better APIs; Fahl et al.
studied SSL use [20], concluded some apps were vulnerable to
man-in-the-middle attacks, and suggested an improved API to
solve the problems. However, this work has not been used to
improve programmer performance.

B. Resources to Help Programmers

Turning to resources, one might expect that a very effective
contribution to app security would be books explaining how to
do secure app development. Unfortunately, few seem to exist
covering a higher level than code. There are many good works
describing the theory and practice of software security, such as
Gollman’s ‘Computer Security’ [24], Schneier’s ‘Secrets and

Lies’ [43] and Anderson’s ‘Security Engineering’ [2]; these are
particularly valuable for introducing the concepts of ‘whole
system security’, but all work at a level that isn’t helpful as
anything but background reference for a software developer.

Instead, the most useful learning books for software
developers do tend to be those that convey information in a
relatively terse and readable form, and in manageable chunks.
A good example is Howard et al.’s ‘24 Deadly Sins of Software
Security’ [27]; its format is similar to that of the patterns
literature. Targeted specifically at particular platforms are
books explaining the Android security model and development
techniques; examples include ‘Pro Android 4’ [30] and
‘Android Security Internals’ [18]. For iOS there are
equivalents, such as ‘Learning iOS Security’ [6]; though this is
more a description of security features than a guide to avoiding
security issues.

Some of the most popular1 security books are the ones with
a platform-specific ‘Black Hat’ (attacker) approach. For
example the Android Hacker’s Handbook [16], and its
corresponding versions for iOS and web apps, contain a good
deal about exploits against the operating system, a certain
amount about analyzing existing apps, but little about how to
guard against exploits as a developer. Chell’s Mobile Hacker’s
Handbook [12] takes a similar approach, covering iOS,
Android and even Blackberry platforms, and does provide
limited advice for developers.

The community-written OWASP Top Ten Mobile Risks
site [39] is a widely accessed 2 resource detailing specific
programming issues and how to avoid them. Its authority and
availability make it very effective, though again it does not
consider ‘whole system security’ issues.

App programmers tend to use web search and discussion
sites such as Stack Overflow as their primary source of
information on security [1]. Unfortunately these lack overview
discussions [7], making them valuable in helping programmers
sort out problems they know they have, but does not point out
problems that they do not know they may have; most security
problems are likely to be of this second type. Discussion sites
have a second problem related to security: their answers on
security matters tend to be of questionable accuracy especially
when they quote code. Acar et al. [1] analyzed answers on
Stack Overflow to app security questions, worryingly finding
around 50% of solutions to a set of security questions to
contain insecure code snippets.

C. Techniques to Help Teams Improve

Two projects, by Xie et al. and Nguyen et al., [37,51] have
developed IDE-based tools to teach programmers by detecting
possible security flaws in Android developments. The approach
is promising, but obviously requires programmers to adopt the
tools; also no papers are yet available validating their
effectiveness. Others, such as Near and Jackson, and Lerch et
al., [31,36] have code analysis tools to detect security defects;
these work but provide only limited feedback to developers.

One might expect the most effective approach to be a
prescriptive set of instructions telling programmers what to do,

1 Based on Amazon.com rankings as at January 2016

2 Based on Google rankings in February 2016

3

a ‘Secure Software Development Lifecycle’ (SSDL) such as
those promoted by Microsoft [34] and others. However Conradi
and Dyba [14], among others, identified that programmers have
difficulty with, and resist learning from, formal written
routines, and this appears to have been the experience with
SSDLs in practice [22]. So, since about 2010 several of the
SSDLs have been replaced by ‘Security Capability Maturity
Models’ [33,40], to allow management influence on software
security at a corporate level based on measurements using
checklists of processes used to improve security. These are
effective [32] at defining what development teams should
achieve, but provide little help to developers on how best to
achieve it.

This means that for the majority of app developers who do
not have the support of formal process-driven organizations
[45] we need to find a lightweight, non-prescriptive approach.

D. Limitations of Existing Literature

Consistent in all this literature, is a lack of theory how to
guide development teams to achieve security in the
specification, architecture, and design activities. Instead, we see
mainly checklists at for the coding activity alone.

Moreover, while ‘whole system security’ experts such as
Anderson [2] are excellent at driving a holistic, rather than
purely technical, view of software security, they rarely consider
the team interactions needed to achieve the results.

III. METHODOLOGY

This section explains our choice of methodology, briefly
outlines Grounded Theory, and introduces the research
participants.

A. Choice of Methodology

Our purpose in the research was to generate knowledge
about good approaches to secure development. Two
perceptions drove the research approach:

 We had found few resources indicating how to tackle
app development security.

 Existing literature tended to be negative in approach,
listing things the developer must not do; this contrasts
with the kinds of books preferred by developers, which
we observe tend to be positive in outlook.

Our major resource was personal connections and links to
industry specialists in app development, including in secure app
development. Since our aim was to generate, rather than to test,
theory, we chose Grounded Theory as our primary research
method. Our study used semi-structured interviews over 6
months with a dozen such experts. To encourage positivity, we
used elements of Appreciative Inquiry [15] in our questioning:
the ‘Discovery’ of best practice and the ‘Dream’ of ideal
practice.

B. Grounded Theory

Grounded Theory [23] uses textual analysis of unstructured
text to make theory generation into a dependable process. It
requires line-by-line analysis of everything relevant that is

available to the researcher: interview transcripts, relevant
research literature, field notes from observation and anything
else that can reduce to text form. The process is iterative, with
analysis of initial findings from interviews or similar leading to
changes in the research thrust and direction.

We used the Constructivist GT variant [11], acknowledging
the effects of the researcher on the results. We followed the
principles for software engineering GT described by Stol et al.
[44]. We recorded interviews and transcribed them manually;
organization of the data used the commercial tool Nvivo;
coding, memoing and sorting were all by the lead author.

The interviews consulted the participants as experts rather
than as subjects. They addressed what each had found to be
most successful in their experience in secure software
development. Following the principles of Appreciative Inquiry,
questions avoided discussion on what does not work and
concentrated on the most effective practice known to each
interviewee.

