
Towards a Timely Causality Analysis
for Enterprise Security

Yushan Liu∗, Mu Zhang†, Ding Li‡, Kangkook Jee‡,
Zhichun Li‡, Zhenyu Wu‡, Junghwan Rhee‡, Prateek Mittal∗

∗Princeton University, †Cornell University, ‡NEC Labs America

Outline

  Introduction
  System Overview

•  Reference Model
•  Priority Score

  Evaluations
  Conclusion

Outline

  Introduction
  System Overview

•  Reference Model
•  Priority Score

  Evaluations
  Conclusion

 4

Advanced Persistent Threat (APT)

•  6,000 severe incidents reported in the past decade
•  conducted in multiple stages, stealthy

Example of an ATP attack: Insider Data Theft

4
3

1

High-profile Host

Send	to	Attacker’s	Site		Download	a	Malicious	
Script		

Steal	Sensitive	
Files	

Move	to	a	Low-
profile	Host	

•  An intrusion may be detected at one of the stages
‣  detection only reveals a small portion of attack traces
‣  many individual footprints are seemingly insignificant and keep undetected

5

Low-profile Host
Detection

point

Attacker

2

5

•  To achieve a thorough understanding of the detected attack
•  Perform attack causality analysis
‣  discover all attack traces (provenances & consequences)

To Connect the Dots: Attack Causality Analysis

4
3

1

High-profile Host

Send	to	Attacker’s	Site		Download	a	Malicious	
Script		

Steal	Sensitive	
Files	

Move	to	a	Low-
profile	Host	

5

Low-profile Host
Detection

point

Attacker

2

6

Send	to	Attacker’s	Site		Download	a	Malicious	
Script		

Steal	Sensitive	
Files	

Move	to	a	Low-
profile	Host	

Attack Causality Analysis: Use Audit Logs

4
3

1

High-profile Host

Socket	
	Socket	

Process	Create	
File	R/W	

Socket	
File	R/W	

5

Low-profile Host
Detection

point

Attacker

2

•  Reconstruct multi-hop causal dependencies
‣  between system objects: processes, files and sockets
‣  cross-host tracking: reverse IP mapping

7

 8

Forward Tracking Graph

•  Ideally, only attack events are included

•  Ideally, only attack events are included
•  Numerous noises introduced due to system routines 9

Forward Tracking Graph w. Noise

•  Increase system downtime
‣  systems require complete cleanup before returning to normal operation
‣  grow to millions of dollars

•  Lose chance to prevent future attacks
‣  intrusion may further develop
‣  need to take prompt responses

10

Attack Causality Analysis is Time-sensitive

Timely Causality Analysis for Enterprise Security!

•  Focus on the dependency explosion problem via data reduction
‣  eliminate irrelevant system dependencies
‣  still invest excessive time in analyzing numerous relevant, yet benign and

complex OS events

11

Prior Work

•  Lack the ability to differentiate unusual activities from common system operations
‣  treat all (abnormal and normal) equally
‣  keep track of every relevant relation

•  We designed a causality tracker PrioTracker
‣  prioritizes the search for abnormal causal dependencies
‣  first to introduce priority to graph construction 12

Our Solution: Prioritize Abnormal Events

Outline

  Introduction
  System Overview

•  Reference Model
•  Priority Score

  Evaluations
  Conclusion

System Overview: Collection & Storage

Stream	Processing	Platform	

Causality	
Tracker	

Event	Database	

Collecting	OS-Level	Events	

Reference	Model	
Builder	

PrioTracker	

Incident	 Dependency	Graph	

Reference	
Database	

KV	

•  Data Collection
‣  150 hosts in an

enterprise

•  Event Storage
‣  1TB of 2.5 billion events

collected in one week
‣  largest dataset
‣  a centralized global view
‣  support cross-host

tracking

14

Java:
PrioTracker
20K LOC
Ref Model
10K LOC

Stream	Processing	Platform	

Causality	
Tracker	

Event	Database	

Collecting	OS-Level	Events	

Reference	Model	
Builder	

PrioTracker	

Incident	 Dependency	Graph	

Reference	
Database	

KV	

Data	Collection	

E	 Reference
Model

Causality
Tracker		

15

System Overview: PrioTracker

•  Record common routine activities across a group of homogeneous
hosts in corporate computer systems

env	->	run-parts	

scp	->	newfile.tar	

Normal	

Abnormal	

16

Reference Model

•  Output a rareness score
‣  count the occurrences of an event
‣  the less commonly seen, the higher rareness

•  Generality: how to match OS events that can be diverse across
hosts
‣  event abstraction

‣  process: =executable path, file: =path name
‣  socket: =remote IP address + remote port number

17

Reference Model: Generality

‣  path normalization

scp	->	newfile.tar	
Abnormal	Normal	
After	attack	Week	1	

Week	2	

Week	3	

Week	4	

Abnormal	
After	attack	

18	

Reference Model: Robustness

•  Robustness: poisoning attacks
‣  attackers compromise machines
‣  conduct a burst of recurring malicious events

•  Robustness: poisoning attacks
‣  introduce a time window
‣  repeated occurrences of an event on the same host will only be considered once

