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Abstract

Recent work has shown that properties of network
traffic that remain observable after encryption, namely
packet sizes and timing, can reveal surprising informa-
tion about the traffic’s contents (e.g., the language of a
VoIP call [29], passwords in secure shell logins [20],
or even web browsing habits [21, 14]). While there are
some legitimate uses for encrypted traffic analysis, these
techniques also raise important questions about the pri-
vacy of encrypted communications. A common tactic for
mitigating such threats is to pad packets to uniform sizes
or to send packets at fixed timing intervals; however, this
approach is often inefficient. In this paper, we propose
a novel method for thwarting statistical traffic analysis
algorithms by optimally morphing one class of traffic to
look like another class. Through the use of convex op-
timization techniques, we show how to optimally modify
packets in real-time to reduce the accuracy of a variety
of traffic classifiers while incurring much less overhead
than padding. Our evaluation of this technique against
two published traffic classifiers for VoIP [29] and web
traffic [14] shows that morphing works well on a wide
range of network data—in some cases, simultaneously
providing better privacy and lower overhead than naı̈ve
defenses.

1 Introduction

Network traffic analysis is an increasingly common
means of identifying security threats and providing ef-
ficient management of network resources, both within
local networks and the Internet. Unfortunately, these
same analysis techniques often lead to violations of user
privacy. The typical answer to these privacy concerns
is to simply encrypt the data traversing the network in
order to limit the information available to traffic analy-
sis. However, this alone is not enough since several fea-
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tures of the encrypted network data, such as packet sizes
and timing, can still leak information about the traffic.
By quantizing these features (e.g., padding packets to
fixed sizes), the amount of information that is leaked
can be minimized, but at the cost of degrading the effi-
ciency and performance of the underlying network pro-
tocols. Certainly, one can pad all encrypted packets such
that their sizes are always equal to that of the maximum
transmission unit (MTU), but for many network proto-
cols doing so would more than double the amount of
data sent. For these protocols, such excessive padding is
simply not a satisfactory solution to the problem.

Moreover, the performance of encrypted network
protocols often takes precedence over privacy concerns
in practical applications. While it may be possible to
allow users to tune the tradeoff between efficiency and
privacy to their liking, there is often no clear meaning
in terms of the levels of privacy and performance as-
sociated with such actions. As a consequence of this
bias towards efficiency, several security-oriented net-
work protocols have been found to leak more informa-
tion about the underlying data than originally thought.
For instance, work by Sun et al. [21] and Liberatore and
Levine [14] has shown that the identities of web pages
can be inferred by examining the sizes of packets within
an encrypted HTTP connection. More recently, Wright
et al. [29] showed that packet lengths of encrypted Voice
over IP (VoIP) calls can leak information about the lan-
guages being spoken.

In this paper, we propose a new method for opti-
mally balancing privacy and efficiency through the use
of mathematical programming (i.e., optimization) meth-
ods; specifically, convex optimization. At a high-level,
our optimization problem is defined as follows. Given
a source process, such as downloading a specific web
page via HTTP, our goal is to morph the process such
that it maximally resembles some target process (i.e., a
different web page) with respect to a given set of fea-
tures. Of course, we must ensure that the morphing we
perform is also maximally efficient for some measure
of efficiency, such as the number of bytes of overhead



added. For the remainder of this paper, we focus on the
use of our morphing techniques in thwarting traffic clas-
sifiers that utilize features based on packet sizes.

As an example of the usage of our technique, con-
sider a general web page classifier that uses packet sizes
to determine the identity of web pages. If the user con-
nects to www.webmd.com to search for medical infor-
mation over an encrypted connection where packet sizes
are not padded, the web page classifier would examine
these sizes and determine that the user has indeed gone
to www.webmd.com. The approach we take allows the
user (with the cooperation of the web server or proxy) to
morph her download to appear as a different web page
(e.g., www.espn.com) to the classifier. Our morphing
technique takes in each packet from the source web page
as it is produced in real-time, and adds padding to the
packet or splits the packet into multiple smaller pack-
ets. The change in packet size is performed in such a
way that the download looks like the target web page
with respect to the distribution of packet sizes over the
entire HTTP session. As a result, the classifier will ex-
amine the morphed traffic and erroneously classify it as a
download of www.espn.com, and only a minimal amount
of additional overhead will be incurred in confusing the
classifier.

To evaluate our method, we examine the efficacy of
morphing against two known traffic classification tech-
niques: the VoIP language classifier of Wright et al. [29]
and the web page classifier of Liberatore and Levine
[14], both of which examine packet sizes. Our results
show that the morphing method is able to reduce the
VoIP classifier’s accuracy from 71% to 30% with only
15.4% overhead on average. Likewise, the accuracy of
the web page classifier is reduced from 98.4% to 4.5%
with 38.9% overhead. In addition, we evaluate the per-
formance of our method against classifiers that are aware
of the morphing technique and are allowed to adjust their
training to compensate. Even in this more difficult sce-
nario the results indicate that the VoIP classifier is unable
to distinguish between the morphed and unaltered traf-
fic, while the web page classifier performs only 26.8%
better than random guessing. In contrast, padding the
packets to the MTU of 1500 bytes would incur an over-
head of 156% while still allowing the web classifier to
distinguish web pages with an accuracy of 72.4% better
than random guessing!

The remainder of the paper is organized as follows.
We begin by discussing related work in Section 2. In
Section 3, we present the convex optimization tech-
niques used to determine the optimal way of morph-
ing one process to another. We evaluate our morphing
technique against the VoIP language classifier of Wright
et al. [29] and the web page classifier of Liberatore and
Levine [14] in Section 4, and finally, we conclude in
Section 5.