C. Research Participants

Though we chose the participants for their experience with
app security, most drew on experience with a far wider range of
software domains in answering the questions. Table 1 shows
the interviewees, with an indication of organization size (S for
solo or less than 10 people; M for up to 1000 people; and L for
larger and government organizations), a suggestion of their
years’ experience with app security, and a description of their
main day-to-day role. All had worked extensively with UK or
US-based organizations; all but P5, P8, and P10 had an original
background as programmers.

Table 1: Interviewees, organization sizes, experience and roles

ID S Y Typical Role

P1 S 2 Developing apps for business clients

P2 M 10 Leading large security-focused team

P3 L 8 Developing user-facing web services

P4 S 20 Designing and implementing smart card software

P5 M 5 Architecting and promoting a secure service

P6 L 20 Consulting on app and IoT security

P7 M 10 Developing and architecting OS services

P8 L 10 Architecting mobile phone operator services

P9 L 5 Designing and protecting web-based services

P10 S 15 Architecting and promoting app technologies

P11 L 10 Designing OS security enhancements

P12 S 20 Developing apps for business clients

In the following sections, quotations from the interviewees
are in italics. We have edited them to protect confidentiality
and indicate context: square brackets show additions and
replacements; ellipses show removals.

IV. INTRODUCING DIALECTIC

Grounded Theory emphasizes that the theory generated
should cover the greatest variation in the data. Our initial
analysis of the transcribed interviews [48] showed very
significant variations between experts, suggesting that the
discipline is relatively immature, and that our experts were

4

merely providing a taxonomy of all the ‘whole system security’
techniques.

Looking to explore in more detail how programmers were
to achieve this taxonomy, we reanalyzed the interviews. We
found to our surprise that they contained little mention of
important parts of the ‘Whole System Security’ taxonomy: for
example devising mitigations or using checklists of possible
errors. Indeed some interviewees explicitly described these as
unimportant.

Instead, we observed that the core theme was the nature of
the developer’s interaction with external parties: a friendly
adversarial interaction. The word ‘dialectic’ had surfaced in our
earlier work [48], and we realized it was the common theme to
all these interactions. ‘Dialectic’ is the finding out of
knowledge, especially logical inconsistencies, through one
person questioning another. It first appeared as the technique
used by the Greek philosopher Socrates in his dialogs.

Using dialectic addresses a particular weakness in much
existing secure development research, namely that emphasis on
code level security often misses possible exploits based on the
functionality and system design – or may prove unnecessarily
costly:

So implicit in [conventional thinking] is the notion that

programmers decide what they are doing [only] in code …

being told to put something in place without them

understanding the greater implication. (P9)

Instead, developers need to think what approaches an
attacker might use to gain benefit from the system they are
producing, and then to decide how to thwart those approaches.

Yes, the question is 'who is the attacker, who is the bad guy,

who is the threat model you are dealing with?' (P3)

This is a very different approach from ‘normal
programming’. It requires developers to think in different ways.

They are very devious. There are exploits that they have

realized which are, well, you wouldn't really think like that if

you were an engineer (P2)

It was not difficult to work out why our experts should
view dialectic as a solution. Unlike other forms of software
quality such as performance or reliability, security involves the
idea of someone different: an attacker who will use very
different ways of thinking. To deal with such threats, a
developer needs to think ‘outside the box’; the easiest way to
achieve that is with challenges from others.

A. Specific Dialectic Techniques

From the GT analysis, we have drawn out six specific
techniques that illustrate these kinds of dialectic challenges.
These techniques are:

Brainstormed
attacker
profiles

Ideation sessions to derive possible
attackers and attacks on the system

Negotiated
security

Communicating security decisions in ways
their stakeholders can understand, to
prioritize them against other requirements.

Cross-team
security
discussion

Effective communication with other
development teams to ensure security

Security
challenge

Using professional and in-team security
experts for code reviews and penetration
testing.

Automated
challenge

Using automated tools to query possible
security weaknesses

Responsive
development

Gathering continuous feedback from the
use of the system, and responding with
continuous upgrades and interactive
defenses.

We observe that these techniques characterize themselves
in terms of the source of the challenge to the programming
team: other team members; tools; other roles in the software
development process; and the consequences of end use.
Sections V to X show the techniques, and the counterparties
involved with each.

In each case, the dialectic continues throughout the
development cycle; and in each case, it is always two-way: the
experts state that the increase in security comes from the
interaction with the challenges, not from a passive
understanding of the challenge.

We do not have evidence to claim that dialectic provides
the best techniques for achieving security; however, our study
suggests that dialectic communication strongly correlates with
effective software security.

Sections V to X explore each technique in detail. Each
includes an illustration and illustrative quotation, followed by
an ‘Exploration’ section discussing the context of the problem,
and a ‘Solution’ section describing how the interviewees
suggest addressing it. The academic paper format restricts the
length of each description; fuller versions are available in the
first author’s MSc thesis [47]

V. BRAINSTORMED ATTACKER PROFILES

Development team

Brainstormed
attacker
profiles

I think the things that are the most challenging around

security really are trying to understand the threat landscape

and trying to understand how threats are realized. (P2).

A. Exploration

Any system can be broken with sufficient determination,
ingenuity, and resources.

Every security system can be broken. Period. There are

even ways of getting the certificates off a phone, by freezing

the phone and reading the memory. There is nothing you can

do to stop a truly determined person to getting in, short of

dropping it into a nuclear furnace. The best you can do is

make it difficult enough for them, that they will lose interest –

that it's not worth the trouble. (P7)

5

I quickly realized that no system is ever unbreakable (P9)

As a result, secure development is not a matter of making a
completely secure system. Instead, it becomes a question of
which defenses to implement: where one should spend the time
and effort defending the system to deter the largest and most
damaging potential exploits. Making those choices requires an
understanding of the potential attackers:

I think it is actually very important to understand the

motivations behind why somebody is hacking the system. We

try to address the motivations of the attackers, versus the

technical aspects - just locking it down for the sake of locking

it down. (P11)

Neither attacker profiles not attack descriptions, however,
are conventional knowledge for a software developer. So how
do they best obtain them?

