
KeyDrown: Eliminating Software-Based Keystroke Timing
Side-Channel Attacks

M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard
Feb 20, 2018—NDSS’18

Graz University of Technology



Motivation www.tugraz.at

• Keystroke timing attacks infer typed words, passphrases or create user
fingerprints

• 2 new attacks to recover keystroke timings
• Build an effective countermeasure

2 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Background



Keystroke Timing Attacks www.tugraz.at

• Acquire accurate timestamps of keystrokes for input sequences
• Depend on bigrams, syllables, words, keyboard layout and typing experience
• Exploit timing characteristics to learn information about the user or the
input

• Infer typed sentences
• Recover passphrases

3 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Keystroke Timing Attacks www.tugraz.at

• Many ways to obtain keystroke timings have been presented:
• SSH leaks inter-keystroke timings in interactive mode [Son+01]
• Network latency with significant traffic [Hog+01]
• Instruction and stack pointer, interrupt, network packet statistics [Zha+09]
• CPU usage [Jan+12]
• Wi-Fi Signals [Ali+15]
• /proc/interrupts [Dia+16]
• JavaScript Sensor API [Meh+16]
• Cache attacks

4 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Cache Attacks: Summary www.tugraz.at

• Cache side-channel attacks allow to monitor cache accesses by a victim
process

• Measuring access time of an address, one can infer if the address is cached
or not

• Flush+Reload: Shared memory between victim process and attacker process
• Prime+Probe: Applicable if no shared memory available, more noisy

5 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Attack Surface www.tugraz.at

• Processing a keystroke involves computations on all levels of the software
stack

• Multiple possibilities to observe the input

6 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Interrupt-timing attacks



Interrupt-timing Attacks www.tugraz.at

• Idea: Continuously acquire a high-resolution timestamp and monitor
differences between subsequent timestamps

• Requires unprivileged code execution and an accurate timing source (e.g.,
rdtsc)

7 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

• Idea: Continuously acquire a high-resolution timestamp and monitor
differences between subsequent timestamps

• Requires unprivileged code execution and an accurate timing source (e.g.,
rdtsc)

7 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

1 int now = rdtsc();
2 while (true) {
3 int last = now;
4 now = rdtsc();
5 if ((now - last) > threshold) {
6 reportEvent(now, now - last);
7 }
8 }

• Look at how much time has passed since the last measurement
• Significant differences occur when the process is interrupted
• More time the operating system consumes to handle the interrupt
→ higher timing difference

8 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

1 int now = rdtsc();
2 while (true) {
3 int last = now;
4 now = rdtsc();
5 if ((now - last) > threshold) {
6 reportEvent(now, now - last);
7 }
8 }

• Look at how much time has passed since the last measurement

• Significant differences occur when the process is interrupted
• More time the operating system consumes to handle the interrupt
→ higher timing difference

8 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

1 int now = rdtsc();
2 while (true) {
3 int last = now;
4 now = rdtsc();
5 if ((now - last) > threshold) {
6 reportEvent(now, now - last);
7 }
8 }

• Look at how much time has passed since the last measurement
• Significant differences occur when the process is interrupted

• More time the operating system consumes to handle the interrupt
→ higher timing difference

8 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

1 int now = rdtsc();
2 while (true) {
3 int last = now;
4 now = rdtsc();
5 if ((now - last) > threshold) {
6 reportEvent(now, now - last);
7 }
8 }

• Look at how much time has passed since the last measurement
• Significant differences occur when the process is interrupted
• More time the operating system consumes to handle the interrupt
→ higher timing difference

8 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

·1010

0

1

2 ·105

p a s s w o r d

Runtime [cycles]

De
lta

[c
yc
le
s]

9 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Multi-Prime+Probe Attack on the
Kernel



Multi-Prime+Probe Attack on the Kernel www.tugraz.at

• Attack keyboard interrupt handler within the kernel
• Observing cache activity in the cache sets used by the interrupt handler
• Reduce influence of system noise by combining simultaneous Prime+Probe
attacks on different addresses

• First highly accurate keystroke timing based on Prime+Probe on the last-level
cache

10 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Multi-Prime+Probe Attack on the Kernel www.tugraz.at

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

·1010

0

2

4

Runtime [cycles]

Ac
tiv

e
ca
ch

e
se
ts

11 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Building a counter measure



Attack Model www.tugraz.at

• Unprivileged code execution on a recently updated system
• Continuously monitor a side-channel to obtain traces for all user input

• Generally only a single trace for a user input sequence
• Multiple traces for password input

12 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Requirements www.tugraz.at

• R1: Minimize Side Channel Accuracy
• Keystroke timing attacks require a high precision and a high recall

• R2: Reduction of Statistical Characteristics in Password Input
• An attacker can combine information from multiple traces (password input)
and exploit statistical characteristics

• Number of required traces must be impractically high
• Studies estimate that users have 1-5 different passwords, enter 5 passwords per
day on average and 56% change passwords in 6 months: 913 traces

• R3: Implementation Security
• Implementation of the countermeasure itself could leak side-channel
information

• If all requirements are met, a side-channel attack in the presence of the
counter measure is not practical anymore

13 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Simplistic approach www.tugraz.at

• Disallow unprivileged access to statistics/APIs?
⇒ Different side-channels exist