2 Related Work

Several recent papers have shown that sensitive in-
formation can often be extracted from encrypted net-
work traffic by examining patterns in the sizes of pack-
ets and their timing. Song et al. [20] showed that the
interarrival times of packets in SSHv1 connections can
be used to infer information about the user’s keystrokes
and thereby reduce the search space for discovering lo-
gin passwords. Sun et al. [21] identified web pages
within SSL–encrypted connections by examining the
sizes of the HTML objects returned in the HTTP re-
sponse. Moreover, they demonstrated that this technique
was surprisingly robust against countermeasures such as
padding the object sizes. Later work by Liberatore and
Levine [14] showed that a similar attack is still possible,
with some modifications, for HTTP traffic that uses per-
sistent connections or that is tunneled through SSH port
forwarding. Wright et al. [29] showed that the statisti-
cal distribution of packet sizes in encrypted Voice over
IP (VoIP) connections can be used to identify the lan-
guage spoken in a conversation when the voice stream
is encoded using certain kinds of variable bit rate com-
pression schemes. Work by Saponas et al. [17] showed
that variable bit rate encoders for streaming video leak
information in a similar fashion, allowing an observer in
the network to identify movies within encrypted connec-
tions. More recent work by Wright et al. [28] showed
how an eavesdropper could identify spoken phrases in
encrypted VoIP.

Much of the work in security on misleading machine
learning techniques has focused on defeating host-based
intrusion detection systems. Wagner and Dean [26] pro-
posed the idea of a mimicry attack on intrusion detec-
tion systems, whereby an adversary exploits a vulner-
able program and then uses a legitimate sequence of
system calls to perform some harmful action. Wagner
and Soto [27] then presented a concrete instance of a
mimicry attack on the host-based IDS pH [19]. They
showed that by inserting system calls that do not per-
form any meaningful computation an attacker can make
a malicious program mimic the sequences of system
calls used by its victim program. Similar attacks were
independently discovered and demonstrated against the
stide IDS [11] by Tan et al. [22].

More closely related is the work of Fogla et al. [10],
who developed techniques by which an adversary can
automatically modify the payload of packets to deceive
a network intrusion detection system. Their “polymor-
phic blending” technique enables an attacker to evade
detection by altering the byte sequences in polymorphic
shellcode to look like normal, non-malicious payloads.
Unlike our work, their method deals with packet pay-
loads rather than network-layer characteristics, and they
have the advantage of knowing a priori exactly what ma-



licious payload they need to encode. In contrast, our
traffic morphing technique must be able to handle arbi-
trary input traffic as it is generated; especially for real-
time streaming traffic that encodes input from a user.

Newsome et al. [16] take a different approach to de-
feating statistical classifiers. Rather than modifying the
features of the traffic to match a signature, they showed
how an adversary can instead cause changes in the signa-
tures to better match her traffic by maliciously injecting
training data to change the detector’s notions of benign
and malicious traffic. Nelson et al. [15] show an instan-
tiation of the attack in [16] for bypassing spam filters.
Similarly, Chung and Mok [3, 4] showed that an adver-
sary could abuse sensors that automatically generate sig-
natures for zero-day worm outbreaks to cause denial of
service for legitimate traffic. Venkataraman et al. [24]
showed fundamental limits on the accuracy that can be
achieved by pattern matching algorithms in such adver-
sarial settings. Cretu et al. [7] then presented tech-
niques for cleansing the training data to remove anoma-
lous or adversarially-inserted data before applying learn-
ing techniques for signature generation.

3 Traffic Morphing

The goal of traffic morphing is to provide users who
encrypt their network data with an efficient method of
preventing information leakage that induces less over-
head than deterministic padding (i.e., quantization). To
do so, we must ensure that the distribution of packet
sizes emitted by the source process maximally resem-
bles the distribution of sizes for the intended target pro-
cess, while simultaneously minimizing the overhead in-
curred by the alteration of sizes. In addition, the morph-
ing algorithm should operate on the packets produced by
the source process in an online fashion with a minimum
of added latency. This ensures that the morphing algo-
rithm can handle a variety of different types of traffic,
including real-time streaming media, without requiring
any changes to the program or a priori knowledge of how
the packets will be generated aside from their distribu-
tion.

At a high level, traffic morphing operates as follows.
First, the user chooses the source processes that she
would like to protect using traffic morphing, as well as
a (potentially different) set of target processes that she
would like to make the source processes look like. These
processes can be any of a variety of traffic classes, such
as web pages, languages in VoIP calls, or even different
applications. For each pair of source and target process,
the user applies optimization techniques, which we de-
scribe throughout this section, to derive a morphing ma-
trix that dictates how each packet size from the source
process should be altered so that the resultant distribu-
tion maximally resembles the target with a minimum

of overhead. Intuitively, after the matrices are gener-
ated offline, the morphing algorithm acts as a proxy be-
tween the applications and the network stack, thereby
intercepting the data to be sent across the network be-
fore headers are calculated or encryption is applied. The
morphing algorithm refers to the appropriate morphing
matrix for the source process, and pads the data (or splits
it into several smaller packets) according to the matrix.
The altered data is then sent to the network stack, en-
crypted, and sent across the network as usual.

In the following sections we describe a set of tech-
niques that can be selectively applied to perform morph-
ing on a variety of network traffic. We begin by laying
out the notation and general algorithm for morphing traf-
fic in Section 3.1. In Section 3.2, we describe the basic
convex optimization algorithm used to find a morphing
matrix that minimizes a given cost function, such as the
number of bytes of overhead. Section 3.3 describes how
we can augment the basic optimization algorithm to con-
strain the way in which the packets can be morphed, like
restricting the morphing to only increase the size of the
packets. We describe a divide and conquer method for
making our optimization method feasible even on arbi-
trarily large sample spaces in Section 3.4. Finally, in
Section 3.5 we discuss several potential issues that may
arise in practice, and methods to overcome them.

3.1 What is the Matrix?

Given a sample space of n possible packet sizes, we
describe the source process as a column vector repre-
senting a probability mass function over the n sizes
X = [x1, x2, . . . , xn]T , where xi is the probabil-
ity of the ith largest packet size under the source pro-
cess. Similarly, we denote the target distribution as
Y = [y1, y2, . . . , yn]T . To morph X to Y , the user
must find a positive n × n morphing matrix A = [aij ]
such that Y = AX and each column of A is a valid
probability mass function over the n packet sizes. For
each pair of packet sizes si and sj , the matrix A gives
the probability of morphing a packet of size sj in the
source distribution to size si in the target distribution as
the cell at row i and column j, denoted aij . Thus, the
probability distribution dictated by the jth column of the
matrix describes, probabilistically, how an input packet
of size sj should be altered to achieve an output distribu-
tion that resembles that of the target process. As we will
see in the next section, convex optimization techniques
can be used to find the matrix A that morphs the source
process while minimizing a cost function, such as the
number of bytes of overhead.