B. Solution

Use brainstorming techniques to identify both attackers and
possible exploits. Brainstorming is a form of dialectic that uses
interaction with a range of people with different outlooks to
create knowledge and ideas that were not obvious beforehand.

The first step generates profiles of likely attackers. This
means querying experience with similar products, discussing
with others in the industry, and consulting experts. The
attackers may not be the obvious ones:

There are clear reasons why someone would want to attack

a bank, but actually the real reasons for attacking a bank are

very seldom to do with trying to get financial rewards. It is

much more around what information you can get about

people. Banks hold information about people. So [it might be]

a private investigator who is trying to track someone, or a

hostage situation, where people might have done things, or

simply learning more about behavior. (P9)

The second step is to use brainstorming sessions for attack
profiling.

I was involved in a lot of conversations about trying to think

about doing really evil things, so I think in order to protect

people from harm we have to think about how harm can be

done. So, brain-storming bad intent is part of the life, really.

(P5)

These brainstorming sessions include people with different
roles, especially testers, penetration testers, app security code
reviewers, and security specialists.

“One of the things I like to do with the [penetration testing]

guys is to, if you sit down and say 'what are all the different

ways you could subvert this system'. It is quite common to

come up with 20, 30, 40, 50 in five or ten minutes of

brainstorming. I bet you, you wouldn't think of half of them.”

(P2)

An excellent concise recipe for running these sessions is in
the seminal work on negotiation, Fisher et al.’s ‘Getting to Yes’
[21], whose chapter ‘Invent Options for Mutual Gain’ contains
a step-by-step prescription for an effective brainstorming
process. Although the illustration shows the brainstorming as
being with others in the programming team, for solo developers

it will typically be with clients, members of related technical
teams, and other stakeholders.

Particularly with development teams using agile
approaches, this ideation process continues informally
throughout the initial development project, and into the
subsequent deployment and later lifetime of the product. The
most security-capable teams included attacks and motivations
found in the course of deploying the app, and throughout the
software product lifecycle.

The other thing, is … [to] reward proactive thinking and

this is two levels of that: trying to think what could happen

next, how could it go wrong, what am I missing, but then the

next level of reward, is rewarding people for research. And

thinking about how to do harm. Actively encourage them to

think like a hacker. (P5)

VI. NEGOTIATED SECURITY

Development team
Product management

Negotiated
security

For businesses it is a risk based approach which they need

to understand and neither [management nor programmers]

should be caring about actual nitty gritty details of coding

which is just an artefact of the whole thing. (P6)

A. Exploration

Merely identifying the possible attackers and exploits does
not itself deliver software security. The need is to prevent them
from causing significant damage to users, stakeholders or
others. So a development team takes the list of possible attacks,
and works out possible mitigations for each. These mitigations
will each have costs in development time, commitment,
finance, and sometimes usability. The team can estimate
financial and other costs for each. How, though, do they make
the decision which to implement?

Our interviewees conclude that the decision of what aspects
of security to implement is a commercial one. Implied in every
decision about software security is a trade-off of the cost of the
security against the benefit received. Every security
enhancement needs to be weighed against other uses of the
investment (financial, time, usability) required.

[Costly development approaches aren’t] suitable for a lot of

startups. And the same goes for security. You’re going to have

to make a security decision upfront. (P1)

B. Solution

Interpret the security risks and costs to stakeholders (project
managers, senior management, customers) in terms they can
understand and use to prioritize security concerns against other
organization and project needs.

[When I started] a project I’d go back and ask [my

customer]…‘You do realize this [information] can be seen’. It

6

goes from there: ‘how secure do you want it to be?’ You have

to show that there’s a problem first I think” (P1)

Here the dialectic is with the stakeholders. The stakeholders
have knowledge of the importance of different kinds of security
in the context of the development, that is likely to be very
different from that of the developers, and it is important that
this challenges the assumptions of the development team.

It is hard to over-emphasize the value of the interpretation
skill. Many of our interviewees made the point that ‘security is
not an absolute’ – security is what the users and stakeholders
need for a particular situation at a particular time. For such
stakeholders to make a good decision on what security to
implement requires particularly effective communication. The
stakeholders will be making cost benefit trade-offs comparing
various business risks.

You've got to put a weighting on the threat. You've got a

level of threat, and you've got to put the appropriate level of

security against that. (P4)

There are techniques available to give objective assessment
of security risks, such as work by ben Othmane et al. [38].
Vitally – and several interviewees stressed this – the cost-
benefit trade-offs mean that perfect security, even if possible,
would rarely be a good business decision:

And actually the way this works, in practice is you have to

do less than a perfect job, in order to have a measureable

degree of failure or fraud or whatever, so that you can adjust

your investment and say ‘I am managing this to an

economically viable level’ because if it is zero, you have

invested too much. (P6)

For simpler projects and systems, there may not be
sufficient engagement from stakeholders to be able to do this
kind of trade-off; in that case, it becomes the responsibility of
the developer:

[Often it’s impossible to get signoff on security in a big

company and so the decision is usually down the developer

because you can’t get the signoff. And in a small company may

just be the same]. Customers often don’t have a view. The

important thing is making the decision. (P1)

Given that each mitigation now has a cost and benefit, the
decision on whether to do it becomes part of standard project
management process. It is outside the scope of our theory – and
indeed of the topic of software security – to explore how to
make these decisions; the balancing of risk cost and reward is a
well-understood aspect of business life.

And it has to be a bit of a trade off as well in terms of

business. You’ve got to make the trade off as to what’s good

for getting a solution available now, and having one available

in a year’s time, which no one will buy, because everyone’s

gone with one which doesn’t even consider security at all.