0.8	

0.9	

0.7	
0.9	

0.3	

0.1	 0.2	

0.2	
0.2	

0.2	
0.2	

0.2	
0.2	

0.2	

0.3	

0.2	 0.9	
0.8	

1.0	
0.9	

0.9	

0.9	0.7	

0.7	

1.0	

0.4	

0.1	

0.1	

0.1	

0.2	

0.1	

0.4	 0.1	
0.2	

0.4	

0.2	

Local
Optimal!
Deep attacks are
missed

•  select the most uncommon event at each step?
19

Priority-based Causality Tracking

•  Formalize ‘timely’
‣  Goal: track the maximum unusual events within a time limit

•  Several Factors

•  Priority Score = α × rareness score + β × fanout score
•  Trade-off between analysis coverage and time effectiveness

 Rareness Score
‣  less common, higher score
‣  reflect the local rareness

 Fanout Score
‣  lower fanout, higher score
‣  expand the search area by fast exploring

low-fanout events

Hill Climbing
Algorithm!

…

20

Global Optimization Problem

Outline

  Introduction
  System Overview

•  Reference Model
•  Priority Score

  Evaluations
  Conclusion

Experiment Setup

•  54 Linux and 96 Windows in an enterprise

22

•  Training for weights in priority function
‣  1,113 random starting points that lead to big graphs (up to 73,221 edges)
‣  time limit = 60 min

•  Test
‣  1TB of 2.5 billion events collected from 150 hosts in one week
‣  time limit = 1 day

•  Eight representative attack cases
‣  consider noise interleaved with attack traces due to program logic, shared files and long-running processes

Results: FNR (accuracy)

•  We can capture the attack traces missed by existing trackers

23

Baseline:
•  62% FNR for Chearting Student
•  40% FNR for wget-gcc

PrioTracker:
•  0% FNR for both

 24

Results: Time Effectiveness

•  We can reduce the analysis time by up to two orders of magnitude

Baseline:
•  > one day for both

PrioTracker:
•  40m for Cheating Student
•  6m for wget-gcc

25

Case Study: Insider Data Theft

Baseline: 206th step
PrioTracker: 31st step

Baseline: 124th step
PrioTracker: 293rd step

•  We prioritize the search for
abnormal events over routine Linux
maintenance

Outline

  Introduction
  System Overview

•  Reference Model
•  Priority Score

  Evaluations
  Conclusion

•  First to formalize timely attack causality analysis and to introduce
priority to attack graph construction.

•  Implemented PRIOTRACKER that computes priority based on its
rareness and topological characteristics in the causality graph

•  Built a reference model to differentiate unusual behaviors from normal
ones

•  Evaluated on 1TB of 2.5 billion events from 150 hosts
•  Captured attack traces that are missed by existing trackers and

reduced the analysis time by up to two orders of magnitude

27

Conclusion

Thank you!
Q & A

•  Attacks cannot be launched solely using dependencies with big fanout
‣  e.g, apache —> bash is an essential low-fanout step
‣  Other attack edges can be discovered from thousands of benign edges in a faster

fashion

•  Fast-tracking benign events with low fanout only incurs a small delay
‣  processing benign dependencies with huge fanout (up to tens of thousands) can be

time consuming

28

Discussion: Evasion Using High-fanout Events

•  Construction of causality graphs can be potentially parallelized with
distributed computing
‣  any individual branch to be explored can be processed separately
‣  branches may bear different priorities and therefore are assigned with

corresponding computing resources
‣  dependencies on each host can also be pre-computed in parallel
‣  cross-host tracking thus becomes the concatenation of multiple generated graph

•  Massive and pervasive dependencies among system events bring
significant challenges

29

Discussion: Distributed Causality Tracker

 30

Attack Cases

•  Normal activities connect the malicious activities to benign ones and
cause graph explosion

31

Examples of Noises (Normal Activities)

Case Study: Shellshock
Detected	by	Firewall	

1st	round	of	
Bash	exploit:	
recon	and	
cleanup	

2nd	round	of	Bash	exploit:	steal	data	and	
move	it	to	another	host	via	HTTP	

Noises	were	introduced	when	normal	Bash	read	
from	.bash_history	

Rare	events	for	new	files	

With	sufficient	time,	PrioTracker	searches	exhaustively,	while	
prior	work	prunes	off	all	events	beyond	.bash_history.		

32

Case Study: Phishing Email

Malicious	Attachment	
Detected	by	Antivirus	

Start	fake	
java.exe	

Connect	to	SQL	server	and	
trigger	multiple	cmd.exe	that	
created	malicious	.vbs	

Malicious	.vbs	was	executed	to	start	
gucio.exe,	which	ran	two	SQL	queries	via	
command	line	to	dump	data.	

Noise	was	introduced	by	Explorer.exe,	which	further	ran	
7ZG.exe	that	wrote	to	massive	amount	of	files	

PrioTracker	was	not	able	to	prioritize	osql.exe	Database	dump	has	already	been	discovered	at	19th	and	
20th	steps	due	to	pervasive	connection	of	attacks.	

PrioTracker	explores	the	creation	of	.vbs	malware	and	database	dump	first	due	to	their	rareness.	

33

Time Effectiveness: 75 Random POI

• PrioTracker	can	always	find	more	rare	events	than	baseline	tracker	

34