When the morphing algorithm receives a packet of
size sj from the source application, it looks at the jth

column in the appropriate morphing matrix and samples
a target size si using the probability distribution from
that column, then alters the packet’s size to match si.



To sample the target size, the algorithm first sums the
probabilities into a cumulative distribution function such
that the cumulative probability of target size si is equal
to the sum of the probabilities for all sizes ≤ si. Then,
the algorithm runs a pseudorandom number generator to
get a random number r ∈ [0, 1], and selects first target
size with a cumulative probability ≥ r. Once the target
size si is sampled, the algorithm pads the data with zeros
if si > sj , or splits the data into multiple packets if
si < sj , and then sends the data to the network stack
as usual. The process is repeated each time new data is
received from the application, and the packet sizes that
are output onto the network appear to be drawn from the
target distribution Y .

As long as the source process generates a sufficiently
large number of packets from a distribution that closely
resembles the source distribution, X , the output of the
morphing will converge in distribution to that of the tar-
get, Y . Moreover, the use of convex optimization tech-
niques ensure that the matrix used to morph the traffic as
described above induces the minimum overhead in alter-
ing the source packet sizes to match the target distribu-
tion. Additionally, the generation of the matrices can
be performed offline before the morphing algorithm is
used, and therefore the only operation that adds latency
to the process is generating random numbers to sample
from the distribution for each input packet size. In most
cases, the pseudorandom number generation adds only
negligible delay, and so the morphing process as a whole
incurs a minimum of latency.

3.2 Morphing via Convex Optimization

Initially, the form of the equation Y = AX might
lead us to think of solving for the matrix A as solving
a system of linear equations. Clearly, because A is an
n×n matrix, we have n2 unknowns (i.e., all aij). From
the equation Y = AX , we can expand A, X , and Y into
their components

y1

y2

. . .
yn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
an1 an2 . . . ann




x1

x2

. . .
xn

 (1)

and by performing the matrix multiplication, we get n
equations of the form

yi = ai1x1 + ai2x2 + · · ·+ ainxn (2)

Furthermore, because the column vectors of A must
each sum to 1 in order to describe valid probability mass
functions, we also have n equations of the form

a1j + a2j + · · ·+ anj = 1 (3)

All together, we have 2n equations in n2 unknowns.
This defines an underspecified system of equations, and

so there are an infinite number of solutions. Given this
infinite variety of morphing matrices that solve the equa-
tion Y = AX , we frame the question of how to select
the best solution as an optimization problem in n2 vari-
ables.

In a mathematical optimization problem [2], the goal
is to minimize some cost function f0(A), subject to m
constraints given by functions fk(A) ≤ bk, and con-
stants bk. The cost function f0 : Rn2 → R describes
whatever criterion the user decides on to pick the opti-
mal solution, and the constraint functions fk : Rn2 → R
describe the requirements imposed on the eventual solu-
tion.

There are well-known algorithms in the optimization
literature for solving any convex optimization problem
in polynomial time when the cost function f0 and all the
constraint functions fk are convex functions. In some
cases, such as when f0 and fk are all linear functions,
fast solutions based on linear programming exist. Other
convex optimization problems can generally be solved
using methods based on gradient descent. While the de-
tails of convex optimization algorithms are outside the
scope of this work, we refer the interested reader to a
full-length text on the subject, such as that of Boyd and
Vandenberghe [2]. For our purposes, it is sufficient to
point out that any local minimum of the cost function
will also be the global minimum, and that for strictly
convex functions there is at most one global minimum.
Thus, the optimization algorithms for these problems
are guaranteed to provide the global minimum in poly-
nomial time. There are a number of widely available
solvers for these kinds of optimization problems, and in
our experiments we use the open source solver interface
provided by Dahl and Vandenberghe [8].

An Example In the case of morphing network traffic
with respect to packet sizes, we can define the cost func-
tion f0 as the expected number of additional bytes that
the user must transmit when using the morphing matrix
A. We denote the overall cost of matrix A as

f0(A) =
∑

∀i,j∈[1,n]

xjaij(|si − sj |) (4)

where sj and si are the sizes in bytes for the source j
and target i, xj is the probability of the source size sj ,
and aij is the probability of morphing sj to si. Ad-
ditionally, we have 2n equality constraint functions of
the form of Equations (2) and (3), which ensure that
the matrix A is a valid morphing matrix. Another n2

inequality constraints come from the fact that each en-
try in the A matrix must be a valid probability; that is,
0 ≤ aij ,∀i, j ∈ [1, n].



This optimization problem can then be written in the
standard form:

minimize f0(A)
subject to

∑n
j=1 aijxj = yi, ∀i ∈ [1, n]∑n
i=1 aij = 1, ∀j ∈ [1, n]

aij ≥ 0, ∀i, j ∈ [1, n]

(5)

An important observation here is that, in this case,
the constraints for the above optimization problem al-
lows for morphing matrices that can reduce the size of
packets. Certainly, the data itself cannot be reduced, but
there are several methods by which we can either down-
grade the quality of the data in streaming protocols or
simply split the data among several packets. We dis-
cuss specific methods to deal with reduced packet sizes
in Section 3.5.

3.3 Additional Morphing Constraints

As alluded to earlier, the user may choose to spec-
ify additional constraints to restrict the type of morphing
performed to preserve the quality of the data or minimize
the number of packets produced (e.g., only allowing
packets to increase in size). To do so, she can add equal-
ity constraints to specify that the cells where si < sj are
set to zero (i.e., there is no probability of performing a
morphing from a large packet to a small one). One po-
tential pitfall of adding so many constraints, however, is
that the user runs the risk of creating an overspecified
system of equations where there is no valid solution to
Equation (1).

