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Notable Data Breach in 2017

= Forbes

Security = #CyberSecurity
SEP 7, 2017 @ 10:42 PM 41,538 @

EQUIFAX®

Equifax Data Breach Impacts 143 Million

Americans

‘ Black Duck Blog

Equifax, Apache Struts, & CVE-
2017-5638 Vulnerability

Written by Fred Bals | Senior Content Writer/Editor | Sep 15,
2017

Equifax Inc. @ g
@Equifax

We recently discovered a cybersecurity
incident involving consumer information.

Once discovered, we acted immediately to

stop the intrusion.
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Data Provenance aka Audit log

- Lineage of system activities
- Represented as Directed Acyclic Graph (DAG)
- Used for forensic analysis

Code Execution Audit log Provenance Graph

2. NGINX, Receives from abc.com

NGINX: 3. NGINX, Reads File index.html
recv(.., “abc.com”); 4

fread(“index.html?”); T

) —me
exec(“. /NGINX”), 1. Bash, Spawns NGINX




Data Provenance in a Cluster

Centralized auditing not
practical due to two
limitations
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Master Node




Limitation#1: Graph Complexity

- NGINX and MySQL running for 5 mins on a single machine
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Limitations

#2: Storage overhead

- Leads to network overhead as logs are transferred to master
node
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Winnower

- Cluster applications are replicated in accordance with
microservice architecture principle

* Replicated apps produce highly homogeneous
provenance graphs
- core execution behaviour is similar

Key ldea:

Remove redundancy from provenance graphs
across cluster before sending to master node




Master Node View with Winnower
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Winnower

- Build consensus model across cluster using graph grammars

- Like string grammar, graph grammars provide rule-based
mechanisms
- For generating, manipulating and analyzing graphs
» Induction — produce grammar from a given graph
- Parsing — membership test of a given graph is in a grammar
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Graph Grammar
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Architecture

Worker Node
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Master Node

Model graphs/grammars
Model from cluster Winnower
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Fine-grained
Graph

Co @
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Architecture

Worker Node
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Master Node

Fetch graph at

Aggregated next epoch
Aggregator gce updates Agent /

/\

Fine-grained Abstracted Model
Graph Graph Graph

Graph
ﬁ

Abstraction

Cee® &

Graph

oY

Induction

St

14



Architecture

Worker Node

Worker Nodes
£ | )
£ | )

Master Node

|

Query part of
Provenaace graph
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Provenance Graph Abstraction

- Graph Induction process builds a model/grammar that concisely
describe the whole graph

- However, instance-specific fields frustrate any attempts to build a
generic application behaviour model

Node 1 Node 2
ftp . ftp
L =L No General model
ey t/ = u\'stmer . as instance specific
istener, . \ ) .
- pid:2791.; - pid:2789 - Graph information such
| ] Induction PID is different
ftp worker ftp worker
pid:2795 pid:2797 among graphs

192.168.0.1 Jup/File2 192.168.0.2
Inode:5

/up/File1
Inode:3
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Provenance Graph Abstraction

- Provenance graph vertices have well defined fields
- E.9. pid:1234, FilePath:/etc/1d. so

- Defined rules manually that remove or generalize these fields

Node 1 Node 2 Node 1 Node 2
ftp ftp
192.168.0.1 pid:2788 pid:2780 192.168.0.2 192.168.0.0/22 ftp ftp 192.168.0.0/24
ftp listener ftp listener _ .
pid:2791 pid:2789 Graph > ftp listener ftp listener
\ L | . \ A
“Abstraction
ftp worker ftp worker
pid:2795 pid:2797 ftp worker ftp worker
192.168.0.1 = ~700 Filed Jup/File2 192.168.0.2 192.168.0.0/24 192.168.0.0/24
Inode:3 Inode:5 @ @




Provenance Graph Induction

- Deterministic Finite Automata (DFA) Learning to generate grammar
- Encodes the causality in generated models

