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Abstract

Kernel extensions are widely used by attackers to com-
promise the operating system kernel. With the presence of
various untrusted extensions, it remains a challenging prob-
lem to comprehensively preserve the integrity of OS kernels
in a practical and generic way. In this paper, we present
HUKO, a hypervisor-based integrity protection system de-
signed to protect commodity OS kernels from untrusted ex-
tensions. In HUKO system, untrusted kernel extensions can
safely run to provide desired functionalities. The behaviors
of untrusted extensions, however, are confined by manda-
tory access control policies, which significantly limit the
attacker’s ability to compromise the integrity of the ker-
nel. To guarantee multi-aspect protection and enforcement,
HUKO leverages hardware assisted paging to transparently
isolate untrusted extensions from the OS kernel. Moreover,
HUKO overcomes the challenge of mediation overhead by
introducing a novel design named subject-aware protection
state transition to eliminate unnecessary privilege transi-
tions caused by mediating allowed accesses. Our approach
is practical because it requires little change for either OS
kernel or extensions, and it can inherently support multiple
commodity operating systems and legacy extensions. We
have implemented a prototype of HUKO based on the open
source Xen hypervisor. The evaluation results show that
HUKO can comprehensively protect the integrity for both
Linux and Windows kernel from various kinds of malicious
extensions with an acceptable performance cost.

1 Introduction

Kernel-level extensions are widely supported in com-
modity operating systems to extend the kernel’s function-
ality. However, the extension interface could also be lever-
aged by attackers to tamper the integrity of the OS kernel.

For example, attackers can install malicious extensions such
as kernel rootkits to hide their activities in the system. On
the other hand, the existence of buggy third-party device
drivers exposes many vulnerabilities which can be exploited
by attackers to inject their malicious code into the kernel
space. These untrusted extensions threaten the kernel in-
tegrity greatly, yet unfortunately in many cases users have
to let them run in order to provide the desired functional-
ities and availability. Therefore, preserving the OS kernel
integrity from the presence of untrusted extensions remains
a challenging problem.

Previous research efforts on protecting the OS kernel pri-
marily target at one aspect of kernel integrity protection,
such as code integrity [27, 25], data integrity [10, 31] and
control flow/data integrity [33, 23, 35]. While these ap-
proaches are effective against certain categories of attacks,
the lack of multi-aspect protection renders the system’s in-
capability to deal with multiple types of malicious activi-
ties. For example, systems that only guarantee the integrity
of kernel code and hooks are vulnerable to DKOM (Direct
Kernel Object Manipulation) attacks. Similarly, protecting
kernel code and data is not enough for defeating new con-
trol flow attacks such as return-oriented rootkits [28, 24].
Moreover, current approaches are also limited in countering
advanced attacks such as direct kernel stack manipulation in
commodity systems, in which the attacker manipulates con-
trol and/or non-control data in the kernel stack shared by all
code entities in the OS kernel.

Another difficulty is about making the protection scheme
practical and generic. Several proposals [27, 25, 22] pre-
serve kernel code integrity by preventing untrusted code
from executing in the kernel space to defeat code injection
and malwares. However, they also eliminate all the benign
functionalities and availability provided by untrusted exten-
sions. Quite a few security approaches [23, 10, 26, 11, 14]
utilize the knowledge of kernel data structures to achieve
fine-grained auditing and intrusion detection. However,



these approaches are dependent upon data structure seman-
tics of a specific kernel, making them difficult to adapt
different OS kernels with another version or from other
venders. Moreover, the performance overhead induced by
dynamically reconstructing and tracking fine-grained ker-
nel objects makes these approaches not that suitable for an
online protection system.

To achieve tamperproof and transparency in a system
that protects the OS kernel, a common approach is to lever-
age the virtual machine monitor (VMM), which provides
another layer of indirection. In such systems, to protect
a security sensitive-kernel object, the VMM intercepts all
the events that access this object and validates each event
based on the protection policy. This approach is effective
for protecting a small number of crucial objects in the ker-
nel. However, severe performance problem arises once the
quantity of protected objects becomes large, say, the entire
kernel code and data area. The reason is that, no matter
how VMMs are trapping these events (e.g., via instruction
instrumentation or page protection), performing mediation
for each event will always cause control transfers between
the VMM and the guest, which will need multiple time-
consuming privilege transitions (e.g., ring faults or VMEX-
ITs). Researchers have proposed techniques such as hook
indirection [33] to mitigate the performance problems for
hook protection. However, this approach is only useful for
protecting objects that are scattered across page boundaries,
yet still cannot be applied to the entire kernel code and data.

This paper presents HUKO, a hypervisor-based integrity
protection system designed to protect commodity operating
system kernels from untrusted extensions. HUKO allows
users to execute untrusted extensions in the kernel space
to provide desired functionalities. The behaviors of un-
trusted extensions, however, are confined by mandatory ac-
cess control policies, which significantly limit the attacker’s
ability to compromise the integrity of the kernel. In order
to achieve multi-aspect protection, HUKO leverages hard-
ware assisted paging to transparently isolate untrusted ex-
tensions from the OS kernel so that it could mediate all in-
teractions (including memory modification, control trans-
fers and DMA) between extensions and the kernel. Re-
garding kernel stack integrity, HUKO’s approach includes
a VMM-level private stack with lazy synchronization to of-
fer a transparent and efficient stack separation and permis-
sion management for unmodified OS kernels. To address
the challenge of mediation performance, HUKO introduces
a design named subject-aware protection state transition to
eliminate unnecessary privilege transitions caused by medi-
ating benign accesses. HUKO is a practical approach be-
cause it requires little change for either OS kernel or exten-
sions. Also it does not depend on semantic knowledge of
kernel data structures so that it can inherently support mul-
tiple commodity operating systems and legacy extensions.

We have implemented HUKO prototype based on the
open source Xen hypervisor. To facilitate HUKO’s de-
sign, we leverage contemporary hardware virtualization
techniques such as Intel’s EPT, VPID and VT-d1 [4, 5].
We evaluated HUKO’s protection effectiveness by running
malicious kernel extensions in both Linux and Windwos.
Our experiments show that HUKO can protect the ker-
nel integrity in the presence of various kinds of malicious
extensions, including DKOM and return-oriented rootkits.
In terms of mediation performance, the evaluation results
show that the average performance overhead in application
level benchmarks is ranged from less than 1% to 21%. Even
for extreme cases when HUKO isolates the entire ext3 file
system (the largest module in our Linux OS) from the ker-
nel, the mediation overhead for extracting a Linux kernel
tarball is about 21%, with the protection state transfer rate
at 390,000 per second.
We believe that HUKO provides a generic and trans-

parent framework for running untrusted code in OS kernel
with enhanced integrity protection for commodity systems.
Also, this framework could be used to enforce mandatory
access control policies inside commodity OS kernels with
an acceptable impact on performance.
The remainder of this paper is organized as follows. We

first describe the threat model, the integrity properties that
HUKO enforces and our assumptions in Section 2. Section
3 provides an overview of the design of HUKO. Section 4
details the design and implementation of the entire archi-
tecture. Our evaluation experiments for both the protection
effectiveness and performance of HUKO are shown in Sec-
tion 5. We discuss limitations and future work of our system
in Section 6. Finally, Section 7 introduces related work and
Section 8 is the conclusion.