In these cases, the convex optimization must com-
promise the fidelity of the distribution produced by the
morphing in order to satisfy the specified cost function
and its constraints. That is, we must now determine a
way to optimally balance the fidelity of the output distri-
bution provided by the morphing algorithm to the actual
target distribution with the efficiency of the morphing
and compliance with the specified constraints. In this
section, we show how she can overcome this problem
by optimizing for multiple cost functions in an iterative
manner, known as multilevel programming [25]. Specif-
ically, the user first finds a matrix that creates a mor-
phed output distribution that is as close as possible to
that of the target distribution, yet satisfies all of her con-
straints. Then, the user takes that morphed distribution
and finds another matrix that minimizes the amount of
overhead produced in creating it. With our use of multi-
level programming, we can optimize for any number of
cost functions and derive a morphing matrix even when
the system of equations used in the optimization prob-
lem is overspecified.

Our general strategy for determining a valid morph-
ing matrix in these situations is to first derive an ap-
proximate target distribution that is as close as possi-
ble to Y with respect to some comparison function fd

while still meeting all of the constraints of the optimiza-
tion. More formally, we use the convex optimization
techniques described above to find a matrix A′ such that
Z = A′X , fd(Y, Z) is minimized, and all constraints on
A′ are met. The vector Z = [z1, z2, . . . , zn]T represents
the closest distribution that X can be morphed to given
the constraints on the optimization (i.e., only allowing
padding). Once we have derived the approximation to
the target distribution Z, we then run the convex opti-
mization algorithm again to find a second matrix A such
that Z = AX , the cost function f0 described above is
minimized, and all constraints are met.

An Example As a concrete example, we return to the
case of performing morphing on packet sizes where we
are constrained to only padding packets. As previously
described, adding the constraints to ensure that our mor-
phing matrix only pads packets leads us to an overspeci-
fied system, and so we must use our multilevel program-
ming approach to generate a valid morphing matrix in
these cases. We define our comparison function to be
the χ2 statistic:

fd(Y, Z) =
n∑
i

(zi − yi)2

y2
i

(6)

In practice, any number of potential convex comparison
functions could be used, including L1 distance, the χ2

statistic, and Euclidean distance, among others. The first
optimization problem in our multilevel optimization is
written as follows.

minimize fd(Y, Z)
subject to

∑n
i=1 a′ij = 1, ∀j ∈ [1, n]

a′ij ≥ 0, ∀i, j ∈ [1, n]
a′ij = 0 ∀i, j : si < sj

(7)

The final constraint in this optimization problem states
that the cells of the matrix where a large packet size
would be morphed to a smaller size must be zero to en-
sure that packet sizes can only be increased. Notice that,
unlike in Equation (5), we do not require that A′X be
exactly equal to Y (i.e., that

∑n
j=1 aijxj = yi for all

i ∈ [1, n]). This allows the solver to search across many
different values of Z = A′X that meet all of our con-
straints, in order to find the one closest to Y .

The second optimization problem, in which we de-
rive the morphing matrix A that most efficiently maps
X to Z, is then written as:

minimize f0(A)
subject to

∑n
j=1 aijxj = zi, ∀i ∈ [1, n]∑n
i=1 aij = 1, ∀j ∈ [1, n]

aij ≥ 0, ∀i, j ∈ [1, n]
aij = 0 ∀i, j : si < sj

(8)

Here, the cost function f0(A) is the expected number of
bytes of overhead as described in Equation (4) above.



3.4 Dealing with Large Sample Spaces

The astute reader would surely have notcied that one
issue that we have seemingly ignored thus far is the im-
pact of the size of the sample space on the practicality
of finding optimal morphing matrices. Since the num-
ber of constraints in our optimization problem grows
quadratically in the number of symbols we are morph-
ing, the complexity of finding morphing matrices when
n is large may become prohibitively high. For exam-
ple, some network protocols produce any of the range
of packet sizes found on an Ethernet network (i.e., 40 to
1500 bytes). In this case, our morphing matrix would
be 1460 × 1460 in size, and would have more than two
million constraints. By comparison, our test platform
(a Pentium 4 2.8GHz machine with 8GB of RAM) re-
quires just over one hour to solve an 80 × 80 optimiza-
tion problem with 6,560 constraints. Clearly, the growth
in the number of constraints would render the solutions
presented thus far untenable for protocols where n is
large, or when we are trying to morph higher-order `-
gram models (i.e., sequences of ` packet sizes) with n`

possible symbols.
Intuitively, to tackle the problems associated with

morphing arbitrarily large sample spaces, we apply a di-
vide and conquer strategy. In doing so, we trade off the
global optimality of our technique by finding the mor-
phing matrices for subspaces of the large space indepen-
dently of one another, rather than finding a single global
morphing matrix. At a high level, we take the large
space of n symbols and divide it into m << n partitions
of size n/m each. Then, we derive a coarse morphing
matrix that morphs from the m input partitions to the m
output partitions, as well as m2 submatrices that dictate
how we morph the n/m input symbols to the n/m out-
put symbols in the respective subspaces. Notice that this
procedure can be generalized to recursively create many
levels of submatrices to handle arbitrarily large spaces.

Formally, we take the original source and target vec-
tors X and Y with length n, and divide the symbols
equally into m partitions. Thus, we create new source
and target vectors X ′ and Y ′ with length m defining
the marginal probabilities of the partitions. The symbols
used to represent the partitions could be the averages of
the values it contains, the median value, or any other
coarse representation of the symbols contained within
the partition. The symbols chosen to represent the parti-
tions at this coarse level will be used to approximate the
cost of morphing from one partition to another (e.g., by
calculating the overhead). In addition, we also create the
vectors X1, . . . , Xm and Y1, . . . , Ym, where the vector
Xi (respectively, Yi) dictates the probability distribution
of symbols contained in the ith partition. The vectors Xi

and Yi can be interpreted as the probability of the val-
ues conditioned on being in partition i. Using the vec-

tors X ′ and Y ′, we find a morphing matrix A such that
Y ′ = AX ′. Similarly, for each pair of vectors Xj ,Yi

we find the submatrix A(ij) such that Yi = A(ij)Xj .
The multilevel programming methods shown in Section
3.3 can be applied to these optimization problems to add
constraints on the morphing process.

