
IntScope : Automatically Detecting Integer Overflow
Vulnerability in X86 Binary Using Symbolic Execution

Tielei Wang1, Tao Wei1, Zhiqiang Lin2, Wei Zou1

1Peking University, China
2Purdue University

2009-2-23 ICST@PKU 2

Outline

Motivation
Case Study
Modeling
Challenges & Approaches
Implementation & Evaluation
Related Work
Conclusion

2009-2-23 ICST@PKU 3

What is Integer Overflow ?

An integer overflow occurs when an operation results in a
value greater than the maximum one of the integral data
type.

Integer overflow vulnerability is an underestimated threat

unsigned int a = 0xffffffff;
unsigned int b = 0x1

;
a = a + b

;//now, a is 0!

2009-2-23 ICST@PKU 4

The # of integer overflow vulnerabilities grows
rapidly

0

20

40

60

80

100

120

140

2001 2002 2003 2004 2005 2006 2007

Year

N
u

m

Data Source: National Vulnerability Database

2009-2-23 ICST@PKU 5

Integer Overflow Vulnerabilities affected various
kinds of software

OS Kernel
CVE-2008-4036 (Windows
XP, Server 2003, Vista)
CVE-2008-3276 (Linux)
CVE-2008-4220 (Mac OS)
CVE-2008-1391 (NetBSD)
…

Libraries
CVE-2008-2316 (Python)
CVE-2008-5352 (JAVA)
…

Applications
CVE-2008-0726 (Adobe Reader)
CVE-2008-4061 (Firefox)
CVE-2008-2947 (IE7)
CVE-2008-0120 (PowerPoint)
CVE-2008-1722(CUPS)
CVE-2008-2430(VLC)
CVE-2008-5238(Xine)
…

2009-2-23 ICST@PKU 6

According to Common Vulnerability Scoring System(CVSS),
more than 60% of Integer Overflow vulnerabilities have the
highest severity score.

Most of Integer Overflow Vulnerabilities are
dangerous

Data Source: Common Vulnerability Scoring System

2009-2-23 ICST@PKU 7

Outline

Motivation
Case Study
Modeling
Challenges & Approaches
Implementation & Evaluation
Related Work
Conclusion

2009-2-23 ICST@PKU 8

What are the common features of integer
overflow vulnerabilities?

unsigned int x = read_int();
if (x > 0x7fffffff

)
abort();

unsigned int s = x*sizeof(int);
char* p=malloc(s);
read_int_into_buf(p, x);

an untrusted
source

an incomplete
check

an integer
overflow

a sensitive
operationa heap

overflow
followed

2009-2-23 ICST@PKU 9

CVE-2008-5238(Xine)

……
if (version == 4) {

const uint16_t sps = _X_BE_16 (this->header+44) ? : 1;
this->w

= _X_BE_16 (this->header+42);
this->h

= _X_BE_16 (this->header+40);
this->cfs = _X_BE_32 (this->header+24);
this->frame_len

= this->w * this->h;
this->frame_size

= this->frame_len * sps;
this->frame_buffer = calloc(this->frame_size, 1);

……

an untrusted
source

an integer
overflow

a sensitive
operation

2009-2-23 ICST@PKU 10

CVE-2008-1722(CUPS)

png_get_IHDR(pp, info, &width, &height, &bit_depth, &color_type,
&interlace_type, &compression_type, &filter_type);�

{
……
if (width == 0 || width > CUPS_IMAGE_MAX_WIDTH ||

height == 0 || height > CUPS_IMAGE_MAX_HEIGHT)
{//error

return (1);
}
img->xsize = width;
img->ysize = height;
……
if (color_type == PNG_COLOR_TYPE_GRAY ||color_type ==
PNG_COLOR_TYPE_GRAY_ALPHA)

in = malloc(img->xsize * img->ysize);
else

in = malloc(img->xsize * img->ysize * 3);
……

�}

an untrusted
source

an incomplete
check

an integer
overflow

a sensitive
operation

2009-2-23 ICST@PKU 11

CVE-2008-2430(VLC)

……
if(ChunkFind(p_demux, "fmt ", &i_size

))
{

msg_Err(p_demux, "cannot find 'fmt ' chunk");
goto error;

}
if(i_size < sizeof(WAVEFORMATEX) -

2)
{

msg_Err(p_demux, "invalid 'fmt ' chunk");
goto error;

