
K-Miner
Uncovering Memory Corruption in Linux

David Gens
Simon Schmitt

Ahmad-Reza Sadeghi

Cyber Security Center (CYSEC)
Technische Universität Darmstadt

Lucas Davi

Universität of Duisburg-Essen

Why Static Analysis?

Big	Picture	

COMPILER	KERNEL	
FILES	

HARDWARE	

APP	 APP	APP	

OS	

Memory	Corruption:	
• 	Use-After-Free	
• 	Double	Free	
• 	Use-After-Return	
• 	Memory	Leaks	

	

Big	Picture	

COMPILER	KERNEL	
FILES	

Attacke
r	

HARDWARE	

APP	 APP	APP	

OS	

Dynamic	Analysis	at	run	time.	Static	Analysis	at	compile	time.	

Memory	Corruption:	
• 	Use-After-Free	
• 	Double	Free	
• 	Use-After-Return	
• 	Memory	Leaks	

	

Data-Flow	Analysis:	Graphs	

void	main()	{	
								int	a	=	1;	
								int	*p;	
									
								if	(a	!=	0)	

	p	=	&a;	
	
								printf(“%d\n“,	*p);	
}	

Call	Graph	

printf	

main	

Control-Flow	Graph	

Entry:	
int	a	=	1	
int	*p	

p	=	&a	

	printf(“%d\n“,	*p);	

Data-Flow	Analysis:	Graphs	

void	main()	{	
								int	a	=	1;	
								int	*p;	
									
								if	(a	!=	0)	

	p	=	&a;	
	
								printf(“%d\n“,	*p);	
}	

Value-Flow	Graph	

a	p	

p=&a	

phi	

*p	

Pointer	Assignment	Graph	

a	

p	

Obj_a	

Obj_p	

Constraint		Graph	

a	

p	

Obj_a	

Obj_p	

Stack	

Pointer	

Source-Sink	Analysis	

void	main()	{	
								int	*p	=	alloc();	
									
								if	(p	!=	NULL)	

	free(p);	
	
								free(p);	
}	

p=alloc()	

alloc	

free	

phi	

free	

kalloc_x	p	
SOURCE	

SINK	

SINK	

There	exists	a	path	that	reaches	two	sinks.	

Scalability	and	Precision	
High	

Complexity	

Low	
Complexity	

+	

Context-Sensitive	
+	

Field-Sensitive	

+	

Inter-Procedural	Analysis	

Kernel	Static	Analysis	-	History	

2002 												2003 									2008	 							2016 											 				2017	

Smatch	
[by	Charpenter]	

Sparse		
[by	Torvalds]	

Coccinelle	
[Padioleau	et	al.		EuroSys’08]	

APISAN	
[Yun	et	al.		USENIX‘16]	

EBA	
[Abal	et	al.		Springer’17]	

Linux	Kernel:	Lines	of	Code	

M	

5M	

10M	

15M	

20M	

25M	

1.
0	

1.
2	

2.
0	

2.
2	

2.
6	

3.
0	

3.
2	

3.
6	

3.
19
	

4.
0	

4.
2	

4.
6	

4.
10
	

4.
12
	

Lines	of	Code	

Version	

0	

Contributions	and	Challenges	

Analysis	Format	
	
	

Large	Codebase	
	
	

Expandability	
	
	

Data-Flow	Analysis	
	
	