(P12)

VII. CROSS-TEAM SECURITY DISCUSSION

Development team
Other development teams

Cross-team
security

discussion

 [What was very successful was] working incredibly closely as

a team, and having very open discussions with cards on the

table and removing the fear around discussing aspects of

security which, I often find in project meetings, people don't

want to bring up because they don't want to expose their own

domain. (P8)

A. Exploration

Many security issues span a number of teams: development
teams, operations and even marketing or publicity. Thus there
is a frequent danger that security problems can ‘fall between
two stools’, remaining ignored because two teams each think
the other is responsible for the problem. The problem is
exacerbated if the developers are not natural communicators,

I had a core technology group … who worked for me, and

these guys were double firsts in maths from Cambridge.

Incredibly bright guys: appalling interpersonal skills. (P5)

And sometimes by organizational politics,

You get teams of people who are perhaps very protective of

their platforms, because they own the system and they are

master of the system, and they want it to be seen as a golden

system… Quite often the people representing the system are

perhaps one step removed from the real hands-on techies –

they are generally a manager, who ultimately becomes

associated with this platform and they feel that their role can

be at risk if that platform was ever to be undermined … so the

silos become self-reinforcing and it is very difficult sometimes

to know whether you have actually been delivered all the facts.

(P8)

Or where teams are effectively separated by time – they are
not working on the project at the same time:

[There is a big] difference between the operational and

project approaches. [And security is one thing that is not

going to get handled by that handover]. That is a real

challenge. (P8)

B. Solution

Ensure frequent and open communication on security
problems in any way available. The effect of such
communication is to challenge each team to address the
security issues – another example of a dialectic process – and to
allow casual communication about possible security problems.
Ensure you have considered all the types of team: other
programmers, operations, and security experts.

Bringing members of the different teams together on a
social basis encourages the right kind of communication:

I am a strong believer in the social aspect of it… I think if

you can bring people together physically on a regular basis so

7

that you can get to the stage where people are discussing

family, friends with each other and everything else, it breaks

down a lot of the artificial barriers that are there. … I do think

co-location was key, and we would regularly come together,

we would share a whiteboard and we all had the same view of

the world. Openness and transparency - I think it makes a

huge difference. I really do. (P8)

So does encouraging informal communication on technical
issues

 [Of a successful project] I guess we were working with a

team who were experienced but also everybody who was close

to the project, lived through the project life cycle to delivery,

were very comfortable picking the phone up to anybody else

and discussing any aspect, and everyone reported back quite

openly what they were seeing, and when we came together.

(P8)

An effective but very different form of communication is
the more formal documentation of responsibilities. One
straightforward way to do this is a ‘Security Scope’ document
that identifies the security responsibilities of a given team. That
highlights where ‘falling between two stools’ problems may
happen, and is used, for example, in a secure development
process introduced by the lead author [46]. Where multiple
organizations are involved, the security scope may even be
contractual:

We have got in our contract with [our development

company] a definitive list of things that they will have failed to

do their job if they haven't protected against these types of

attacks. When we find a new one, we try to write a test for it,

we put it into the document. (P5)

VIII. SECURITY CHALLENGE

Development team

Security experts &
Pen testers

Security
challenge

Nothing gets submitted without it being reviewed by at least

another engineer. And there are strong processes to protect

that fact. … The most successful technique has to be review by

[a security] expert – you can't really beat that – an actual

conversational review by an expert, because someone who is

an expert in security might not be an expert in the domain.

(P3)

A. Exploration

It is notoriously difficult to spot one’s own errors. This is
especially true when the errors are faults in complex reasoning,
or are due to misunderstandings. Thus, a programmer working
solo is likely to create avoidable security problems, just
because they can naturally have only one point of view.

So it is very easy when you are trying to deliver something

yourself, as a developer, to pass over the bit that you are not

doing (P5)

This problem extends to programming teams; a team will
always suffer to some extent from ‘groupthink’; the need to
generate a shared understanding brings with it the danger that
that understanding may include misunderstandings and blind
spots.

B. Solution

Set up the development so that each person or team has a
counterpart with a different viewpoint to challenge the security
and privacy aspect of assumptions, decisions, and code.

This is perhaps the most obvious example of dialectic in
security – the counterpart queries the assumptions of the design
and code, causing developers to review and change their
understanding.

There are several common ways of arranging Security
Challenge: pair programming, security review, code review,
and penetration testing. Pair programming gives the developer
the benefit of external questioning:

Two heads are better than one, more eyes on the problem.

(P7)

A security review of the design, technologies and protocols
of a system, by an experienced secure software expert, is
particularly effective, and also helps developers to learn more
of their code base [42].

[We have] a separate security review system for, so if you

are doing code that impacts security in your judgement, it goes

to people who are security experts who will do the security

review and they find stuff. (P3)

For a cloud-based system, the widely accepted way of
ensuring security is penetration testing, where an external
‘white hat’ security team simulates what an attacker would do
to attempt to gain access or disable the service. They then
feedback any ‘successful’ exploits they have found to the
development and operations teams.

[Ensuring software security] tends to get handed off, in

most companies I've worked with, to a white-hat hacking team.

[They] don't do it a code level. (P7)

At the operating system level, one can also penetration test
a mobile device:

I think the one [approach] that has been, arguably, most

useful has been using specialist external consultancy around

security. Not for training, but “can you just come in and

penetration test this device?” (P2)

The widely used equivalent for an app is an external
security code review. Many companies now specialize in this
kind of app security code review; they gather lists of known
security issues found in apps, with mitigations for each, and
then review the provided code to look for those security issues.
Security code reviews are also very effective when internal to a
company:

Code review is what we do endlessly. We certainly do not

let any form of code out the door, without an independent

review and that is eyeballs on the code and that is discussion

about the code. (P5)

8

We do code reviews as much as possible. And I point out

when I think something may have some issues, things like that.

(P7)

All of these approaches are expensive; there is a significant
resource cost to providing the challenge. In the case of pair
programming, research suggests that the net cost is relatively
small [13]. However, the other three interventions all represent
additional costs for an organization, which need to be traded
against the corresponding benefits:

You call them out, but ultimately [best] is code level

reviews, but again it is this balance between the ideal world

and the timescale, versus the risk and the consequences of the

risk, or the consequences of an attack. (P7)

Unfortunately, cost usually makes the external options,
such as external code review or pen test, unsuitable for solo
developers. An alternative is ‘Rubber Duck Debugging’ [28]:
explaining thought processes to an anthropomorphized object.