2 Kernel Integrity Threat Model

In this paper, we focus on attacks that the adversary
utilizes the kernel extension interface to compromise the
kernel integrity, which is the most common method to at-
tack a commodity OS kernel. To specifically illustrate the
threats, we present three different attack scenarios as fol-
lows: (1) The attacker gains the root privilege of the entire
system, then he loads malicious extensions such as kernel-
level rootkits into the OS kernel. (2) The attacker exploits
a vulnerability existed in a benign kernel extension (e.g.,
a buggy device driver) to inject malicious code and there-
fore changes the extension’s behavior. (3) A careless nor-
mal user loads an unverified kernel extension (e.g., a third-
party device driver), which contains malicious code. There
are various ways in which these malicious code could dam-
age the control flow integrity and data integrity of the ker-

1AMD also has similar techniques with different names.



nel, for example, direct modification of kernel code, mod-
ifying control data (e.g., system call table, IDT and func-
tion pointers), modifying non-control data (e.g., process de-
scriptors and file system metadata), writing to the kernel
space via malicious DMA requests, and stack manipulation
(e.g., return-oriented attacks).
We classify subjects in an operating system kernel into

three categories. The first category is the OS kernel, which
HUKO aims to protect. The second category consists
of trusted kernel extensions, which are kernel extensions
trusted by the system administrator. Generally their code
need to be attested and verified to guarantee security. The
third category is untrusted extensions, which are extensions
that may be compromised or inherently malicious. Rootkits
and unverified device drivers belong to this category.
HUKO protects the integrity of the OS kernel by enforc-

ing the following properties in a mandatory protection sys-
tem:

• Kernel code/data integrity: code, static data and dy-
namic data of the OS kernel are protected from being
modified by untrusted extensions via direct memory
access or DMA access.

• Architectural state integrity: architectural environ-
ment describing the execution state of the OS kernel
such as segment registers, control registers and certain
flag registers cannot be altered by untrusted extensions.

• Control flow integrity: (1) control transfers from un-
trusted extensions to the OS kernel, including function
calls, jumps and preemptions, are restricted to a set
of kernel service functions named trusted entry points
(TEPs) specified by the OS provider or the administra-
tor; (2) function call consistencies such as call-return
consistency are strictly enforced.

• Stack integrity: (1) malicious code cannot be in-
jected into stack frames belonging to the OS kernel;
(2) For an untrusted extension, manipulating control
data (i.e., function pointers, return addresses) in its
own stack frames cannot subvert control flow integrity
stated above; (3) non-control data (i.e., saved registers,
parameters and variables) and control data in stack
frames owned by OS kernel or other extensions can-
not be corrupted by an untrusted extension.

For practical and usability reasons, the default manda-
tory access control policy of HUKO does not prohibit the
OS kernel from reading information from untrusted exten-
sions, which is different from classic integrity models such
as Biba. However, if there is a need to satisfy this strict in-
tegrity requirement, the flexible mediation and enforcement

mechanism in HUKO can still support system administra-
tors to write policies with appropriate exceptions to enforce
the “no read down” property.
HUKO is designed to be an added-on layer which pro-

vides an enhanced integrity protection for various operating
system kernels with an affordable performance cost. As a
design principle, HUKO relies on as little semantics of any
specific kernel as possible. On the other side, HUKO is not
the elixir for every kernel security threats. For example,
HUKO is limited in verifying the correctness of function
parameters and general data passed between the OS kernel
and extensions, which could open certain avenues that im-
pact kernel integrity in indirect ways. Also our system does
not prevent the untrusted extension from abusing the privi-
lege granted by the OS kernel in current stage. We discuss
these limitations and possible solutions in Section 6.
This paper is focused on protecting the integrity of OS

kernels. Other security issues, such as attacks on secrecy
(e.g., information leakage) and availability (e.g., interrupt
flooding, abuse of resource) of OS kernels are not in the
scope of this paper. Also, this work concentrates on dealing
with threats from the kernel extension interface, and we as-
sume that the hardware is trusted for the OS kernel. Regard-
ing attacks to the kernel directly from the userspace, HUKO
prevents untrusted kernel extensions from executing user-
level content and prohibits user programs to write kernel
memory. Previous work such as Secvisor [27] provides in-
depth research on protecting the OS kernel from userspace
intrusions using a hypervisor, and we believe that its method
can be effectively integrated with HUKO to achieve a more
comprehensive protection. At last, in HUKO system, the
hypervisor is the trusted computing base which we assume
its integrity is preserved.

3 HUKO Overview

3.1 Design Principles

The following paragraphs describe three major princi-
ples which motivated our research and guided our design
process of the HUKO system.

• Multi-aspect Protection. The architecture must guar-
antee that the kernel integrity properties stated in
Section 2 are enforced with mandatory protection.
Security-sensitive operations that involve interactions
between untrusted extensions and the OS kernel, in-
cluding memory reference, DMA, control transfers
and stack modification, must be mediated and vali-
dated upon mandatory integrity policies.

• Performance. The architecture must not have high



performance impact due to mediation, object recon-
struction/tracking or enforcing protection.

• Ease-of-Adoption. The architecture should support
multiple commodity operating systems and any un-
modified legacy kernel extension. The architecture
should not change the semantics of either OS or the
extensions. Also, the architecture should be a layered
approach which requires little deployment efforts.

3.2 Design Overview

HUKO provides a transparent protection environment
for commodity OS kernels in which untrusted kernel ex-
tensions can run with an enhanced protection. In HUKO
system, we name all the kernel objects that are supposed to
be protected by our mechanism security-sensitive objects.
These objects are labeled and tracked by the labeling com-
ponent in HUKO’s hypervisor. Depending on the various
purposes of deploying HUKO integrity protection, security-
sensitive objects can be labeled as 1) the entire kernel code
and data region, or 2) a given set of kernel objects that may
be tampered by attackers to achieve specific goals, for ex-
ample, hiding a malicious process by manipulating hooks
and process descriptors. To guarantee multi-aspect protec-
tion and generality, in our design, by default we label and
track the entire kernel code and data region as security-
sensitive objects.
The following paragraphs abstractly explain various

challenges we faced in designing the system as well as key
features of HUKO.

Mediation Overhead. Regarding how to achieve the
mandatory access control mechanism, an intuitive way is
to intercept every access to security-sensitive objects, then
to validate whether the access is permitted by the policy or
not. This approach is straightforward and convenient for
out-of-boxed monitoring, however, it is not practical be-
cause the mediation overhead is considerable even if the
number of objects to be monitored is relatively small. We
observed that many security-sensitive objects in the kernel
are highly frequently accessed by operating system kernel
itself. For example, in Linux, task struct is a typical
security-sensitive data object because it can be manipulated
by rootkits to perform process hiding and privilege esca-
lation. On the other hand, task struct is also a cru-
cial accounting and scheduling data structure which would
be modified several times by the scheduler during each
context switch. Posing mediation on these legal accesses
through an external reference monitor (i.e., VMM) causes
enormous amount of unnecessary privilege transitions (e.g.,
page faults, ring faults and VMEXIT), which result in seri-
ous impact on performance.
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Figure 1. The protection state transition dia-
gram.

To overcome this limitation, HUKO adopts a design
named subject-aware state transitionwhich divides the sys-
tem workflow into multiple protection states. The behavior
of the protection mechanism is determined by the current
protection state, which is further determined by precisely
distinguishing the type of current subject in the guest sys-
tem context. Specifically, if the current subject is an un-
trusted extension, HUKO does complete mediation on all
accesses to security-sensitive objects in order to protect the
kernel integrity. By contrast, in the case when the OS ker-
nel is executing, HUKO poses minimal interposition on ob-
ject accesses. It only needs to audit control transfer events
that cause a protection state transition. In this way, the to-
tal number of privilege transitions caused by mediation is
significantly reduced, which grants HUKO much better me-
diation performance. Table 1 illustrates an example of dif-
ferent protection behaviors that are associated with different
protection states. From it we could see that the number of
events that lead to privilege transitions (presented in grey
cells) is minimized due to the subject-aware state transition
mechanism in HUKO.