}
stream_Read(p_demux->s, NULL, 8); /* Cannot fail */

/* load waveformatex */
p_wf_ext = malloc(__EVEN(i_size) + 2);
……

an untrusted
source

an incomplete
check

an integer
overflow

a sensitive
operation

2009-2-23 ICST@PKU 12

What’s the essential feature of integer overflow
vulnerabilities?

unsigned int x = read_int();
if (x > 0x7fffffff

)
abort();

unsigned int s = x*sizeof(int);
char* p=malloc(s);
read_int_into_buf(p, x);

an integer
overflow

an untrusted
source

an incomplete
check

a sensitive
operation

2009-2-23 ICST@PKU 13

What’s the essential feature of integer overflow
vulnerabilities?

Typical view
the essential feature is the actual overflow itself

unsigned int x = read_int();
if (x > 0x7fffffff

)
abort();

unsigned int s = x*sizeof(int);
char* p=malloc(s);
read_int_into_buf(p, x);

an integer
overflow

an untrusted
source

an incomplete
check

a sensitive
operation

2009-2-23 ICST@PKU 14

Integer Overflow != Integer Overflow Vulnerability

Case 1: The overflowed value is NOT used in any sensitive
operation

e.g. TCP sequence number rolls back per 4GB

Case 2: The overflowed value is NOT tainted
Most untainted integer overflows are on purpose, i.e., benign
overflows, e.g. computing random seeds

So Integer overflow itself is not the essential part of the
vulnerability

2009-2-23 ICST@PKU 15

What’s the essential feature of integer overflow
vulnerabilities?

The essential feature is those sensitive operations which
use some tainted overflowed data.

unsigned int x = read_int();
if (x > 0x7fffffff

)
abort();

unsigned int s = x*sizeof(int);
char* p=malloc(s);
read_int_into_buf(p, x);

an integer
overflow

an untrusted
source an incomplete

check

a sensitive
operation

2009-2-23 ICST@PKU 16

Outline

Motivation
Case Study
Modeling
Challenges & Approaches
Implementation & Evaluation
Related work
Conclusion

2009-2-23 ICST@PKU 17

Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

2009-2-23 ICST@PKU 18

Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

an
untrusted

source:
fread(),
fscan(),

…

2009-2-23 ICST@PKU 19

Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

an
untrusted

source:
fread(),
fscan(),

…

a sink using
tainted

overflowed data:
*alloc(),

array index,
pointer offset,

some predicates,
…

2009-2-23 ICST@PKU 20

Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

an
untrusted

source:
fread(),
fscan(),

…

a sink using
tainted

overflowed data:
*alloc(),

array index,
pointer offset,

some predicates,
…

A feasible path
connecting the
source and the

sink

2009-2-23 ICST@PKU 21

Outline

Motivation
Case Study
Modeling
Challenges & Approaches
Implementation & Evaluation
Related Work
Conclusion

2009-2-23 ICST@PKU 22

Natural Approach

Based on general static taint analysis

Given a binary program

Main

2009-2-23 ICST@PKU 23

Natural Approach

Decompile the binary program
Generate the intermediate representations, call graphs, CFGs, …

Main

2009-2-23 ICST@PKU 24

Natural Approach

Decompile
Traverse all paths from main() using symbolic execution

Main

2009-2-23 ICST@PKU 25

Natural Approach

Decompile
Traverse, Prune infeasible paths, whose path constraints
cannot be satisfied, during traversing

Main
X

X

X

2009-2-23 ICST@PKU 26

Natural Approach

Decompile
Traverse, Prune, Check possible integer overflows during
traversing

Main
X

X

X

2009-2-23 ICST@PKU 27

Natural Approach

Decompile
Traverse, Prune, Check, Tag sources and sinks during
traversing

Main

Source Sink

X

X

X

2009-2-23 ICST@PKU 28

Natural Approach

Decompile
Traverse, Prune, Check, Tag
Output suspicious paths in which tainted overflowed data
used in sinks

Main

Source Sink

X

X

X

2009-2-23 ICST@PKU 29

Does this natural approach work efficiently?

Major Challenges
1. Lack of type information
2. Path explosion
……

2009-2-23 ICST@PKU 30

Challenge 1. Lack of type information

During traversing, how can we determine there is an
overflow or not?

mov

eax, 0xffffffff

; eax = 0xffffffff or -1

add

eax, 2 ; eax = eax + 2

Overflow
or not?

2009-2-23 ICST@PKU 31

How to solve this?