IX. AUTOMATED CHALLENGE

Development team Dev and test tools

Automated
challenge

“[The most successful technique I have found is] to use

various types of Lint checkers” (P7)

A. Exploration

Security Challenge can be very effective, but it is costly in
human effort and impractical in many situations. Few solo app
developers, for example, will have the money to pay for an
external review of their code, or the social capital to persuade
colleagues to do so. Likewise many organizations will not see
value in paying for penetration testing or external reviewers,
nor have skills to do either in-house.

Equally, it is a poor use of expensive resources to find
problems that are cheap to find in other ways.

How do we achieve this?

B. Solution

Use software tools to create the dialectic. There are two
areas where automation can help a great deal by challenging
developers. These are automated code analysis, and automated
security testing.

Automated code analysis acts as an extension to the
compilation process of the code, and looks for possible security
flaws in the written code. Tools to do this are sometimes called
‘lint’ checkers, after a UNIX tool that does extra checking for C
code. There are now many such tools, some produced by
commercial companies, supporting different languages and
purposes:

We use something called Sonar which is a code inspection

tool. We'd written templates and guides for our coding

standards and certain patterns we are looking for in a code

and we are looking for changes in the code that are greater

than a certain percentage, and there are specific bits of the

code we are looking for any change that should never happen.

(P5)

They are excellent for looking for common errors:

One of the most common things… for anything using C or

C++ is to look for potential buffer overruns. And anything that

has SQL Injections that do the same sorts of things: anything

that can go outside of the expected bounds, that aren't being

checked. And there are a number of Lint checkers that will

pick up on that sort of thing. Use them! (P7)

Increasingly some of the reviewing features are being
migrated from independent tools into the compilers default
build processes for mobile software:

So as tools get better, for both inspection and fixes, to say

'hey this might be a security flaw: as the compilers, as the

development environment, whatever the tools are. Because

even developers that are experts can make mistakes. And so

the more the tools do like the code inspection review for you,

for free, constantly, all the time, so you can't skip it, then yes,

that will be a huge win. And I think that can be improved in

the two year time line. (P3)

Though of course there is little value to such warnings if the
programmer ignores them.

Pay attention to the warnings, pay attention to the Link

errors. [So it is not just the automated checks. It is the attitude

towards those automated checks, taking them really seriously]

Use them, don't forget them. (P7)

The tools need to be carefully designed to make them easy
to use; Johnson et al. have made a set of recommendations
what is required [29]. The tools may be run infrequently, or as
part of an automated build. Solo developers who lack a stable
build system will typically run them as part of the release
preparation process.

Automated security testing comes in two forms. First is the
automation of tests that find security defects, to avoid the risk
that such defects may recur:

We added an entire section to [our automated testing suite]

called ‘Security’, which is effectively hacking. We have built

all forms of vectored attacks against our platform – we

endlessly think about ways to attack our platform. When we

find a new one, we try to write a test for it. (P5)

A second, recent, innovation is to use randomization and
‘deep learning’ techniques to enable tests that would not
necessarily occur to a human tester:

I actually find that our fuzzing efforts, which you could view

as a form of code analysis, have quite a bit more tangible

results. The fuzzing effort doesn't happen at code review time,

but happens at check in time; we have clusters of machines

where we are doing attacks against the software that is

checked in, and we are able to find [exploits] very quickly.

(P11)

To get the best value, it is important to include both
automated checks and automated testing as part of the fixed

9

development process. Best practice, given that they are
automated, is to include them within the build cycle.

What we do is, [we have] a continual build system. Every

time someone checks in a change, we create a brand new

version of [the system]. Once a day we snapshot that version

… into our testing infrastructure, and for that entire day we

are doing attacks against the code that is running on that

device. So next day a new version …, and we continue attacks.

And we will do that over and over again. (P11)

X. RESPONSIVE DEVELOPMENT

Development team Deployed software in use

Responsive
development

I think one of the problems with remote devices is that these

devices are intended to be robust against all attackers if you

lose your device... And that makes it challenging from a

forensic point of view to look into [issues]. (P11)

And the patches and updates basically what modern

security is about – mistakes will be made and when the

mistakes are found – how do you get the updates out? (P3)

A. Exploration

To keep apps secure requires continuous feedback, both to
detect actual exploits, and to detect trends of use that may
represent longer-term threats. Getting such feedback is much
more difficult with mobile apps than with servers. Not only are
they not always connected, and under the control of someone
else, but the devices are designed to be as impenetrable as
possible:

 [The OS designers] want to make sure that no matter

whatever privileged position you have, that these devices are

impenetrable. That is the goal. (P11)

Responding to such feedback is also a continuous process.
New exploits, improved processing power, and wider
publication of existing exploits all mean that what might have
been secure a year ago may not be now.

Projects look at the risk here in their lifetime and you know

the current risk and the current attack vectors, but they are

constantly changing. (P8)

It still is interesting to see how effectively security has a

built in obsolescence. Even with SSL security, which is

obviously almost the bottom level. (P12)

The problem is not just the increasing sophistication of
attacks; changes to the supporting environment often have
security implications requiring changes to apps to support
them:

Obviously given the rate at which Apple and Google are

changing Android and IOS and all the other things, just almost

keeping still is difficult. (P12)

However the nature of app development ‘contracts’,
whether internal to a company or commercial external contracts

is often ‘fire and forget’; on completion of the initial app
development phase, the development team is allocated to
different projects.

Like many things that get delivered in a project, the project

ends and interest dies with it. Unfortunately. And I think you

lead into a significant challenge in securing things on an

operational basis. (P8)

Moreover, it can be very hard to pull together an ad-hoc
team to solve even serious issues:

Technology is constantly changing but to bring together the

spotlight or the focus on a live service, unless it has reached

the stage that is it almost headline news, is very difficult to do

because the effort required in creating a project in the first

instance, to bring together the bodies and the budget for most

businesses is enormous. So the day to day behavior doesn't

allow for the ‘dipping into things’. (P8)

B. Solution

Instigate a long-term development approach to support both
security monitoring and regular updating; include logging, and
other feedback mechanisms within an app.