An Example Let us examine how we might apply sub-
matrix morphing to morph bigram distributions (i.e., or-
dered pairs). We start with source and target vectors X
and Y of length n2, which represent the probability dis-
tribution over all ordered pairs of packet sizes, (sa, sb).
The original space is partitioned to create a coarse space
that defines the marginal probabilities of the first size in
the pair (i.e., P (sa)), and subspaces that define the con-
ditional probability of the second size conditioned on the
first (i.e., P (sb|sa)). As such, we create the vectors X ′

and Y ′ of length n for the probabilities of the first packet
sizes. To morph X ′ to Y ′, we find a morphing matrix A
using the following optimization problem:

minimize f0(A)
subject to

∑n
j=1 a(ij)x

′
j = y′i, ∀i ∈ [1, n]∑n

i=1 a(ij) = 1, ∀j ∈ [1, n]
a(ij) ≥ 0, ∀i, j ∈ [1, n]

(9)

As with our previous optimization problems, we let the
cost function f0 be the expected number of bytes of
overhead. The resultant morphing matrix A defines how
we should morph single packets to match the marginal,
or unigram, distribution.

In addition, we also create 2n vectors Xi and Yi each
of length n. The vector Xi (respectively, Yi) represents
the conditional probability of the n packet sizes condi-
tioned on the first packet size in the bigram being si. For
all pairs of vectors (Xj , Yi), we find a morphing matrix
A(ij) (with cells denoted as a(ij),(hk) for column k and
row h) with the optimization problem:

minimize f0(Aij)
subject to

∑n
k=1 a(ij),(hk)xj,k = yi,h, ∀h ∈ [1, n]∑n
h=1 a(ij),(hk) = 1, ∀k ∈ [1, n]

a(ij),(hk) ≥ 0, ∀h ∈ [1, n],
∀k ∈ [1, n]

(10)
Again, the cost function is the expected number of bytes
of overhead, and these submatrices tell us how to morph
a packet conditioned on how the previous packet was
morphed, thereby ensuring a consistent bigram distribu-
tion. Notice that when morphing a bigram distribution
we have two distinct modes of operation. At the start of a
new connection, there is no previous packet, so we must
use the matrix A to morph the first packet to match the
unigram distribution of the target process. For the fol-
lowing packets, when the previous packet was morphed
from size sj to size si, we can use the submatrix Aij to



tell us how to morph the current packet. A similar pro-
cedure using submatrices can be used to morph traffic
where the number of distinct packet sizes is large (e.g.,
general Ethernet traffic) by first clustering the sizes into
a small number of equivalence classes, and then deriving
submatrices for the sizes within those classes.

3.5 Practical Considerations

Beyond the technicalities discussed earlier, there are
a number of additional considerations that must be ad-
dressed in order to apply our morphing technique to a
broad class of network traffic. Here, we describe some
potential pitfalls that one may encounter in practice, and
provide guidance on how these may be addressed.

Short Network Sessions The underlying principle be-
hind our morphing method is that as the number of pack-
ets produced by the source process approaches infinity,
the output of our morphing approach converges in distri-
bution to the target. For many network protocols, such
as streaming video, Voice over IP, or file sharing, it is
safe to assume that the number of packets generated will
be quite large. VoIP, for instance, can generate hundreds
of packets in only a few seconds. There are, however, a
number of protocols that are not guaranteed to generate
a sufficient number of packets. A prime example being
HTTP where a preponderance of web page downloads
have relatively few packets.

One way to address this is by keeping track of how
similar the output distribution is to the target, and requir-
ing that it reach some threshold level of similarity before
the morphing process is terminated. Specifically, we can
record the distribution of packet sizes produced by the
morphing and simply calculate the L1 distance between
the output and target distributions once the source pro-
cess has stopped generating packets. If the distance is
greater than some prescribed threshold, we then gen-
erate packets by sampling from the target distribution.
This process continues until the distance between the
distributions reaches the threshold. Obviously, there is
a point at which the overhead from the generated pack-
ets negates the savings derived from the morphing pro-
cess, and so in those cases it is often more efficient to
use deterministic padding. That said, the results from
our evaluation of morphing on web traffic show that our
approach still achieves significant overhead savings even
when applied to web page downloads with relatively few
packets (i.e., < 100).

Variations in Source Distribution The output dis-
tributions produced by our morphing method are only
guaranteed to converge to the correct target distribution
if the distribution being produced by the source process

closely resembles that which was used to create the mor-
phing matrices. Naturally, if there is significant variabil-
ity in the distribution, then the performance of our mor-
phing method will degrade. This variation may include
producing packets that were not observed in the distribu-
tion used to create the matrices, or substantial changes
in the probabilities for the sizes.

The solution to this problem is to adapt the divide and
conquer approach found in Section 3.4. Like the divide
and conquer approach, we partition the space of sizes
in the original distributions into m equivalence classes
by clustering them. The assumption here is that the
clusters represent canonical equivalence classes where
the packet sizes within them are essentially interchange-
able when they are produced by the source or target pro-
cess. The partitions allow us to find a consistent, coarse
morphing matrix that describes how these equivalence
classes can be morphed. However, the variability in the
sizes makes it impossible to create consistent submatri-
ces for these classes as we would have done in Section
3.4. Instead, we keep track of the distribution of packet
sizes in each of the target process classes and sample
from those distributions to determine the specific packet
size to output. Thus, when we morph a packet of size sj ,
we find the nearest source class, use the coarse morph-
ing matrix to determine the target class to morph to, and
finally sample from the chosen target class’ distribution
to find the output size.

Reducing Packet Sizes Although it is possible to re-
strict the morphing process to only increase the size of
packets, doing so necessarily reduces the performance
of our technique. When this restriction is lifted, how-
ever, we face the task of redistributing or altering the
data in the packet to allow the size to be reduced. For
streaming data, such as video or audio data, the quality
of the encoding can be reduced to shrink the packet size.
For other network protocols, like HTTP, we are forced to
redistribute the original data into several packets. Thus,
if we morph a packet of size sj to size si, with sj > si,
then we first send a packet of size si which leaves us
with sj − si bytes remaining. We do not morph these
leftovers because it is difficult to predict their sizes a
priori, and so the morphing matrix A would not handle
them optimally. Instead, to send the remaining data, we
sample directly from the target distribution without per-
forming any morphing to determine what size packet to
send next, and place as much of the remaining data as
possible into the newly generated packet. This process
continues until all the data from the original packet is
sent.