Lazy check : only check integer overflows used in sinks

Decompile
Traverse, Prune, Tag, Check,
Output

Decompile
Traverse, Prune, Check, Tag
Output

2009-2-23 ICST@PKU 32

Lazy check

Only check integer overflows used in sinks

mov

eax, 0xffffffff

add

eax, 2

sub eax, 4

jb label1

unsinged cmp => eax is unsigned

eax is 0xffffffff, not -1

eax is 1 now, overflowed

2009-2-23 ICST@PKU 33

Benefit of Lazy check

Useful type information hints
Signed/unsigned comparisons

signed: JG, JGE, JNL, JNGE, JLE, JNG, JE, JNE
unsigned: JA, JAE, JNB, JB, JNAE, JBE, JNA, JE, JNE

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
…

Much less checks, much more efficiency

2009-2-23 ICST@PKU 34

Challenge 2. Path explosion

We need path-sensitive analysis, but the number of paths
through software is very large.

2009-2-23 ICST@PKU 35

Exponential Traversing Time

Only pruning during execution is not enough

branches in path (QEMU)

ti
m
e

sp
en

t
in
 t

ra
ve

rs
in
g

(s
ec

)

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

2009-2-23 ICST@PKU 36

Solution: Pre-pruning before traversing

Only consider paths between sources and possible sinks

Main

2009-2-23 ICST@PKU 37

Pre-pruning

Tag sources and possible sinks before traversing

Main

Source Sink

2009-2-23 ICST@PKU 38

Pre-pruning

Tag
Cut off those paths irrelevant to sources and sinks using
some inter-function slicing algorithms

Main

Source Sink

X

X

X

X

2009-2-23 ICST@PKU 39

Put it all together

Decompile
Tag, Pre-prune
Traverse, Prune, Lazy Check
Output suspicious paths

Main

Source Sink
X

2009-2-23 ICST@PKU 40

Put it all together

Given a binary program

Main

2009-2-23 ICST@PKU 41

Put it all together

Decompile the program
Generate the IR, call graph, CFGs, and so on

Main

2009-2-23 ICST@PKU 42

Put it all together

Decompile
Tag possible sources and sinks

Main

Source Sink

2009-2-23 ICST@PKU 43

Decompile
Tag, Pre-prune: Cut off those paths irrelevant to sources and
sinks

Put it all together

Main

Source Sink

X

X

X

X

2009-2-23 ICST@PKU 44

Put it all together

Decompile
Tag, Pre-prune
Traverse paths left using symbolic execution

Main

Source Sink

X

X

X

X

2009-2-23 ICST@PKU 45

Put it all together

Decompile
Tag, Pre-prune
Traverse, Prune infeasible paths during traversing

Main

Source Sink

X

X

X

X

X

2009-2-23 ICST@PKU 46

Put it all together

Decompile
Tag, Pre-prune
Traverse, Prune, Lazy Check : check integer overflows used
in sinks

Main

Source Sink

X

X

X

X

X

2009-2-23 ICST@PKU 47

Put it all together

Decompile
Tag, Pre-prune
Traverse, Prune, Lazy Check
Output suspicious paths

Main

Source Sink
X

2009-2-23 ICST@PKU 48

Outline

Motivation
Case Study
Modeling
Challenges & Approaches
Implementation & Evaluation
Related Work
Conclusion

2009-2-23 ICST@PKU 49

IntScope Architecture

IntScope
Decompiler

BESTAR [SAS2007]
Cut off irrelevant paths

Pre-pruning Engine
Symbolic Execution

Environment
Engine

Pruning during traversing
Constraint Solver

Lazy Checker

3rd Party Modules
Disassembler: IDA Pro
CAS: GiNaC
Constraint Solver: STP

IntScope

Symbolic Environments

Suspicious
Paths

Symbolic
Execution

Engine

PANDA

Constraint
Solver

Lazy
Checker

Pre-
pruning

BESTAR Decompiler

Binary

2009-2-23 ICST@PKU 50

How to use IntScope

Binary ConfirmSuspicious

Paths
Report

IntScope

2009-2-23 ICST@PKU 51

Evaluation

Two Windows DLLs
GDI32.dll
comctl32.dll

Several widely used applications
QEMU, Xen
Media players

Mplayer
Xine
VLC
FAAD2
MPD

Others
Cximage, Hamsterdb, Goom

2009-2-23 ICST@PKU 52

Effectiveness

Detected known integer overflow bugs in Windows DLLs

Detected 20+ zero-day integer overflow vulnerabilities
Confirmed by developers or concrete test cases
Some projects have released patches