Here the dialectic challenges are from the external world –
users, attackers, and any other influences. Since we need the
dialectic to be both continuous and two-way, developers must
use or create specific methods to get and monitor feedback
from the apps, and project stakeholders need to ensure that
projects have a continuous long-term support and monitoring
element, with an explicit mechanism to deliver regular
enhancements.

App feedback usually requires explicit functionality:

I’ve built quite a bit into the apps where they have their own

debug logs because I don’t trust the likes of Google because

they have to sanitize what they give you because they’ve got

privacy issues on their side of things. Because we have more of

a direct relationship with our users, we can get more

information and we have them direct to our systems, so

effectively there’s a low level of logging, logging things which

are going wrong. (P12)

Ensuring that updates reach the users can also be a
problem; many users do not enable automatic upgrades.

The moment you release something to an Android phone,

you will, in general, never get a 100% update rate, because

loads of people update software once and never update. (P3)

A common solution, implemented in several cases by the
lead author, for cases where the apps communicate with a
server, is ‘forced upgrades’ based on the app version number.
This requires extra support in the app and server: on startup the
app interrogates the server for the minimum version currently
supported; if the app’s current version is less, it refuses to run
and instead directs the user to the appropriate ‘store’ app to
make the upgrade.

Getting the resource to deliver regular enhancements
requires a long-term approach to product development, since
there will be costs long after the first release. Typically,
organizations will decide to maintain for a limited time and
then explicitly stop security updates:

10

It involves engineering resource to do the … updates across

every product. What we have said is that … the products that

are currently in this three year window [are maintained] so

not everything, but the current products, we will keep up to

date. (P3)

Thus, we need development contracts (‘maintenance
contracts’) and system architectures that allow for continued
app development rather than the more traditional ‘fire and
forget’ approach.

XI. DISCUSSION

The ordering of the techniques is roughly chronological
from the point of view of the development team. While
developers use each repeatedly throughout the development
cycle, they will encounter the need for Brainstormed Attacker
Profiles and Negotiated Security earlier in each development
cycle; and the interaction in Responsive Development naturally
comes rather later.

A. Relationship to Existing Work

Comparing the existing work on app developers and
security, section 2 identified valuable research on current
practice by developers such as that by Balebako et al. [5]; this
work goes further by identifying approaches for better practice.
Much of the remaining literature we discussed is also valuable
in the context the dialectic techniques as providing solutions to
the challenges identified through dialectic. Thus an Android
app programmer who is made aware of security issues from
Brainstormed Attacker Profiles, Security Challenge or
Automated Challenge would then be motivated to search for
solutions on the web or in practitioners’ literature such as
‘Android Security Internals’ [18]; work by Acar et al. [1]
suggests that their best choice would be the book .

Considering the dialectic techniques themselves, we
suggest that two are reasonably well understood and researched
in various ways: Security Challenge and Automated Challenge.
The techniques of Security Challenge of reviews and
penetration testing are explored in detail in literature;
Responsive Development is novel in the app development
context, but the techniques of continuous response to security
challenges are well known within the context of server system
management. For Automated Challenge, there is a considerable
range of automated validation tools available even if, as found
by Johnson et al. [29], these are currently not often used by
developers.

The other three techniques, Brainstormed Attacker Profiles,
Negotiated Security, and Cross-Team Security Discussion are
less well reflected in existing security literature; section D
proposes approaches to research them. However, they do have
parallels in other aspects of software engineering. Brainstormed
Attacker Profiles relates to the HCI concept of ‘personas’;
Atzeni et al. [4], describe an analytic (rather than brainstorm)
approach to generating attacker personas. Cross-team Security
Discussion relates to the large amount of work available on
collaboration between distributed teams [10]. Related to Cross-
team Security Discussion, some new work by Ashenden and
Lawrence [3] uses an Action Research approach to improve the
effectiveness of the relationships between security
professionals and software developers.

B. Improvements on Existing Practice

Section II.D identified that existing practice specifies little
about the team interactions required to achieve software
security. By contrast, the dialectic techniques constitute a way
of working, almost an attitude to working, for developers who
need to deliver secure software. They are completely consistent
with, and incorporate the thinking of, much existing literature,
but extend it to provide a new way of looking at
communication.

For developers, dialectic provides a set of attitudes to
development teamwork and approach. It meshes effectively
with agile self-organizing teams [26]; the developers
themselves can choose what processes and deliverables best
serve their ‘dialectic’. What is important is the difference in the
ways developers interact with the world.

C. Research Validity

How certain can we be that this theory accurately reflects
reality? We approach this question by analyzing threats to
validity.

Considering first Conclusion Validity, do the research data
justify the conclusions? Grounded Theory’s rigorous process of
line-by-line coding, categorization, and sorting generates a
theory that does reflect the interview data. The use of extensive
quotations ensures that this can be at least partially checked.

In terms of Construct Validity, does the dialectic theory
represent actual practice? GT handles this primarily in terms of
‘theoretical saturation’, reached when new interviews do not
add substantially to the theory. Guest [25] suggests that a dozen
interviews are often sufficient for this; in this case as
researchers we believe we have reached theoretical saturation
with regard to the list of techniques, but not with regard to all
the potential detail to be uncovered within each technique.
There is also a risk of bias in the choice of interviewees, and of
questions; we addressed this with interviewees from a wide
range of industry roles, and completely open questions.

In terms of External Validity, can the results be generalized
to a wider scope? GT’s conclusions are always limited to the
specific scope studied [11]. In this case, since many of the
experts were familiar with – and sometimes describing – more
general secure software development, some conclusions will
apply to non-app development. We can however make no
claims of applicability to different development cultures other
than UK and US-based companies.

D. Future Work

Considering the dialectic techniques themselves, we
suggest that three are reasonably well understood and
researched in various ways: Security Challenge, Automated
Challenge, and Responsive Development. We propose further
research to examine the three less well-understood techniques:
Brainstormed Attacker Profiles, Negotiated Security, and
Cross-team Security Discussion.