Figure 1 is the state diagram which shows the various
protection states of HUKO system as well as the state tran-
sition events. Currently HUKO has four protection states,
which correspond to the OS kernel, trusted extensions, un-
trusted extensions, and the user space, respectively. The
state transition events include inter-subject function calls,
various types of jump, interrupt handling, preemptions, sys-
tem calls and associated returns from these routines. Medi-
ating these events is essential to guarantee comprehensive
control flow integrity, which we further discuss in Section
4.5. Tracking the state transition is mainly achieved by the



Object Label
Subject Category / Protection State

OS Kernel Trusted Extensions Untrusted Extensions
Read Write Execute Read Write Execute Read Write Execute

Trusted Entry Points allow allow allow allow allow audit allow allow deny audit allow

Other OS Code allow allow allow allow allow audit allow allow deny deny

OS Data allow allow allow allow allow audit allow allow deny deny

Trusted Extension allow allow audit allow allow allow allow allow deny deny

Untrusted Extension allow allow audit allow allow allow audit allow allow allow allow

Private Stack Frames allow allow deny allow allow deny allow allow deny

Other Stack Frames allow allow deny allow allow deny allow deny deny

Trusted DMA allow allow allow allow allow audit allow allow deny deny

Shared DMA allow allow allow allow allow allow allow allow allow

User Space Content allow allow audit allow allow allow audit allow allow allow deny

Table 1. A sample MAC policy for preventing extensions from writing to kernel or executing unau-
thorized kernel code. The shaded cells indicate the corresponding events are mediated by the VMM
and involve privilege transitions. Other events do not cause privilege transitions in HUKO. The write
operation includes both normal write and DMA write. The not-listed “user" protection state is simply
configured to deny any write to the kernel space.

isolation mechanism in HUKO, which we describe in Sec-
tion 4.3.

Transparent Isolation. As we stated above, HUKO
should have the ability to (1) distinguish the current subject
in the guest context, (2) track all state transition events, (3)
support different access control policies for different subject
categories, and (4) mediate data modification flows and con-
trol flows between subject categories. Achieving these is
non-trivial for commodity monolithic-kernel operating sys-
tems (e.g., Linux and Windows) since the OS kernel and its
extensions reside within the same address space, and it is
even more challenging especially considering our two de-
sign principles: external approach and good performance.
To tackle this challenge, we design an isolation compo-

nent in HUKO’s VMM to transparently isolate the exten-
sions from the OS kernel. The isolation mechanism lever-
ages hardware-assisted paging (HAP), which is a hardware-
based virtualization technique supported by many modern
processors. In our scheme, the enhanced memory virtu-
alization component in HUKO’s VMM maintains separate
sets of HAP tables for each protection state in the system.
These sets of HAP tables are synchronized with each other
so that their corresponding entries are mapped to the same
machine frame. Moreover, regarding security-sensitive ob-
jects, different HAP tables are reflecting different access
rights according to the subject category and mandatory ac-
cess control policies. Switching between these HAP tables
is swift because it only involves a change to the HAP base
pointer. In addition, HUKO significantly reduces the num-
ber of TLB flushes involved in each HAP table switch by

utilizing Intel’s Virtual-Processor Identifiers (VPIDs) tech-
nology. The multiple HAP table design renders efficient
and practical isolation between the OS kernel and exten-
sions, and it enforces separate access control policies for
each type of subject accessing various kernel objects such
as dynamic data structures, I/O buffers and kernel functions.
Regarding kernel stack integrity, HUKO leverages the mul-
tiple HAP tables to achieve a VMM-level private stack with
lazy synchronization mechanism to offer a transparent and
efficient stack separation, which we discuss in Section 4.4.

Object Labeling. In mandatory protection systems, ob-
jects are labeled indicating their security properties to fa-
cilitate mediation. HUKO does object labeling in order to
let the VMM identify security sensitive objects in the ker-
nel. The labeling procedure is at the page granularity in
the way that the labeling component assigns labels to the
specific physical pages that contain security sensitive ob-
jects. There are two reasons for this. First, according to
our design principles, HUKO is intended to rely on as little
semantic knowledge of operating system as possible. Sec-
ond, for a hypervisor-based approach, fine-grained dynamic
object tracking in kernel often introduces too much recon-
struction and tracking overhead, which is not practical for
an online protection system. On the other hand, to ame-
liorate problems caused by the protection granularity gap,
HUKO has mixed page labeling mechanism for handling
pages that contain mixed code and data, as well as pages
that are shared by both kernel and extensions.
Another issue is about how to track dynamic data for

both kernel and extensions. To address this, HUKO inserts



a trusted driver (labeled as a trusted extension) into the op-
erating system to notify the hypervisor about the allocation
and reclamation of the kernel memory. The driver is also
aware of the owner subject of each page and reports updates
to the hypervisor during runtime. We further discuss mixed
page handling and dynamic content tracking in Section 4.2.

Protection Workflow. Table 1 shows a sample protection
policy that regulates the data accesses as well as code ex-
ecutions of untrusted extensions. In this policy, the pol-
icy maker needs to specify a set of kernel functions as the
trusted entry points. In practice, trusted entry points can
be exported functions in the kernel symbol table or picked
specifically by the system administrator. To preserve con-
trol flow integrity, besides kernel function calls, kernel pre-
emption and return instructions should also be considered,
which we will discuss in Section 4.5. In addition, this policy
also prevents untrusted extensions from directly writing to
the OS kernel or any trusted extensions, no matter the write
is performed via memory instructions or DMA transfers.
HUKO enforces mandatory access control over the en-

tire life period of any untrusted extension. To achieve this,
HUKO tracks the lifetime of an extension by hooking the
extension allocation, loading and unlinking routine of the
kernel. These events will be trapped to the hypervisor and
the labeling component will manipulate the corresponding
page labels to perform dynamic tracking. Unless speci-
fied by the administrator, HUKO labels all newly loaded
extensions as untrusted. During the protection process, if
any event that violates the access control policy happens,
HUKO will trigger a protection alarm from the hypervisor
and provide essential information (e.g., type of policy viola-
tion and the execution context) to the system administrator
for making proper security decisions.

4 Architecture Design and Implementation

Figure 2 provides the overview of the HUKO Architec-
ture. There are four major components corresponding to
principle functionalities in HUKO’s design: object label-
ing, transparent isolation, stack integrity protection, as well
as mediation and enforcement. In the following subsections
we first provide a brief background on Hardware-Assisted
Paging (HAP) technology used in our prototype. Then we
discuss each major component in detail. In Section 4.6, we
briefly describe the implementation of HUKO prototype on
the Xen hypervisor.

4.1 Hardware-Assisted Paging Overview

To achieve memory virtualization, a common design for
VMMs is to load shadow page tables (SPT) into the hard-
ware MMU, which translate from guest linear addresses

(GLA) to machine-physical addresses (MPA). However,
to maintain this indirect mapping, the hypervisor must
intercept and do SPT synchronization upon guest CR3
switches and each update of the guest page table (GPT). The
hardware-assisted paging (HAP) technology is introduced
to avoid the software overhead incurred under shadow pag-
ing. One implementation of HAP is Intel’s Extended page
tables (EPT) technology [4]. When this feature is turned on,
the ordinary IA-32 page tables (referenced by control reg-
ister CR3) translate from GLA to guest-physical addresses
(GPA). In addition, the hardware MMU maintains a sepa-
rate set of page tables (the EPT tables) which translate from
guest-physical addresses (GPA) to the machine-physical ad-
dresses (MPA) that are used to access machine memory. As
a result, guest OS can be allowed to modify its own IA-32
page tables and directly handle page faults. This allows a
VMM to avoid the VMEXITs associated with shadow pag-
ing, which are a major source of virtualization overhead.
The reason why HUKO is built atop hardware assisted

paging rather than the software-based shadow paging mech-
anism is two fold. The first reason is for better performance,
which we just stated. Secondly, in SPT, access rights in SPT
entries are synchronized with the corresponding GPT en-
tries. Hence, changing the access rights in SPT entries for
our protection purpose may potentially affect the correct-
ness of guest OS for handling its own access rights. By con-
trast, in HAP, access rights in HAP entries and access rights
in GPT entries are two completely different sets. Moreover,
the HAP violation handling is transparently separated from
the page fault handling mechanism of the guest OS, which
makes it more flexible and easier to guarantee correctness.