Different	Kernel	Versions	

Transformation	of	the	kernel	source	into	
the	LLVM	intermediate	representation	
	
Scaling	inter-procedural	Data-Flow	
Analysis	to	millions	of	kernel	code	lines	
	
A	modular	design,	adding	new	checkers	is	
straightforward	
	
Combine	existing	and	novel	approaches	
for	inter-procedural	bug	checkers	
	
Reports	of	different	kernel	versions	can	be	
managed	using	a	web-based	interface	

Enabling	Data-Flow	Analysis	
•  Idea:	Partitioning	the	kernel	

along	the	system	call	API	

•  System	calls	are	the	interface	
between	user-	and	kernel-
space	

•  Vulnerabilities	have	to	be	
exploited	though	system	calls	

Attacke
r	

HARDWARE	

APP	 APP	APP	

KERNEL	

Syscall	API	

Driver	API	

Enabling	Data-Flow	Analysis	

APP	 APP	

HARDWARE	

APP	

•  Idea:	Partitioning	the	kernel	
along	the	system	call	API	

•  System	calls	are	the	interface	
between	user-	and	kernel-
space	

•  Vulnerabilities	have	to	be	
exploited	though	system	calls	

Attacke
r	

Enabling	Data-Flow	Analysis	

APP	 APP	

HARDWARE	

APP	

•  Idea:	Partitioning	the	kernel	
along	the	system	call	API	

•  System	calls	are	the	interface	
between	user-	and	kernel-
space	

•  Vulnerabilities	have	to	be	
exploited	though	system	calls	

Attacke
r	

Enabling	Data-Flow	Analysis	

APP	 APP	

HARDWARE	

APP	

•  Idea:	Partitioning	the	kernel	
along	the	system	call	API	

•  System	calls	are	the	interface	
between	user-	and	kernel-
space	

•  Vulnerabilities	have	to	be	
exploited	though	system	calls	

Attacke
r	

Design	and	Workflow	
COMPILER	KERNEL	

FILES	

MAKE	FILE	

K-MINER	

Pre-Processing	
• 	Model	Memory	Obj	

• 	Define	Contexts	

• 	Init	Contexts	

IR	

Design	and	Workflow	
COMPILER	KERNEL	

FILES	

MAKE	FILE	

K-MINER	

Pre-Processing	
• 	Model	Memory	Obj	

• 	Define	Contexts	

• 	Init	Contexts	

Partitioner	
	

Bug	Checker	
	

global_x	 global_y	

									Report	Engine	

IR	

												Memory-Corruption	Report:	
												Use-After-Return:	global_x	->	local_y	

Implementation	Details	
•  K-Miner	builds	on	top	of	LLVM	and	SVF	
	

•  Environment	Setup:	
§  Register	allocation	sites	by	using	a	list	of	kernel	allocation	functions	for	

dynamically	allocated	objects	
	

•  Context	Handling:	
§  Defines	syscalls	and	initcalls	contexts	
§  Performs	a	call-graph	analysis	and	pointer	analysis	
§  Multi-Level	reduction	of	relevant	partitions	
	

•  Bug	Checker:	
§  Exploit	LLVM‘s	Pass-Infrastructure	
§  Covers	Use-After-Return,	Double-Free	and	Memory-Leaks	
§  Performs	particular	analysis	and	several	validation	checks	

	

Use-After-Return	Checker	
void	sys_foo()	{	
								do_foo()	
								return	
}	
	

void	do_foo()	{	
								int	local_x	=	1	
								add_x(&local_x)	
								if(cond())	
																remove_x()	
								return	
}	
	

void	add_x(int	*p)	{	
								global_p	=	p	
}	
	

void	remove_foo()	{	
							global_p	=	NULL	
}	 Value-Flow	Graph	

global_p	

local_x	

null	

1	

2	

3	

5	

6	

4	

add_x	

remove_x	

do_foo	

1
2

3

5

4

6

Use-After-Return	Checker	
void	sys_foo()	{	
								do_foo()	
								return	
}	
	

void	do_foo()	{	
								int	local_x	=	1	
								add_x(&local_x)	
								if(cond())	
																remove_x()	
								return	
}	
	

void	add_x(int	*p)	{	
								global_p	=	p	
}	
	

void	remove_foo()	{	
							global_p	=	NULL	
}	 Value-Flow	Graph	

global_p	

local_x	

null	

1	

2	

3	

5	

6	

4	

add_x	

remove_x	

do_foo	

1
2

3

5

4

6 local_x	

1	

2	

3	

5	

6	

global_p	

Evaluation	
•  Coverage:	

•  Four	Kernel	Versions	
•  ca.	300	system	calls	

•  Scalability:	
•  Ø	25	min.	per	system	call	
•  Ø	12	GB	memory	usage	

•  Real-world	Impact:	
•  CVE-2014-3153	(UAR)	
•  CVE-2015-8962	(DFree)	

•  Extensibility:	
•  Additional	bug	checkers	

can	be	added	as	Passes	

Version	 Functions	 Globals	 Locals	 Total	Pointer	

v3.19	 1667/9933	 124/13624	 6967/419554	 97248/5689390	

v4.02	 2086/104247	 122/14771	 9309/451451	 127894/571316	

v4.06	 2208/104430	 126/14989	 9947/453052	 133313/6174471	

v4.10	 2246/120794	 157/16530	 9873/518394	 128253/7091977	

Version	 MLoC	 Run-Time	 Memory	 UAR	 MLeak	 DFree	

v3.19	 15.5	 796.69s	 8.765	GB	 7/40	 3/131	 1/13	

v4.02	 16.3	 1435.62s	 13.23	GB	 11/46	 2/106	 0/19	

v4.06	 17.1	 1502.54s	 11.76	GB	 3/50	 2/104	 0/31	

v4.10	 22.1	 2312.14s	 12.86	GB	 0/65	 1/105	 0/22	

https://github.com/ssl-tud/k-miner	

https://github.com/ssl-tud/k-miner	

Questions?	