It would ask research questions along the lines of:

 What are the most effective ways to ideate
understanding of attackers and potential exploits?

11

 How best do we represent security questions in
business terms?

 What forms of cross-team interaction are most
effective to ensure app security?

 Can team members learn the dialectic approach, or is it
best used to inform the management and structure of
teams?

There are several possible approaches to this research.
Experimental approaches might set up different groups of
Computer Science students with different ideation techniques
and compare their success at identifying attackers and exploits.
An ethnographic approach might follow the progress of a
development team, identifying where the major security
mitigations were identified and how the negotiations took place
in practice. Alternatively, a survey approach might ask the
questions of a variety of developers and stakeholders to
produce a possible consensus.

A different and potentially very rewarding area of research
is in further dialectic techniques. For example De Bono [9] has
defined a variety of ‘Lateral Thinking’ techniques to help teams
and individuals to challenge their thinking.

A third area of research is in techniques to introduce the
dialectic approach to developers. A majority of app developers
work independently or in relatively small organizations [45].
The authors have proposed ways to introduce effective security
techniques to such individual developers in a recent paper [50].
These include:

 Educational app games for developers to play,

 Storytelling, through blogs or even TV storylines, and

 Massively online courses, and TED-style video

We see these approaches as providing a path to help the
dialectic techniques to have an impact on development practice
in the next couple of years.

XII. CONCLUSION

In a rigorous study using interviews of experts in secure
app development, we found three novel aspects. First was an
emphasis on programmers’ activities, in addition to the artifacts
delivered. Second was a discrepancy between current industry
understanding of good security practice, and experts’
recommendations. Last was a theory that emphasises the nature
of a specific kind of communication and interaction with
developers: dialectic.

We concluded that techniques for software security may
best be expressed in terms of the dialectic nature of the
developers’ own interactions, and not solely in terms of formal
processes, artefacts and reports.

Section 4 describes six dialectic techniques, each involving
continuous challenging dialog with a different counterparty.
We suggest that these techniques are well suited for app
development teams in the majority of organizations. We shall
investigate the techniques further as discussed in section XI.D;
we shall also look for ways to disseminate them more widely,
and research interventions to introduce them into a range of
existing development teams.

Using these techniques, we believe, has the potential to
enhance the future security of apps, and lead to better safety for
all of those who use them.

REFERENCES

[1] Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L.,
and Stransky, C. You Get Where You’re Looking For.
IEEE Symposium on Security and Privacy, (2016), 289–
305.

[2] Anderson, R. Security Engineering: A Guide to Building
Dependable Distributed Systems. John Wiley & Sons,
2008.

[3] Ashenden, D. and Lawrence, D. Security Dialogues :
Building Better Relationships. IEEE Security & Privacy
Magazine, June (2016).

[4] Atzeni, A., Cameroni, C., Faily, S., Lyle, J., and Flechais,
I. Here’s Johnny: A Methodology for Developing
Attacker Personas. 2011 Sixth International Conference
on Availability, Reliability and Security, IEEE (2011),
722–727.

[5] Balebako, R., Marsh, A., Lin, J., Hong, J., and Cranor, L.
The Privacy and Security Behaviors of Smartphone App
Developers. Internet Society, October (2014).

[6] Banks, A. and Edge, C.S. Learning iOS Security. Packt
Publishing, Birmingham, UK, 2015.

[7] Barua, A., Thomas, S.W., and Hassan, A.E. What Are
Developers Talking about? An Analysis of Topics and
Trends in Stack Overflow. 2012.

[8] Bluebox Security. ’Tis the Season to Risk Mobile App
Payments - An Evaluation of Top Payment Apps. 2015.

[9] De Bono, E. Lateral Thinking : Creativity Step by Step.
Harper & Row, 1970.

[10] Carmel, E. Global Software Teams: Collaborating across
Borders and Time Zones. Prentice Hall PTR, 1999.

[11] Charmaz, K. Constructing Grounded Theory. Sage,
London, 2014.

[12] Chell, D., Erasmus, T., Colley, S., and Whitehouse, O.
The Mobile Application Hacker’s Handbook. John Wiley
& Sons, Indianapolis, 2015.

[13] Cockburn, A. and Williams, L. The Costs and Benefits of
Pair Programming. In Extreme Programming Examined.
2001, 223–243.

[14] Conradi, R. and Dybå, T. An Empirical Study on the
Utility of Formal Routines to Transfer Knowledge and
Experience. ACM SIGSOFT Software Engineering Notes
26, 5 (2001), 268–276.

[15] Cooperrider, D.L. and Whitney, D. Appreciative Inquiry:
A Positive Revolution in Change. Appreciative Inquiry,
(2005), 30.

[16] Drake, J.J., Lanier, Z., Mulliner, C., Fora, P.O., Ridley,
S.A., and Wicherski, G. Android Hacker’s Handbook.
John Wiley & Sons, Indianapolis, 2014.

12

[17] Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C.
An Empirical Study of Cryptographic Misuse in Android
Applications. Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security -
CCS ’13, (2013), 73–84.

[18] Elenkov, N. Android Security Internals: An In-Depth
Guide to Android’s Security Architecture. No Starch
Press, San Francisco, 2014.

[19] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. A
Study of Android Application Security. Proceedings of
the 20th USENIX Conference on Security, (2011).

[20] Fahl, S., Harbach, M., Perl, H., Koetter, M., and Smith,
M. Rethinking SSL Development in an Appified World.
Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security - CCS ’13, (2013),
49–60.

[21] Fisher, R., Ury, W.L., and Patton, B. Getting to Yes:
Negotiating Agreement Without Giving In. Penguin, 2011.

[22] Geer, D. Are Companies Actually Using Secure
Development Life Cycles? IEEE Computer June, 2010,
12–16.

[23] Glaser, B.G. and Strauss, A.L. The Discovery of
Grounded Theory : Strategies for Qualitative Research.
Aldine Transaction, Chicago, 1973.