4.2 Object Labeling

As shown in Table 1, in order to enforce the MAC policy,
HUKO assigns various kinds of security labels to different
kernel objects. The object labeling component is responsi-
ble for identifying kernel objects from the physical mem-
ory and managing security properties of these objects. As
stated in Section 3.2, based on our design principles, HUKO
directly associates object labels to the corresponding HAP
entries. In specific, the labeling component makes use of a
set of reserved bits in EPT entries. These reserved bits are
never utilized by default so that changing these bits does not
affect the hypervisor’s functionalities. By encoding labels
using these bits, HUKO currently can support 32 different
potential object labels, providing flexibility and extendabil-
ity to the protection scheme. This mechanism also reduces
the time and memory space involved in every mediation and
authorization action.

Handling Mixed Pages. In a commodity operating sys-
tem kernel such as Linux, memory regions for kernel code,
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Figure 2. Overview of the HUKO Architecture.

kernel data and extensions are usually page aligned, which
facilitates the labeling procedure in HUKO. However, there
are still existences of mixed pages in which different objects
co-exist together. To ensure comprehensiveness and cor-
rectness of the protection, the labeling component must be
able to track objects within two categories of mixed pages:
(1) pages containing both kernel code and kernel data, and
(2) pages containing both the kernel and extensions.

A major type of mixed pages in the kernel is large sized
page (e.g., 2MB superpage). In most cases, different ob-
jects reside in the same superpage, yet their boundaries are
still aligned to the 4KB address regions. Based on this ob-
servation, given a large mixed page, HUKO splits the cor-
responding EPT superpage entry into multiple subpage en-
tries (e.g., 2MB page entry to 512 4KB sub-entries) and
assigns individual object labels to each subpage. Splitting
EPT superpage entries improves the granularity of labeling
and eliminates a majority of mixed page problems without
changing the guest page table (GPT) entries. On the other
hand, regarding mixed pages of 4KB size, HUKO assigns
each of them with a mixed label. For example, considering
a mixed page that has a mixed label of both kernel data and
extension code, the hypervisor would trap all events that
modify this page regardless of the current protection state.
Then HUKO examines the physical address to see if it is in
the range of extension text area and finally determines the
object identity.

Tracking Dynamic Contents. Associating kernel objects
to HAP page frames requires dynamically tracking of these
objects. For static objects such as kernel code, static kernel
data (including global variables), and trusted entry points,
HUKO tracks them by leveraging the kernel symbol table
(e.g., Systemmap file in Linux). On the other hand, for
dynamic contents such as dynamic kernel data, stack and
heap region, and loadable extensions, it is difficult and time
consuming to track them at the hypervisor layer because of
the semantic gap. HUKO tackles this problem by loading a
trusted extension named labeling helper into the guest ker-
nel. The labeling helper is responsible for letting the hyper-
visor be aware of the allocation and deallocation of kernel
dynamic pages as well as the owner subject of each kernel
page. This component is the only OS-dependent part in our
system and we implemented a prototype in Linux. Specifi-
cally, dynamic data owned by an extension come from two
major sources in Linux: (1) the page frame allocator for
allocating bulk of pages, and (2) the SLAB allocator for al-
locating fixed sized of registered cache objects. For both
cases, the labeling helper hooks the allocation and deallo-
cation events and gathers information from the SLAB allo-
cator (i.e., kmem cache alloc), the free page allocator,
and the load module routine. This information includes
owner subject of the page (e.g., OS kernel or extension), the
content type (e.g., kernel data or extension code), the guest
page frame number, the virtual address range (for handling
mixed pages), and the timestamp of each event. Then the
labeling helper passes these information to HUKO via the
hypercall interface, and the labeling component labels the
corresponding EPT entries accordingly. To guarantee tam-
perproof, the labeling helper itself is labeled as a trusted
extension at the load time so that it is protected by HUKO.
Furthermore, HUKO prohibits read accesses to the labeling
helper to prevent the leakage of protection information.

4.3 Isolation Component

The isolation component in HUKO is responsible for
achieving complete mediation by establishing separate ad-
dress spaces for different categories of subjects (i.e., the OS
kernel, trusted extensions and untrusted extensions) to re-
side in. Subjects can freely access code and data in their
own address spaces without interposition from the hyper-
visor. However, inter-address-space activities such as data
writing and control transfer must be mediated and con-
trolled by the VMM.

Multi-HAP Construction. The isolation component is
built upon our enhanced memory virtualization mechanism
named multi-HAP. Multi-HAP enables extensions and the
kernel to share the same virtual-to-physical mapping of the
entire kernel space, while it also enables the hypervisor to



set different object access rights for different subject cate-
gories. In this scheme, the hypervisor maintains separate
sets of HAP tables for each protection state (refer to Fig-
ure 1) in the system.2 Figure 3 illustrates the architecture of
the multi-HAP mechanism. For simplicity, only two sets
of HAP tables are shown here, corresponding to the OS
kernel state and the untrusted extension state, respectively.
There is a HAP base pointer which points to the root level
of a HAP table. During a protection state switch, HUKO
changes the value of the HAP base pointer to another HAP
table root, which represents another set of access rights. The
access rights in HAP table entries are determined by the ob-
ject label of the entry as well as the access control policy,
and are updated when any object label changes.
To intercept control transfer events between different

subject categories, for each protection state, HUKO manip-
ulates the execution bit of its HAP table entries so that all
the pages that do not belong to the subject category (cor-
responding to the protection state) are not executable. At-
tempts to execute content on these pages would cause HAP
violations and are handled by the hypervisor. Section 4.5
describes this procedure in detail.

Synchronization. An important difference between
multi-HAP and user-level page tables managed by the
kernel is that, each HAP table in multi-HAP must maintain
the entire mapping of the whole kernel space, rather than
the address space associated with the protection state. This
is because HUKO should allow the OS kernel and exten-
sions to read each other’s address space freely without any
interposition. Therefore, the isolation component should
always synchronize the entire kernel address mappings
among HAP tables. We modify the hypervisor code so
that changes to one HAP table (including allocating a new
entry, changing an entry and removing an entry) always
propagate to other HAP tables.

Optimize TLB Flushes. Considering the enormous func-
tion calls and returns between the OS kernel and extensions,
the protection state transition rate in HUKO is very high
(see Section 5.3). If the hypervisor flushes TLB on every
page table switch during a state transition, the performance
degradation due to the TLB misses caused by flushing is
substantial. To mitigate this problem, HUKO takes advan-
tage of Intel’s Virtual-processor identifiers (VPIDs) tech-
nology, which enables a logical processor of the hypervi-
sor to manage cache information for multiple linear-address
spaces. In HUKO’s VMM, we associate each protection
state with a 16-bit VPID so that mappings and access rights
are tagged according to the VPID in the address translating
cache. During the state transition time, the EPT table switch

2It can be extended to support separate HAP tables for each subject, if
needed.
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ing isolation and mediation.

does not cause flush of the entire translating cache - it only
flushes entries with specific VPIDs, which significantly re-
duces the TLB misses and improves the performance.