4 Evaluation

In what follows, we empirically evaluate the efficacy
of our morphing technique against two existing traffic
classifiers that are able to learn non-trivial amounts of
information about encrypted traffic. First, we show how
morphing can be used to efficiently thwart the technique
of Wright et al. [29] for identifying spoken languages in
VoIP, and the Bayesian classifier used by Liberatore and
Levine [14] to identify web pages in encrypted traffic.
Specifically, we show our morphing technique signifi-
cantly reduces the accuracy of the classifiers by causing
them to misidentify traffic as a class of our choosing.
Next, we consider a far more difficult test wherein the
classifiers are aware of the morphing technique and al-
lowed to adjust their training to compensate. That is, the
classifiers are trained on the original classes, as well as
morphed versions of those classes, and are then asked
to distinguish between the morphed and original traffic
classes.

Our evaluation focuses on the ability of the morphing
technique to deceive a binary classifier that distinguishes
between two classes of traffic. Since binary classifiers
are generally able to achieve greater accuracy than clas-
sifiers with k > 2 classes, we argue that if the morphing
algorithm can thwart the binary classifiers then it would
also be able to deceive a k-way classifier and would have
many different ways to do so.

4.1 Encrypted Voice over IP

In our earlier work [29], we showed how a passive
observer in the network could automatically identify
the language spoken in Voice over IP connections that
were compressed using a variable bit-rate (VBR) codec
like Speex [23] and encrypted using the IETF stan-
dard Secure Real-time Transport Protocol [1]. More-
over, the results of our empirical evaluation showed that
the most straightforward countermeasure against this
attack—padding packets to a common length—incurred
so much overhead that, from a pragmatic point of view,
it completely nullifies the benefits of using the variable
bit-rate compression. We now revisit the problem of pro-
tecting VoIP from eavesdroppers, and present a more el-
egant and efficient solution to disguise the language in
use.

To evaluate our technique, we used the same CSLU
“22 Language” [13] telephone speech corpus examined
in [29]. As before, the entire corpus was encoded using
Speex narrowband mode, which uses 9 distinct packet
sizes. We observed the resulting sequences of packet
sizes, and then attempted to morph the bigram (i.e., 2-
gram) distribution of each of the 21 languages in the data
set to each of the other languages. Specifically, for each
pair of languages, source and target, we use two varia-
tions of the techniques presented in the previous section

to morph the bigram distribution of the source to that of
the target.

We investigate the performance of our morphing
technique against increasingly powerful versions of the
classifier, in order to determine what a classifier would
need to do to be more robust against our new counter-
measures. First, in Section 4.1.1, we show that traffic
morphing is able to defeat the original χ2 language clas-
sifier that is unaware that the traffic may be morphed.
Then, in Section 4.1.2, we investigate the effectiveness
of morphing in a much more difficult test where the
classifier is aware of the morphing technique’s existence
and, by training on morphed traffic, seeks to distinguish
it from normal traffic.

In each case, to account for the randomness inherent
in the morphing technique, we perform the morphing
process five times for each pair of source and target lan-
guages, and record the five resulting streams of packet
sizes. Following the original evaluation in [29], we use
leave-one-out cross-validation to estimate the accuracy
of the binary classifier on this morphed data.

Whitebox vs Blackbox Morphing The Speex en-
coder is based on a technique called Code Excited Lin-
ear Prediction (CELP) [18], in which the sound in each
packet is compressed by searching a codebook of excita-
tion vectors for the codebook entry that best reproduces
the input speech. The index of the best-matching code-
word is then sent out over the network as part of the
packet payload. In variable bit rate mode, some prelimi-
nary analysis is performed on the sound in each packet to
select between several codebooks of varying size before
the search is performed. Larger codebooks give higher-
fidelity representation of the audio, but require larger
packets (and hence higher bit rates). Where in this pro-
cess we apply the morphing procedure is important for
both the efficiency and the fidelity of the resulting mor-
phed traffic. Therefore, we investigate the impact of two
slightly different approaches for morphing VoIP traffic.

In the first variation, which we call white box morph-
ing, all modifications to packet size occur in the codec
after a bit rate has been selected for the packet but be-
fore the actual compression has been performed. Figure
1 shows a block diagram of the process for compress-
ing, morphing, and transmitting a VoIP packet under this
paradigm. Morphing components shown shaded grey.
Note that, in this variation, we can either increase or de-
crease the size of the packet by modifying the encoder’s
bit rate. To find an optimal set of morphing matrices,
we apply the technique presented in Section 3.4 for each
pair of languages to create a coarse morphing matrix A
and 81 submatrices A(ij).

In the second variation, shown in Figure 2, we as-
sume only black box knowledge of the codec, so that
morphing must be performed after compression has
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completed but before the packet is encrypted. In this
second case, we can only increase the size of our pack-
ets by adding padding, and so we must always solve for
morphing matrices with the constraint that aij = 0 for
si < sj . Consequently, in addition to using the divide
and conquer method of Section 3.4, we also apply the
multilevel programming methods described in Section
3.3 to add the padding constraints.

4.1.1 Defeating the Original Classifier

In this section, we investigate the reduction in accuracy
caused by our morphing method first on the binary clas-
sifier examining bigrams, and then on the binary clas-
sifier examining trigram distributions. The complemen-
tary cumulative distribution functions (CCDFs) shown
in Figures 3 and 4 show the results for the bigram and
trigram classifiers, respectively.

With no countermeasures applied, the bigram classi-
fier achieves an average accuracy of 71% for speakers
of the source languages. However, its accuracy is sig-
nificantly degraded on morphed traffic. With black box
morphing, the classifier’s average accuracy falls to 45%,
with only 5% of the language pairs scoring better than
75% accuracy. Under the white box model, the classi-
fier’s average accuracy falls even further, to just 30%.

Overall, the trigram classifier’s results are similar.
With no countermeasures applied, its accuracy improves
to 76%. Additionally, on morphed data, for some lan-
guage pairs, it is significantly more effective than the bi-
gram classifier; its maximum accuracy under white box
morphing is 90%, while the bigram version was never
over 65%. However, for most pairs of source and target
languages, its accuracy is not significantly better than
the bigram classifier. Specifically, its average accuracy
falls to 47% under black box morphing, and to just 38%
under white box morphing.