* In DFA learning the present state of a vertex includes the path taken
to reach the vertex (provenance ancestry)
- Winnower extends it to remember descendants (provenance progeny)

lllllllllllllll

= Ancestry
: of gzip vertex

lllllllllllll

- State of each vertex consist of three items:
1. Label
2. Provenance ancestry
3. Provenance progeny
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Progeny of gzip vertex 18



Provenance Graph Induction

- Finds repetitive patterns using standard implicit and explicit
state merging algorithm

- Implicit state merging combines two subgraphs if states of each
vertex are same in both subgraphs

Node 1 Node 2 ftp
ftp ftp

\ ftp listener

ftp listener ftp ”i‘ener Graph
Induction

ftp worker ftp worker
192.168.0.0/24 @
@ 192.168.0.0/24

192.168.0.0/24 \ ‘
Confidence level 5

ftp worker

Legend




Explicit State Merging

- At high-level explicit state merging
* Picks two nodes and make their states same
- Check if subgraph can be merged implicitly

- Consider a chained map reduce job Graph Grammar

S
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=T|V
=A->X|A->Y
=B->W
=C->W
=D|D->S

java java
mapper mapper

o o
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Provenance Graph Induction

- Consider a graph with a malicious activity

« Malicious behavior is visible in the final model
Node 2 Master Node

< ftp

fto |= listener ftp
Node 1 : -7
iy etz Malicious
ftp @ p file
worker

ftp
listener Gra ph ftp worker

f Induction

= Node 3
il X> fto [ Iis’:c;%er

Y

?

f ‘ :
bash bash |+ wget
f ; ftp
wget worker Confidence level
b Legend 1 3
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Evaluation Setup

- Setup
- 1 VM as master node, 4 VMs as worker nodes
- SPADE and Docker Swarm
- Epoch size 50 sec

- Metrics
- Storage Overhead
- Computational Cost
- Effectiveness
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Storage Overhead on Master Node

98.7% decrease
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Storage Reduction on Master Node
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Evaluation: Computation Cost

- Average time spent in induction and membership test at each epoch
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Case Study: Ransomware Attack

é  Attacker exploits Redis database
. server vulnerability version < 3.2
red|s « Vulnerability allows attacker to change

SSH key and log in as Root

« Attacker deletes the database and left
a note using vim to send bitcoins get
database back

26



Traditional Graph of Attack

- 10 instances of redis running in the cluster
- ~80Kk vertices and ~83K edges with 161 MB size
- Part of provenance graph shown below
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Winnower Generated Provenance graph

- 94 vertices and 68 edges with 0.7 MB size
- Part of graph is shown below:

/uploads/ @Iog/redis/redis@
G>\~ ; < Jproc/12743/stat_> Confidence level
Legend 1 10

bash [« Nginx | Worker 1

‘ ——— :wb/redis/dump.rdD

Attack
. Provenance




Winnower Generated Provenance graph

- What happens if we attack all the nodes in the cluster

/upIoads/ /var/log/redls/redlsD
CD\‘ i < proc/12743/stat__—> Confidence level
bash |+ Nginx |« Worker 1 Legend 10
:@b/redls/dump.rdD

redls -server

Attack
. Provenance

............................................................................................




Conclusion

- Winnower is the first practical system for provenance-based
auditing of clusters at scale with low overhead

- Winnower significantly improves attack identification and
iInvestigation in a large cluster
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Questions

Thank you for your time.
whassan3@illinois.edu
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Threat model

- Assumptions
- Winnower only tracks user-space attacks i.e. trusts the OS
- Log integrity is maintained

- Attack surface
- Distributed application replicated on Worker nodes

- Attacker’ motive

- Gain control over worker node by exploiting a software vulnerability in
the distributed application

33



Online Learning

DFA
Learning

Abstracted graph

Aggregated
Model

Graph
Grammar

Model
Aggregator
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