Preserving Architectural State. Sometimes malicious or
compromised extensions could subvert certain invariants of
the architectural state to fulfil their attacks. For example,
a malicious extension could change the GS segment selec-
tor to point to its own version of processor data area (pda),
which provides the kernel with incorrect information about
the kernel stack, MMU state and IRQ processing. There-
fore, HUKOmust enforcing the integrity of system environ-
ment by preserving these invariants of architectural state.
Our approach takes advantage of the fact that, during a

privilege transition, the architectural state is saved in the vir-
tual machine descriptor (i.e., VMCS for Intel VT) and a vir-
tual CPU struct (i.e., vcpu for Xen) of the VMM for future
reloading. Hence we could straightforwardly integrate the
architectural state protection with our subject-aware protec-
tion state design. In specific, at the time when the kernel
enters untrusted extension protection state, HUKO saves
the architectural state from the VMCS and vcpu to its own
memory space. When the kernel is switching from un-
trusted extension state back to the OS kernel state, HUKO
restores all the architectural state invariants by writing the
saved values to the virtual machine descriptor and the vir-
tual CPU struct.

4.4 Kernel Stack Integrity

Besides code, static and heap data, there is another im-
portant avenue which malicious extensions could exploit to
subvert OS kernel integrity: the kernel stack. In specific,
adversaries could perform the following actions to compro-
mise the property of stack integrity stated in Section 2: (1)
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injecting malicious code into the stack; (2) manipulating
control data (i.e., function pointers, return addresses) in its
own stack frames to subvert control flow integrity of the
OS kernel. For instance, return-oriented and jump-oriented
attacks belong to this category; (3) corrupting non-control
and control data (i.e., saved registers, parameters and vari-
ables) in stack frames owned by OS kernel or other exten-
sions. For example, a malicious extension could change the
local variables and function parameters on the stack frame
to let a certain kernel function return a false data value, or it
may manipulate kernel IRQ and exception stack frames to
change the behavior that OS kernel handles interrupts and
exceptions.
For case (1), by setting the NX bit of corresponding HAP

entries of kernel stack frames, HUKO ensures that code
on kernel stack frames could never be executed. Regard-
ing case (2), HUKO mediates the protection state transfers
and maintains a dedicated return address stack to guarantee
the control flow integrity, which we will describe in Section
4.5. To defend against attacks in category (3), HUKO grants
untrusted extensions read permission to the entire kernel
stack, but only gives them write permission to its own stack
frames.
To efficiently manage kernel stack permissions in an un-

modified commodity OS (e.g, Linux) is a non-trivial job,
because of the following reasons: first, in such system, there
is only one kernel stack for all kernel control paths associ-
ated with each user thread. Moreover, the stack frames are
not page-aligned, making it difficult to set permissions for
individual stack frames using current architecture. On the
other hand, in terms of performance, it is not affordable to
validate each stack modification made by untrusted exten-
sions because stack modifications are too frequent.

The stack protection design of HUKO overcomes the
above limitations. In order to preserves single kernel stack
semantic and support unmodified commodity OSes, during
the protection state of untrusted extensions, HUKO creates
and maintains a private copy of the current kernel stack at
the VMM layer, which is transparent and not observable
from the guest OS. By manipulating GPA to MPA map-
pings in the Multi-HAP table, HUKO casts the same lin-
ear address range of the kernel stack to different machine
frames for OS kernel and untrusted extensions. In this way,
an untrusted extension is given a “faked” view that it shares
the same kernel stack with other code entities in the ker-
nel, however, its stack operations are automatically redi-
rected to the private kernel stack copy placed on shadow
machine frames reserved by HUKO. On the other hand, to
protect stack integrity in an efficient manner, HUKO adopts
a “lazy synchronization” design: instead of checking per-
missions each time the stack is accessed, HUKO only per-
forms stack synchronization when current protection state
is switching between untrusted extensions and the OS ker-
nel. During synchronization, HUKO propagates stack mod-
ifications from the private stack to the real kernel stack with
the following rule enforced: only changes made to its own
stack frames are propagated to the real kernel stack, while
updates outside its own stack frames are discarded.

In the following we use Linux as an example to illus-
trate the private stack design achieved by multi-HAP ta-
bles, which is shown in Figure 4. In Linux, each user
process is associated with a two-page sized kernel stack.
The scope of the current kernel stack can be determined by
the ESP register and the per-CPU data structure pointed by
the GS segment selector. HUKO maintains two data val-
ues for each protection state: state frame base and



state current limit, respectively. These two values
designate the active stack frames associated with each pro-
tection state, and only in these stack frames modifications
are propagated to the other stack. During each protection
state transfer, HUKO updates state frame base and
state current limit based on the values of EBP and
ESP registers at that time point.

4.5 Mediation and Enforcement

The goal of the mediation and enforcement component
is to audit all the write flow and control transfer events be-
tween untrusted extensions and the kernel. Also it is respon-
sible for validating these events to enforce integrity protec-
tion according to mandatory access control policies.

EPT Violation Handling. HUKO relies on the EPT vio-
lation mechanism to achieve mediation and protection en-
forcement. Figure 5 depicts the work flow of how HUKO
handles various kinds of EPT violations. When an EPT vi-
olation occurs, HUKO first checks if the physical frame is
labeled as a valid kernel object. If yes, then it checks if
the violation is caused by our protection mechanism or by
emulated MMIO and log-dirty events. An EPT violation
caused by HUKO’s protection mechanism indicates a sen-
sitive control transfer event or a sensitive data access. To
properly handle it, HUKO first examines the following in-
formation: (1) the qualification bits which reveal the actual
type of the violation, (2) the current state, and (3) the label
of the faulting frame. Then it determines whether to allow
the operation or to trigger a protection alarm based on in-
formation collected and the access control policies.
As we stated in Section 3.2, subjects in HUKO can

freely read and write their own code and data. Also, inter-
subject read accesses are always allowed in our default pol-
icy. These allowed events do not cause any EPT violation
so that they cannot be logged by the hypervisor. However,
for forensics purposes, the system administrator may want
to audit some types of crucial events yet still allow these
events to happen. Hence, HUKO adds another action named
audit allow to enable logging of these specific data accesses.
To implement the audit allow mechanism, HUKO sets the
access rights in the corresponding EPT entries so that audit-
allowed events would cause EPT violations and be audited
by the hypervisor. Then HUKO emulates the offending in-
structions without changing the previously set access rights.
In this way, the audit allow operation is completed and the
EPT entries can still be used to trap further events of the
same kind.

Protecting Control Flow Integrity. As previously stated,
HUKO sets the execution bits of multi-HAP entries so that

only untrusted extension code can be executed in the un-
trusted extension protection state. When an execution vi-
olation indicating a control transfer from an untrusted ex-
tension to the OS kernel occurs, HUKO enforces the con-
trol flow integrity rules under the following conditions: (1)
the untrusted extension is calling the kernel via call and
jmp instructions. In this case, HUKO allows the opera-
tion only when the violating address belongs to a trusted
entry point. This prevents untrusted extensions from ac-
cessing unauthorized kernel functions or jumping to arbi-
trary positions in the kernel. (2) The kernel preempts the
untrusted extension for higher priority interrupts. In this
case, HUKO ensures that the violating address belongs to
an interrupt handler routine in the IDT table. (3) The exten-
sion returns to the kernel from a previous call. This could
be leveraged by return-oriented rootkits to divert the con-
trol flow to a sequence of return-oriented instructions in the
kernel. To tackle this problem, HUKO maintains a sepa-
rate return address stack to keep track of the call/return se-
quences between the OS kernel and untrusted extensions.
In this way, we guarantee the return address to the kernel
must correspond to the address of the kernel code that made
the call. Also, the sequence of return addresses must sat-
isfy the last-in-first-out property. Considering the fact that
most return-oriented attacks need an initial return to the first
return-oriented instruction sequence, our approach provides
an effective counter method.