In this experiment, one expects our morphing tech-
nique to reduce the accuracy of the classifiers to a mini-

mum of one minus the accuracy of the unmorphed data.
The reason for this is that if the classifiers naturally con-
fuse certain classes of traffic, then our morphing method
will change those classes that are confused in the un-
morphed data to actually be correctly classified with the
morphed data. With that in mind, our white box morph-
ing model achieves nearly the best possible reduction in
accuracy against both the bigram and trigram classifier,
while the black box method achieves only a slightly less
notable reduction in accuracy.

4.1.2 Evaluating Indistinguishability

Having shown that traffic morphing can be used to de-
feat the original classifier from [29], we now consider a
much stronger experiment where the classifier is aware
of the morphing technique and how it works. The goal
of the classifier is to distinguish traffic that has been
morphed to look like a given target language from gen-
uine instances of that language. To do so, the classi-
fier is trained not only on normal traffic from the target
language, but also on traffic from the source language
which has been morphed to look like the target.

We note that, if the morphing is perfect, and the mor-
phed traffic looks exactly like normal traffic, then the
classifier can do no better than random guessing. In this
case, the average accuracy would be 50%. Of course,
the simplest way to make two languages indistinguish-
able is to make all packets the same size, by padding
smaller packets up to the size of the largest. Therefore,
for comparison, we also show the classifier’s accuracy
on traffic that has been padded to multiples of 512 bits,
which makes all VoIP packets the same size. The results
of these experiments are shown as CCDFs in Figures
5 and 6. Table 1 shows the overhead incurred by each
countermeasure.

Figure 5 shows that the bigram classifier is not able
to reliably distinguish morphed traffic from normal. In
fact, white box morphing offers nearly the same privacy



Figure 3. CCDF of bigram classifier results
when morphing the bigram distrbution

Figure 4. CCDF of trigram classifier results
when morphing the bigram distribution

provided by padding all packets to the same size, but
with less than half as much overhead. Black box mor-
phing, on the other hand, is less effective at providing
indistinguishability, though the overhead is substantially
lower than padding.

The results change dramatically, however, for the tri-
gram classifier, as seen in Figure 6. Through the use
of knowledge of the morphing technique and a higher-
order model than that used by the morpher, the trigram
classifier is able to recognize languages in morphed traf-
fic as accurately as on unmodified data. It is interesting
to note that neither the higher-order model nor knowl-
edge of the morphing technique alone is sufficient for
resisting whitebox morphing; both appear to be neces-
sary for constructing a truly robust classifier. We provide
further discussion of the implications of these results in
Section 4.3.

4.2 Web Page Identification

The web page classifier of Liberatore and Levine [14]
showed that it is possible to accurately identify a web
page that has been downloaded over an SSH tunnel us-
ing only the size of the packets and the direction in
which they traveled (i.e., from or to the client). The mit-
igation strategies suggested, like those of Wright et al. ,
focused on the use of various padding techniques to
limit the amount of information available to the classi-
fier. The results of experiments with these padding tech-
niques showed that significant information about web
page identity was leaked even when padding all pack-
ets to have a size equal to the maximum transmission
unit (MTU) of 1500 bytes. The reason for this sur-
prising result is that even though all packets are of the
same length, the proportion of packets sent by the server
and client still identifies the web page. Through the use

of our morphing method, however, we significantly im-
prove the privacy of the web pages while simultaneously
reducing overhead by more than half.

To classify web pages, Liberatore and Levine as-
sume that the observer examines the sizes of pack-
ets sent over an encrypted SSH tunnel. From these
packet sizes, the classifier derives attributes of the form
(direction, size) for each packet. For each unique
(direction, size) tuple, the classifier keeps a count for
the number of packets with that attribute sent during a
single download of a given web page, called an instance.
Several instances of the web pages that the observer
would like to detect are used to train a naı̈ve Bayes clas-
sifier with Gaussian kernel estimation. Our evaluation
makes use of the packet trace data set that was released
by Liberatore and Levine. Additional information about
the classifier and data set can be found in the original
paper [14].

In order to facilitate a clean evaluation of our morph-
ing technique, we modify the experimental setup used
by Liberatore and Levine classifier to instead train and
test on normalized distributions rather than raw counts
of each packet type, or attribute. The reasons for this
modification are two-fold. First, from a practical stand-
point, several recent works [12, 6] have shown that ac-
curately parsing web page downloads from interleaved
web traffic is extremely difficult in practice, and so,
in reality, it is unlikely that such a classifier would be
able to generate accurate counts for the observed packet
types. Second, our morphing method could be modi-
fied to morph distributions of raw counts by a number
of means. Some naı̈ve solutions include splitting single
web page downloads into several smaller downloads so
that the number of packets sent is correct, or generat-
ing extra packets from the target distribution to ensure
a sufficient number of packets was sent. Consequently,



Figure 5. CCDF of indistinguishability re-
sults for the bigram classifier when mor-
phing bigram distributions

Figure 6. CCDF of indistinguishability re-
sults for the trigram classifier when mor-
phing bigram distributions

Bigram Trigram
Strategy Overhead (%) Accuracy (%) Accuracy (%)

No Padding 0.0 71 76
Black Box 18.7 62 74
White Box 15.4 54 76

512 bit 42.2 50 50

Table 1. Results for morphing against the language classifier

in the case of raw distributions, our evaluation would be
unduly influenced by our choice of method for accom-
modating for these raw distributions, which is not the
primary focus of this paper. This change in setup allows
us to focus our evaluation on the morphing technique at
hand.

Our evaluation examines the naı̈ve Bayes classifier
of Liberatore and Levine trained on the first ten days of
data for each of the top 50 sites in the data set. Both
the classifier and our morphing technique are trained on
odd-numbered days, and tested on even-numbered days.
We create two morphing matrices, one for each direction
of the connection (i.e., client and server), for each pair
of sites in the data set using the techniques discussed
in Section 3.5 to reduce source distribution variability.
Thus, we morph the packets in real time on each side of
the connection independently using the respective ma-
trices. Recall from Section 3.5 that web pages may gen-
erate only a small number of packets, or the distribution
of packet sizes generated may differ considerably from
that of the data used to create the morphing matrices
To accommodate these peculiarities in our evaluation,
we implement the methods described in Section 3.5, in-
cluding clustering packet sizes into equivalence classes
and sampling from the target distribution to ensure that
the output and target distributions are sufficiently simi-

lar. Specifically, we require that the output distribution’s
distance to the target be less than a threhold t = 0.3
according to the L1 distance measure1. In essence, we
require that the two distributions differ by at most 30%
of their respective probability mass functions. As in the
VoIP test, we morph the data five times to reduce the
impact of the random sampling on the results.