[24] Gollmann, D. Computer Security. Chichester : Wiley,
2011.

[25] Guest, G., Bunce, A., and Johnson, L. How Many
Interviews Are Enough? An Experiment with Data
Saturation and Variability. Field Methods 18, 1 (2006),
59–82.

[26] Hoda, R., Noble, J., and Marshall, S. Organizing Self-
Organizing Teams. Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE
’10) - Volume 1, (2010), 285–294.

[27] Howard, M., LeBlanc, D., and Viega, J. 24 Deadly Sins of
Software Security: Programming Flaws and How to Fix
Them. McGraw-Hill, Inc., 2009.

[28] Hunt, A. and Thomas, D. The Pragmatic Programmer :
From Journeyman to Master. Addison-Wesley, 2000.

[29] Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge,
R. Why Don’t Software Developers Use Static Analysis
Tools to Find Bugs? 2013 35th International Conference
on Software Engineering (ICSE), IEEE (2013), 672–681.

[30] Komatineni, S. and MacLean, D. Pro Android 4. Apress,
2012.

[31] Lerch, J., Hermann, B., Bodden, E., and Mezini, M.
FlowTwist: Efficient Context-Sensitive Inside-out Taint
Analysis for Large Codebases. Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (2014), 98–108.

[32] McGraw, G. Four Software Security Findings. Computer
49, 1 (2016), 84–87.

[33] McGraw, G., Migues, S., and West, J. Building Security
In Maturity Model (BSIMM7). 2016.
https://go.bsimm.com/hubfs/BSIMM/BSIMM7.pdf.

[34] Microsoft. Microsoft Secure Development Lifecycle.
https://www.microsoft.com/en-us/sdl/.

[35] Monty Python. The Argument Sketch.
http://www.montypython.net/scripts/argument.php.

[36] Near, J.P. and Jackson, D. Finding Security Bugs in Web
Applications Using a Catalog of Access Control Patterns.
Proceedings of the 38th International Conference on
Software Engineering, ACM (2016), 947–958.

[37] Nguyen, D., Acar, Y., and Backes, M. Developers Are
Users Too : Helping Developers Write Privacy
Preserving and Secure (Android) Code. 2016.

[38] Ben Othmane, L., Ranchal, R., Fernando, R., Bhargava,
B., and Bodden, E. Incorporating Attacker Capabilities in
Risk Estimation and Mitigation. Computers & Security
51, (2015), 41–61.

[39] OWASP. Mobile Security Project - Top Ten Mobile
Risks.
https://www.owasp.org/index.php/Projects/OWASP_Mob
ile_Security_Project_-_Top_Ten_Mobile_Risks.

[40] OWASP. Software Assurance Maturity Model Project.
https://www.owasp.org/index.php/OWASP_SAMM_Proj
ect.

[41] Ponemon Institute. The State of Mobile Application
Insecurity. 2015.

[42] Rigby, P.C. and Bird, C. Convergent Contemporary
Software Peer Review Practices. Proceedings of the 2013
9th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2013, (2013), 202.

[43] Schneier, B. Secrets and Lies: Digital Security in a
Networked World. John Wiley & Sons, 2011.

[44] Stol, K., Ralph, P., and Fitzgerald, B. Grounded Theory
in Software Engineering Research : A Critical Review
and Guidelines. Proceedings of the 38th International
Conference on Software Engineering, ACM (2015), 120–
131.

[45] Vision Mobile. Developer Economics Q3 2014: State of
the Developer Nation. London, 2014.

[46] Weir, C. Penrillian’s Secure Development Process. 2013.
http://www.penrillian.com/sites/default/files/documents/S
ecure_Development_Process.pdf.

[47] Weir, C. How to Improve the Security Skills of Mobile
App Developers: Comparing and Contrasting Expert
Views. 2016.

[48] Weir, C., Rashid, A., and Noble, J. How to Improve the
Security Skills of Mobile App Developers: Comparing
and Contrasting Expert Views. Twelfth Symposium on
Usable Privacy and Security (SOUPS 2016): Workshop
on Security Information Workers, USENIX Association
(2016).

13

[49] Weir, C., Rashid, A., and Noble, J. Early Report: How to
Improve Programmers’ Expertise at App Security? 1st
International Workshop on Innovations in Mobile Privacy
and Security Co-Located with the International
Symposium on Engineering Secure Software and Systems
(ESSoS 2016), CEUR-WS.org (2016), 49–50.

[50] Weir, C., Rashid, A., and Noble, J. Reaching the Masses:
A New Subdiscipline of App Programmer Education.
FSE’16: 24nd ACM SIGSOFT International Symposium
on the Foundations of Software Engineering
Proceedings: Visions and Reflections, ACM (2016).

[51] Xie, J., Chu, B., Lipford, H.R., and Melton, J.T. ASIDE:
IDE Support for Web Application Security. Proceedings
of the 27th Annual Computer Security Applications
Conference on - ACSAC ’11, (2011), 267.

[52] Yskout, K., Scandariato, R., and Joosen, W. Do Security
Patterns Really Help Designers? 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering,
IEEE (2015), 292–302.

	I. Introduction
	II. Related Work
	A. How Programmers Learn Security
	B. Resources to Help Programmers
	C. Techniques to Help Teams Improve
	D. Limitations of Existing Literature

	III. Methodology
	A. Choice of Methodology
	B. Grounded Theory
	C. Research Participants

	IV. Introducing Dialectic
	A. Specific Dialectic Techniques

	V. Brainstormed Attacker Profiles
	A. Exploration
	B. Solution

	VI. Negotiated Security
	A. Exploration
	B. Solution

	VII. Cross-Team Security Discussion
	A. Exploration
	B. Solution

	VIII. Security Challenge
	A. Exploration
	B. Solution

	IX. Automated Challenge
	A. Exploration
	B. Solution

	X. Responsive Development
	A. Exploration
	B. Solution

	XI. Discussion
	A. Relationship to Existing Work
	B. Improvements on Existing Practice
	C. Research Validity
	D. Future Work

	XII. Conclusion
	References