Handling DMA writes. Besides memory writes per-
formed by CPU instructions, DMA is another way for ex-
tensions to write data into the kernel memory. Previous
proposals [32] have limited capability of handling DMA
because the data transfer is not controlled by the proces-
sor or memory controller. Fortunately, the introduction of
hardware IOMMUs (Intel’s VT-d and AMD’s IOMMU)
brings the possibility to efficiently mediate and control
DMA memory access. When used in virtualization, the
IOMMU can enable pass-through device models which sup-
port independent address translations using IOMMU page
tables for DMA activities.
In HUKO prototype, we leverage the DMA remapping

mechanism provided by Intel’s VT-d technology [5] to pro-
tect the kernel integrity from DMAwrites. Currently we ex-
plicitly set the IOMMU page tables so that pages labeled as
OS kernel and trusted extensions cannot be used in DMA.
On the other hand, HUKO allows DMA activities on the
pages that are labeled as untrusted extensions. Our ongo-
ing work employs multiple IOMMU page tables and switch
facilities for different protection states, which is very sim-
ilar to the multi-HAP mechanism. This scheme introduces
new DMA object labels shown in Table 1 and allows the
kernel and all extensions to do DMA in a protected man-
ner. Another more flexible optimization is to integrate the
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Figure 5. The EPT violation handling diagram
of HUKO.

IOMMU page tables with the multi-HAP page tables so that
IOMMU can utilize the guest-to-machine physical address
translation as well as access control enforcement provided
by the multi-HAP mechanism.

Supporting Exceptions. Given the complexity of com-
modity operating system kernels and the variety of enor-
mous extensions in the wild, it is necessary for HUKO to
support exceptions for access control enforcement. There
are three types of exceptions in HUKO. The first type of-
fers an untrusted extension the privilege to write into spe-
cific objects in the kernel. The second type allows an un-
trusted extension to make certain calls to the kernel, but
not through trusted entry points. The third type of excep-
tion is about exporting write permissions in kernel stack
frames. These exceptions are provided by the administra-
tor to achieve specific needs on flexibility and performance,
and they are stored and protected in the VMM memory
space. Section 5.1 provides a further discussion in Linux
OS.
In our current prototype implementation HUKO uses

mixed page labels to handle exceptions. Pages that con-
tain exception objects are labeled as “mixed exception”, and
the hypervisor will check the virtual address upon each vio-
lation to determine whether the event is an exception. This
approach has bad performance in case the number of excep-

tions is large or exceptions occur frequently. We have an
optimized design for handling exceptions and mixed pages.
In that scheme, HUKO copies all the exception objects onto
a set of allocated exception pages. By dynamic patching of
instructions, HUKO redirects all the operations accessing
exception objects to the corresponding copy on the excep-
tion pages at the run time. This method reduces the total
number of EPT violations on exception pages and mixed
pages. We plan to implement this optimization in our future
work.

4.6 Modifications to Xen

We implemented HUKO by modifying the Xen hyper-
visor (version 3.4.2 x86-64 HVM Guest), which is a full-
fledged open source hypervisor commonly used in various
enterprise systems. The HAP mechanism used in the iso-
lation and labeling component is based on Intel’s EPT, yet
it does not require much effort to adapt AMD’s NPT. The
total amount of code added to the Xen hypervisor is approx-
imately 3,300 lines. And the Linux implementation of the
labeling helper trusted extension consists of about 450 lines
of code.
A major effort of our prototype implementation is to

extend the memory virtualization sub-system of Xen to
support the multi-HAP mechanism. In HUKO prototype,
each HAP table is essentially a four-level EPT paging
structure. The root-level index of each paging structure
is stored in an array named huko phys table index,
which is placed in the architecture-specific per-domain
structure arch domain. To construct multi-HAP tables,
HUKO first traverses all the existing physical-to-machine
(p2m) mappings from the domain’s page list. Then
it allocates EPT entries using free pages maintained by
p2m freelist, which are Xen’s reserved pages for stor-
ing p2mmappings. The security label of each GFN is stored
in bits 61:57 of the corresponding EPT entry and man-
aged by the labeling component. HUKO then decides the
access rights of an EPT entry from its security label, the
MAC policy as well as the protection state which it belongs
to. HUKO keeps this allocation process until all HAP ta-
bles are established. During each state transition, HUKO
switches among multiple EPT paging structures by chang-
ing the EPTP pointer and associated VPID in the VMCS
fields.
For each protection state, we introduced a security con-

trol block (SCB) which is linked to the domain structure.
The SCB stores essential information for tracking a pro-
tection state, such as the identity of the current subject,
the virtual address range of the subject’s code and data,
the previous protection state, the address of the last en-
try point, a copy of stack pointers, and a link to its return
address stack. To achieve mediation and policy enforce-



ment, we added additional routines to the paging viola-
tion handler of EPT and the Vt-d pass-through (IOMMU)
driver, which are ept handle violation() and
iommu page fault(), respectively. We exported two
new hypercalls to the labeling helper for delivering run-time
information to the labeling component.

5 Evaluation

In this section, we describe the deployment and experi-
mental evaluation of the HUKO prototype. There are two
goals of our evaluation. The first is to evaluate HUKO’s
effectiveness for defending against various real-world mali-
cious extensions that damage the OS kernel integrity in dif-
ferent ways. The second goal is to measure the performance
cost introduced by HUKO using both application-level and
micro benchmarks.
All experiments were conducted on a Dell PowerEdge

T310 Server with a 2.4GHz Intel Xeon X3430 and 4GB
memory. The Xen hypervisor version is 3.4.2. The dom0
system is fedora 12 with kernel version 2.6. We used a
64bit Ubuntu Linux (8.04.4) with kernel version 2.6.24 as
our guest OS. All Linux partitions were configured to use
the ext3 file system. For Windows experiment, we chose
Windows XP SP2 as our guest system.

5.1 Deploying HUKO

As stated in Section 3.1, HUKO is intended to mini-
mize the required effort for deploying the protection sys-
tem. Instead of establishing protection domains at the OS
layer [32] or at the hardware architecture layer [37], the
implementation of almost all the functionalities (i.e., mem-
ory protection and access control) in HUKO is at the vir-
tualization layer, which makes the protection mechanism
guest-independent, adaptive, and easy-to-undeploy. More-
over, HUKO does not enforce access control for specific
kernel objects, and it only has several generic types for ob-
ject labeling. While this approach sacrifices the benefits
of semantic-rich access control at finer granularity, it does
offer a much easier configuration compared to rich-typed
protection system such as SELinux [7]. In the following
paragraphs we use the Linux OS as an example to briefly
describe the deployment of HUKO.
The first step is to set up the basic information about ker-

nel layout, objects and TEPs. In Linux, most of these in-
formation could be acquired from the kernel symbol table
associated with the specific kernel. For example, the ad-
dress range of Linux kernel code is determined by kernel
symbol text and etext. Similarly, the boundaries of
initialized and uninitialized kernel static data can be identi-
fied by symbol edata and end. At runtime, the labeling
helper is responsible for collecting dynamic information for

object labeling. For instance, the code and data range for
an extension could be retrieved from the accounting data
structure module when the extension is being loaded into
the kernel.

In Linux, most kernel APIs and global data are exported
to the kernel symbol tables using the EXPORT SYMBOL
macro. The address of kernel symbols can also be retrieved
in the System.map file. In this way we could collect all
the entry addresses for exported kernel functions. In our
current prototype, we treat all the exported kernel APIs as
the Trusted Entry Points (TEPs). In our future work, we are
expecting to extend HUKO to achieve the least privilege
property, by which we infer and enforce the set of kernel
APIs that a specific extension can call. We do a further dis-
cussion on this issue in Section 6.