• Restrict high-resolution timers (rdtsc/perf )?
⇒ One can build his own timers

• Instead: Adding noise by injecting fake key strokes

14 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



KeyDrown



KeyDrown www.tugraz.at

Kernel

Real key Fake key

/dev/input/event*

Library
libgtk / libinput

Widget Hidden
Window

Application
Window

• Multi-layered countermeasure
• Injecting fake key strokes at the root
traveling through the entire
software stack

15 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



First Layer: Injecting interrupts www.tugraz.at

• Protection against interrupt-based attacks and timing-based attacks by
artificially injecting interrupts

• Real interrupt replaces one fake interrupt within a multiple of fake interrupts
• Implementation ensures that interrupt density uniform over time and, thus,
independent of real interrupts

16 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



First Layer: Injecting interrupts www.tugraz.at

Hook IRQStart timer

Eventis real? Inject IRQ

Inject timer interrupt

Randomly delay ISR

Fetch IRQ handler

Send eventRestart timer

TimerIRQ

Yes

No

• Implemented as a kernel module that handles hardware interrupts from the input
device and timer interrupts:

• Timer interrupts, it injects a keyboard interrupt
• Keyboard interrupt, it injects a non-periodic one-shot timer with a random
delay

• For real and fake keystrokes, both interrupts occur

17 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Second Layer: Protecting libraries www.tugraz.at

• Protects library handling the user input against Flush+Reload and
Prime+Probe attacks

• Real and injected keystrokes should have the same code paths and data
accesses to the library

• Injected keys are valid, but are typically unused keys
• Might not have the same code path within the library

• Duplicate key, randomize its value and send it to a hidden window

18 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Third Layer: Protecting password entry www.tugraz.at

• Protect the actual password entry
• Generating cache activity on the cache lines that are used by the password’s
buffer

• Access the buffer whenever a real or fake keystroke is received
• Mitigates Prime+Probe attacks on the buffer

19 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Evaluation



Evaluation www.tugraz.at

• Uniform key-injection interval [0,20ms]
• Any real key replaces the currently scheduled key injection
• Distribution of real keystrokes in these 20ms are uniform
• Uniform interrupt density function with 100 events per second

20 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Evaluation www.tugraz.at

• Compare results to a always-one oracle and a random-guessing oracle
• Random guessing oracle: F-Score 0.14
• Always-one oracle: F-Score 0.15

• If side-channel yields an F-Score of this value or below, provides no useful
information

21 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Flush+Reload on libgdk-3.so www.tugraz.at

0 1 2 3

·109

0

200

400

600

Runtime [cycles]

La
te
nc

y
[c
yc
le
s]

Without Keydrown, F-Score 0.99

0 1 2 3

·109

0

200

400

600

Runtime [cycles]

La
te
nc

y
[c
yc
le
s]

With Keydrown, F-Score 0.09

22 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Prime+Probe on i8042_interrupt www.tugraz.at

0 0.2 0.4 0.6 0.8 1 1.2

·109

0

2

4

Runtime [cycles]

Ac
tiv

e
ca
ch

e
se
ts

Without Keydrown, F-Score 0.81

0 2 4 6

·108

0
2
4
6

Runtime [cycles]

Ac
tiv

e
ca
ch

e
se
ts

With Keydrown, F-Score 0.11

23 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Interrupt (rdtsc) www.tugraz.at

0.6 0.8 1 1.2

·109

0
100k
200k
300k

Runtime [cycles]

De
lta

[c
yc
le
s]

Without Keydrown, F-Score 0.94

0.6 0.8 1 1.2

·109

0
100k
200k
300k

Runtime [cycles]

De
lta

[c
yc
le
s]

With Keydrown, F-Score 0.14

24 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



R2: Combining multiple traces www.tugraz.at

• Model powerful attacker:
• Noise-free side-channel
• Perfect (re-)alignment
• Known length of the password

• Far stronger than a practical attacker

25 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



R2: Combining multiple traces www.tugraz.at

• Simulated typing variance ±40ms (bit less than reported By Lee et al) for
trained text sequences

• Generated 300 000 traces
• Containing 8 keystrokes within 2 seconds

• How many randomly chosen traces have to be combined to extract the
correct positions of keystrokes

• 2458 traces, more than deemed to be secure in R2

26 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



R3: Secure implementation www.tugraz.at

• First layer
• Runs in the kernel and can only be attacked by Prime+Probe
• In general, execution flow and data accesses should be the same
• For few derivations, we perform same memory accesses for non-executed paths

• Second layer
• User space binary and could theoretically be attacked by Flush+Reload
• Second layer does not know whether an event is generated from a real or
injected keystroke ⇒ Attacker cannot learn additional information

• Third layer
• Third layer relies on the same source as second layer
• Cache activity stays the same

27 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



Conclusion



Conclusion www.tugraz.at

• New interrupt-based attack and the first Multi-Prime+Probe attack on kernel
interrupt handlers

• KeyDrown, a new defense mechanism injecting random keystrokes
• Performance overhead of 2.5% (PARSEC 3.0) and 6.9% (lmbench)
• Battery consumption increase by 4.6%

• Attackers cannot distinguish fake from real key strokes on commodity
notebooks and smartphones

• KeyDrown eliminates any advantage an attacker can gain using
software-based side-channel attacks

28 M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard | Graz University of Technology



KeyDrown: Eliminating Software-Based Keystroke Timing
Side-Channel Attacks

M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, S. Mangard
Feb 20, 2018—NDSS’18

Graz University of Technology


	Background
	Interrupt-timing attacks
	Multi-Prime+Probe Attack on the Kernel
	Building a counter measure
	KeyDrown
	Evaluation
	Conclusion