4.2.1 Defeating the Original Classifier

In our first test, we focus on the ability of the morphing
technique to reduce the accuracy of the classifier trained
solely on unaltered web pages. As shown by the com-
plementary cumulative distribution function (CCDF) in
Figure 7, our morphing technique greatly reduces the
accuracy of the classifier. Specifically, the classifier
achieves an average accuracy of 98.4% on the unaltered
data, but its accuracy is reduced to just 4.5% by our mor-
phing method. As a baseline, the best performance one
can expect from our morphing technique in this case is
approximately 1.6% (1−.984) due to the classifier’s nat-
ural tendency to confuse certain web pages.

1The threshold was empirically derived by evaluating the perfor-
mance across a number of thresholds



Figure 7. CCDF for morphing versus the
original naı̈ve Bayes classifier

Figure 8. CCDF for indistinguishability
against the naı̈ve Bayes classifier

4.2.2 Evaluating Indistinguishability

Given the overwhelming success of our morphing
method in deceiving the original classifier, we move on
to the more difficult test wherein the classifier is allowed
to train on both the morphed (or padded) and unaltered
data, and asked to distinguish between the two. The re-
sults for our indistinguishability test, shown in Figure
8, clearly illustrate the superiority of our technique over
deterministically padding all packets to 1500 bytes. Re-
call that in this test, the best result that one can hope for
is that the classifier does no better than random guess-
ing when distinguishing the pages (i.e., 50% accuracy
on average). As shown in Table 2, our method achieves
63.4% accuracy with just 38.9% overhead, compared to
86.2% accuracy and 156.5% overhead for padding – a
significant difference in both privacy and overhead!

Our use of sampling methods to ensure a sufficient
level of similarity between the output and target dis-
tribution raises an important question: could the levels
of efficiency and accuracy found in our evaluation be
achieved with sampling alone? To illustrate the benefits
of our morphing method, we alter the source traffic by
sampling packet sizes according to the target distribu-
tion without employing our morphing technique. Table
2 shows that the accuracy for the two cases is compa-
rable. However, the significant difference in overhead
– 38.9% for our morphing technique versus 85.4% for
sampling alone – shows that the overhead savings illus-
trated in our results is primarily due to our morphing
method, and not the sampling techniques used to accom-
modate for short download sessions.

These results, while unintuitive at first glance, can be
readily explained by revisiting the way in which the clas-
sifier and morphing method operate. The use of deter-
ministic padding fails to preserve privacy because even

though all packets are the same size, their direction in
the connection still provides useful information. As a re-
sult, the distribution of packets sent from either side of
the connection uniquely identifies the majority of web
pages in the data set. Since our method morphs both
sides of the connection independently, this is not a prob-
lem for the morphing algorithm. Also, while the perfor-
mance of our morphing technique is very close to that
of random guessing, it fails to be completely indistin-
guishable because a large proportion of the pages have
few packets, and cannot produce a sufficiently close out-
put distribution despite our distance threshold of 0.3. Of
course, we can always reduce the threshold further, but
this risks an increase in overhead from the additional
packets that must be generated.

Strategy % Accuracy % Overhead
No Padding 98.4 0.0
1500 byte 86.2 156.5

Sampling only 64.5 85.4
Morphing 63.4 38.9

Table 2. Results for morphing against the
naı̈ve Bayes classifier

4.3 Discussion

Taken as a whole, our results on both VoIP and web
traffic have shown that our morphing technique provides
a significant savings over deterministic padding while
still providing superior privacy. Practically speaking,
our morphing technique offers an exciting alternative to
deterministic padding for protecting privacy that can be
used by a variety of services, including ToR [9] and Bit-



Torrent [5]. These results also bring to light a poten-
tial weakness in current traffic classification methodol-
ogy. That is, current traffic classification methods op-
erate under the implicit assumption that a user cannot
maliciously alter their traffic characteristics so as to sub-
vert the classification process. Clearly, our evaluation
here indicates that traffic classifiers must be aware of
the potential threats posed by such adversarial users, and
choose analysis methods that are resistant to these tech-
niques.

5 Conclusion

Until now, the only viable proposals for preventing
a traffic classifier from inferring sensitive information
from encrypted network traffic have involved quantiz-
ing the features of the packets, such as by padding their
size and sending them at regular intervals. In this pa-
per, we describe an alternative method to quantizing,
which is able to optimally balance the privacy provided
to the user with the amount of overhead incurred. The
approach that we take, traffic morphing, chooses the best
way to alter the feature(s) of a packet so that they match
those of some target class that the user wants her traf-
fic to look like. At the same time, our approach ensures
that the changes made to the features also induce mini-
mal overhead, in terms of latency or bytes of additional
data sent. We accomplish this balance of privacy and ef-
ficiency through the use of a novel application of convex
optimization techniques. Moreover, our method works
in real-time and makes no assumptions on the traffic
classifier being thwarted, other than knowing the fea-
ture(s) it uses.

Through our evaluations, we show that our method
is applicable to a variety of traffic classifiers that use
packet sizes as a feature. Specifically, our morphing
method significantly reduces the accuracy of the VoIP
classifier of Wright et al. [29] and the web page classi-
fier of Liberatore and Levine [14]. When compared to
traditional padding strategies, the morphing technique
provides far better privacy to the user while simultane-
ously maintaining or reducing the amount of overhead
incurred by padding. Aside from the potential bene-
fit to privacy-preserving protocols, our techniques also
push forward the state of the art in applying learning
algorithms to traffic in adversarial environments. The
challenge moving forward is to find classification meth-
ods that are robust to morphing attacks, either through
the use of several orthogonal features (though this is un-
likely in the case of encrypted traffic), or through the
use of robust comparison functions that are difficult to
thwart with morphing techniques.
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