Besides common settings, administrators sometimes also
need to provide extension-specific exceptions to make an
extension run correctly. There are mainly three types of ex-
ceptions in a HUKO system. The first type of exceptions
consists of non-exported functions. In Linux, certain kernel
functions are not explicitly exported, instead, they are ac-
cessed by direct address reference or address assigning to
function pointers. Fortunately, these cases are not recom-
mended nowadays and getting rare in recent Linux kernels.
To deal with them, the administrator should manually spe-
cific the entry address of these kernel APIs as TEPs. The
second category of exceptions consists of OS kernel data
of which the kernel intentionally grants write permission
to extensions. In many cases, the shared data are used as
various kinds of buffers and caches in the kernel, and they
are usually still page-aligned. The labeling helper notifies
the hypervisor when these data are allocated, and HUKO
assigns Shared Data type to these pages in the multi-
HAP table to allow write access for both OS kernel and
untrusted extension protection states. Shared data that are
not page-aligned with non-shared kernel data are required
to set up exceptions using mixed pages. Regarding write-
sharing for kernel global variables, the administrator could
specify their address in the exceptions according to the ker-
nel symbol table. The third category of exceptions belongs
to stack permission which OS kernel needs to grant exten-
sions write permission to its local variables on the stack. For
example, OS kernel could pass the address of a local vari-
able to an extension in parameters during a function call.
To address these situations, the administrator should spec-
ify the addresses of functions that require stack exceptions
and how many previous frames need to be modified by each
function. Then at the time that control returns to these func-
tions, instead of synchronizing only its own stack frames of
the extension, HUKO synchronizes all the necessary previ-
ous stack frames specified by the given exception.



Untrusted Extension Behavior Violation Triggered Violating Object Label

EnyeLKM add binary code to kernel Illegal code access OTHER OS CODE

all-root
DKOM (modify task struct)

Illegal data access OS DATA
modify control data (sys call table)

adore-ng modify function pointers Illegal data access OS DATA
hp DKOM (modify task struct linked list) Illegal data access OS DATA
lvtes call unauthorized function (module free) Invalid code execution OTHER OS CODE

return-oriented extension modify return addr. on the stack Invalid return address Return addr. stack
FUTo (Windows) DKOM (modify PspCidTable) Illegal data access OS DATA
TCPIRP (Windows) modify function pointers Illegal data access OS DATA
basic int (Windows) add binary code to kernel Illegal code access OTHER OS CODE

Table 2. Protection effectiveness of HUKO against a collection of malicious extensions.

5.2 Protection Effectiveness

We evaluated the effectiveness of HUKO for kernel in-
tegrity protection with a collection of malicious extensions
on both Windows and Linux. These extensions include 8
real-world rootkits and one self-implemented malicious ex-
tension for return-oriented attacks, which are shown in Ta-
ble 2. As a result, all of these malicious extensions triggered
protection alarms once they attempted to damage the kernel
integrity. In the following paragraphs we describe three rep-
resentative experiments in detail.

Code Integrity. EnyeLKM [3] is a Linux kernel rootkit
which modifies the kernel text by putting “salts” in-
side system call and sysenter entry handlers.
With HUKO protection, an illegal code modification
alarm was triggered when either set idt handler or
set sysenter handler was called. Both functions
were trying to add binary text to kernel object labeled as
OTHER OS CODE.

Data Integrity. The all-root [1] rootkit is a simple
DKOM Linux kernel rootkit that modifies both control and
non-control data to achieve privilege escalation. In its ini-
tialization routine init module, this rootkit replaces the
sys getuid entry of the sys call tablewith its own
function give root, which changes the uid, gid, euid and
egid field of the current task struct to 0 (root). In this
attack, the first modified data belongs to static control data
while the latter belongs to dynamic non-control data. When
we launched this attack in a system protected by HUKO,
it immediately triggered a protection alarm indicating an
illegal data access (caused by the first modification) from
untrusted extensions to an object labeled as OS DATA. In
order to test the second data modification, we deliberately
made decisions to allow the first modification and let the
system continue to run. Then we executed a getuid sys-
tem call from the user space to trigger the malicious replace-

ment function. Again, HUKO triggered an illegal data ac-
cess alarm, which was also caused by directly modifying
dynamic non-control kernel data (labeled as OS DATA) at
the “untrusted extension” protection state.

Control Flow Integrity. Besides malicious extensions
that modify control-data (e.g., function pointers) or make
illegal call/jump to the kernel, the return-oriented attack is
another way of tampering control flows in the kernel. To
evaluate HUKO’s effectiveness in countering such attacks,
we implemented a return-oriented malicious extension in
our experiment. Upon called, this extension modifies its re-
turn address on the stack to an arbitrary point in the kernel
text area, which is recognized as a return-instruction gadget.
We loaded this extension to a Linux system protected by
HUKO. As a result, HUKO successfully prevented the con-
trol flow diversion caused by the modified return address,
since the LIFO property of the return address stack was no
longer kept.

5.3 Performance Overhead

To measure the performance cost introduced by HUKO,
we ran a set of benchmarks to compare the performance
of a guest system protected by HUKO with one that does
not. For each benchmark, we labeled one or several rele-
vant kernel extensions as untrusted so that they were iso-
lated from the kernel. For all workloads we enforced the
sample policy showed in Table 1. To fully test HUKO’s
performance overhead under stressed conditions, we chose
two largest and most active kernel extensions in our Linux
system: 8139too and ext3. The 8139too is the net-
work interface card driver and the ext3 extension is the
file system module. These extensions are invoked multiple
times for each network I/O requests or file system opera-
tions so that they have the highest control transfer rates with
the OS kernel. Hence, marking them as untrusted generally
represents the worst-case performance of HUKO when the



Benchmark
Untrusted
Extensions

Number of
Protection State
Transitions

Native
Performance

HUKO
Performance

Relative
Performance

Dhrystone 2 8139too + ext3 N/A 10, 855, 484 lps 10, 176, 782 lps 0.94
Whetstone 8139too + ext3 N/A 2, 270 MWIPS 2, 265 MWIPS 1.00
Lmbench
(pipe bandwidth)

8139too + ext3 N/A 2, 535 MB/s 2, 213 MB/s 0.87

Apache Bench
(throughput)

8139too 56, 037 2, 261 KB/s 1, 955 KB/s 0.86

Kernel
Decompression

ext3 17, 471, 989 35, 271 ms 44, 803 ms 0.79

Kernel Build ext3 148, 823, 045 2, 804 s 3, 106 s 0.90

Table 3. Performance results of application-level benchmarks.

system is performing I/O intensive tasks.

The application benchmarks and their configuration are
presented as follows: (1) Dhrystone 2 of the Unix Bench
suite [8] using register variables. (2) Double-Precision
Whetstone of the Unix Bench. (3) LmBench [6] pipe band-
width measuring the performance of IPC interface provided
by the kernel. (4) Kernel Decompression by extracting a
Linux 2.6.24 kernel gzipped tarball using tar -xzf com-
mand. (5) Building a 2.6.24 Linux kernel using default con-
figurations. (6) Apache Bench configured to have 5 con-
current clients issuing 20 http requests (16KB HTML) per
client.

Table 3 presents the results of these application level
benchmarks. The second column indicates which extension
is labeled as untrusted, while the third column shows the to-
tal number of protection state transitions in each workload.
Some numbers are not available because the corresponding
workload is part of a continuous benchmark suite. From the
results, we can see that the performance of HUKO system
is from 0.79 to 1.00 of the baseline. We also found that the
performance overhead added-on by HUKO largely depends
on the frequency of control transfers between untrusted ex-
tensions and the kernel. Hence, if the workload is CPU-
bound, the performance cost is minimal. The overhead gets
higher only when an untrusted extension is responsible for
highly frequent operations such as disk I/O. In the kernel
decompression experiment, the protection state transfer rate
reaches about 39,0000 per second, which renders HUKO
the worst case of performance: 0.79 of the baseline.

Besides application level benchmarks, we also per-
formed several micro-benchmark tests on process creation
with Lmbench. We labeled ext3 and 8139too as un-
trusted extensions in our system protected by HUKO. Re-
garding the test item process fork + exit, it took
HUKO system 100.31 µs to complete the operation while
the native system took 92.87 µs. For process fork
+ execve, HUKO system spent 377.47 µs compared to

the native time of 296.47 µs. For process fork +
/bin/sh -c, it took HUKO system 884.57 µs compared
to the native time of 697.38 µs.

6 Limitations and Future Work

We believe that HUKO provides a transparent security
layer which greatly enhances the integrity protection for
commodity operating system kernels. Nonetheless, it also
has limitations in defending against certain security threats.
In the following, we discuss these limitations and possible
solutions as our future direction.

Kernel APIs. In HUKO system, controls from untrusted
extensions to the OS kernel are restricted to a set of trusted
entry points, which are essentially legitimate kernel APIs
that exported to kernel extensions. However, in commod-
ity operating systems, the kernel is usually not designed to
tolerate or defend against malicious extensions, which may
results in the lack of robustness and security of kernel APIs.
Moreover, programming languages used to build commod-
ity OS kernels security do not support features like type en-
forcement. For these reason, it is possible that attackers
can exploit the “legitimate” kernel interface to subvert the
integrity of kernel. Examples of such attacks include: (1)
calling legitimate kernel APIs with undesired object refer-
ence to compromise kernel objects, (2) abuse of privileges,
(e.g., video cam driver accesses kernel APIs for the net-
working stack), and (3) exploiting memory and type bugs
of the kernel API functions. Comprehensively addressing
these issues would require major design improvements on
specific kernel (e.g., [29, 16, 20]), such as kernel object
model, access control model, type enforcement, verification
and privilege separation. In addition, these approaches can
be layered atop HUKO, which serves as a VMM-level refer-
ence monitor for mediating kernel object access, checking
API calls and their parameters.



To obtain a better mandatory security policy, we are
looking for a deeper understanding of the behavior of the
OS kernel. In specific, we are interested in figuring out
security-sensitive kernel data along the execution path of
each TEP. This could be achieved by static program analy-
sis with security annotations. Based on the properties such
as privilege, availability level and resource category of these
kernel data, we could achieve a good classification of TEPs
in terms of resource manipulation and privilege. In this
way, the security and resource semantics of TEPs are further
revealed, which could help improve the security of TEPs
whose privileges are originally unified in commodity OSes.

Information flow. Another category of possible attacks
is through explicit and implicit information flow. For in-
stance, OS kernel may explicitly grant write access to ex-
tensions on its own data objects (e.g., via shared memory,
API or messages), on the other hand, extensions may write
low integrity data to some places where kernel may read
afterwards. Both situations violate the traditional integrity
model. It is known that there is no existing information
flow control inside commodity OS kernels since tracking
fine-grained information flow is costly in regard to current
programming language and architecture. Alternatively, we
plan to investigate applying end points such as input filters
and verifiers between OS kernel and extensions to regulate
the function parameters and information passed to the OS
kernel.

7 Related Work

The idea and design of HUKO draw inspiration from a
variety of topics of past research work, which include kernel
integrity protection, kernel malware analysis, device driver
isolation and mandatory access control models.

Kernel integrity protection. There are a number of pre-
vious research efforts aiming at protecting the integrity of
the operating system kernel, such as code integrity protec-
tion [27, 25, 22], data integrity protection [10, 31] and con-
trol data/flow integrity protection [33, 23, 35]. Secvisor
[27] is a hypervisor based protection system which guar-
antees the life-time code integrity of the kernel. It leverages
advanced features from AMD processors, which are anal-
ogous to those used in HUKO. HUKO differs from Secvi-
sor in the following aspects: Firstly, Secvisor is intended to
prohibit any untrusted code executing in the kernel space,
while HUKO does allow untrusted kernel extensions run-
ning securely to provide functionality and availability. Thus
HUKO needs to enforce additional protection such as data
integrity and control flow integrity to restrict the behavior of
untrusted extensions. Secondly, Secvisor’s tiny hypervisor

design renders the system a very small TCB, which grants
the system a more secure foundation which is easier to be
verified. In comparison, HUKO is based on Xen hypervisor
with a larger TCB, yet it saves deployment and configura-
tion effort for existing Xen virtual machines.

Kernel malware analysis. Several recent projects such as
Panorama [39], K-Tracer [9], HookFinder [18], HookMap
[34], and Poker [26] focus on analyzing the behavior of
kernel-level malwares. These research work are comple-
mentary to HUKO protection system because they provide
extensive knowledge of how malwares damage the integrity
of the kernel. These knowledge would further help HUKO
to enforce more effective access control policies on various
kinds of kernel objects to offer comprehensive protection.

Device driver isolation. Another major category of re-
lated research work is on isolating buggy device drivers
to improve the reliability of operating systems. Examples
of these systems include Nooks [32], MINIX 3 [19], and
SafeDrive [41]. Such systems are mainly targeted for fault
resistance and dependability, and they could effectively pre-
vent system crashes caused by design defects and program-
ming mistakes of device drivers. These approaches are
complementary to HUKO in enhancing the robustness and
availability of OS kernels. Our system resembles Nooks
since both approaches establish hardware-enforced protec-
tion domains to isolate kernel components. However, by the
time Nooks was designed, there was no supporting hard-
ware features such like NX bits, EPT, VPID, IOMMU, etc.
By leveraging these advanced features, HUKO significantly
reduces the amount of OS modifications and has a better
performance. Also, HUKO offers more protection fromma-
licious extensions, e.g., it preserves architectural state from
being modified by untrusted extensions. As a VMM-based
approach, HUKO has a smaller TCB and attack surface
compared with OS-based approaches. Language-based ap-
proaches such like SafeDrive provide type enforcement and
prevent memory errors, though they often require the source
code of extension for recompilation, which limits their ap-
plicability for binary drivers. In contrast, HUKO can sup-
port unmodified legacy extensions.

Mandatory access control. HUKO enforces mandatory
access control policies over subjects and objects in the OS
kernel. There are many systems that are designed for im-
proving operating system security by adding mandatory
access control, e.g., LOMAC [17], SELinux [7], AppAr-
mor [2], UMIP [21] and Loki [40]. These systems pro-
vide flexible, powerful and fine-grained protection to pre-
serve system-level integrity. However, they are all enforc-
ing MAC at the OS abstraction level and cannot be applied
to mediate the activities of kernel-level objects.



Address space separation. As part of our design, HUKO
isolates untrusted extensions from the OS kernel using
the memory virtualization mechanism provided by VMMs.
There are also a number of systems achieving different re-
search goals using various techniques that isolate two en-
tities which previously belong to the same address space.
MMP [36, 37] achieves address space isolation and fine-
grained permission mapping by extending the hardware
architecture. XFI [15] provides permission management
within system address spaces using binary rewriting. Na-
tiveClient [38] offers sandboxing and isolation to native x86
modules by leveraging x86 segmentation and code valida-
tion. SIM [30] proposes a secure In-VM monitoring ap-
proach which places the kernel-level monitor in a protected
address space using shadow paging. Overshadow [13] and
Bastion [12] leverages multiple shadow tables to protect
application data from the rest of the system. In compari-
son, HUKO focuses on protecting the integrity of the OS
kernel. Also HUKO is based on hardware-assisted paging
rather than software-based shadow paging mechanism to re-
duce the number of VMEXITs and improve the TLB perfor-
mance.

8 Conclusion

We have presented the design, implementation and eval-
uation of HUKO, a hypervisor-based layered system that
comprehensively protects the integrity of commodity OS
kernels from untrusted extensions. HUKO leverages several
contemporary hardware virtualization techniques as well as
its novel software design to achieve its design principles:
multi-aspect protection, acceptable performance and ease-
of-adoption. Our experiments show that HUKO can ef-
fectively protect the kernel integrity from various kinds of
malicious extensions with an acceptable performance over-
head. We believe that HUKO provides a practical frame-
work for running untrusted extensions in OS kernel with
enhanced integrity protection for commodity systems.
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