We have reported vulnerabilities in QEMU and FAAD2 to
French Security Incident Response Team (FrSIRT)

CVE-2008-4201
FrSIRT/ADV-2008-2919
……

2009-2-23 ICST@PKU 53

Effectiveness

Among 26 integer overflow vulnerability points, 21 of them have been
confirmed

2009-2-23 ICST@PKU 54

Efficiency

AMD Opteron Server (2.6 GHz) with 8GB memory

Average time : about 5 min
Longest time : < 12 min

2009-2-23 ICST@PKU 55

Outline

Motivation
Case Study
Modeling
Intuition & Challenge
Implementation & Evaluation
Related Work
Conclusion

2009-2-23 ICST@PKU 56

Related Work
w/ source code

Run-time Protection
Safe integer libraries
RICH [NDSS’07]
GCC

Dynamic and/or Static analysis
Range checker [S&P’02]
CQual[PLDI02], EXE[CCS06], KLEE[OSDI08], DART[PLDI05],
CUTE[FSE05]

w/o source code
Fuzzing

SAGE [NDSS’08]
Catchconv [Molnar and Wagner, Berkeley]

Static analysis of integer overflows using sym exec <= IntScope

2009-2-23 ICST@PKU 57

Outline

Motivation
Case Study
Modeling
Intuition & Challenge
Implementation & Evaluation
Related Work
Conclusion

2009-2-23 ICST@PKU 58

Conclusion

IntScope
Modeling Integer Overflow Vulnerability as a taint-based problem
Lazy Check : only check integer overflows lazily at sinks
Pre-prune : prune paths irrelative to sources and possible sinks
before traversing

Detect 20+ Zero-day integer overflow vulnerabilities

2009-2-23 ICST@PKU 59

Questions?

weitao@icst.pku.edu.cn

2009-2-23 ICST@PKU 60

Backup slides

2009-2-23 ICST@PKU 61

Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

an
untrusted

 source:
fread(),
fscan(),

…

a sink using
tainted

overflowed data:
*alloc(),

array index,
pointer offset,

some predicates,
…

A feasible path
connecting the
source and the

sink

2009-2-23 ICST@PKU 62

Suspicious Paths

IntScope is a static analysis tool, so it may generate false
positives.

Missing of the constraints between inputs.
Lack of global information
Imprecise symbolic execution

For each vulnerability, if we cannot construct a concrete test
case to trigger it, we leave it as a suspicious one.

2009-2-23 ICST@PKU 63

False positives

IntScope is a static analysis tool, so it may generate false
positives.

Missing of the constraints between inputs.
Lack of global information
Imprecise symbolic execution

It’s hard to prove an alert is a real vulnerability
we need to construct a concrete test case to trigger the vulnerability.

If we can not construct such test cases, we take these alerts
as suspicious ones.

	IntScope : Automatically Detecting Integer Overflow Vulnerability in X86 Binary Using Symbolic Execution
	Outline
	What is Integer Overflow ?
	The # of integer overflow vulnerabilities grows rapidly
	Integer Overflow Vulnerabilities affected various kinds of software
	Most of Integer Overflow Vulnerabilities are dangerous
	Outline
	What are the common features of integer overflow vulnerabilities?
	CVE-2008-5238(Xine)
	CVE-2008-1722(CUPS)
	CVE-2008-2430(VLC)
	What’s the essential feature of integer overflow vulnerabilities?
	What’s the essential feature of integer overflow vulnerabilities?
	Integer Overflow != Integer Overflow Vulnerability
	What’s the essential feature of integer overflow vulnerabilities?
	Outline
	Modeling Integer Overflow Vulnerability
	Modeling Integer Overflow Vulnerability
	Modeling Integer Overflow Vulnerability
	Modeling Integer Overflow Vulnerability
	Outline
	Natural Approach
	Natural Approach
	Natural Approach
	Natural Approach
	Natural Approach
	Natural Approach
	Natural Approach
	Does this natural approach work efficiently?
	Challenge 1. Lack of type information
	How to solve this?
	Lazy check
	Benefit of Lazy check
	Challenge 2. Path explosion
	Exponential Traversing Time
	Solution: Pre-pruning before traversing
	Pre-pruning
	Pre-pruning
	�Put it all together
	Put it all together
	Put it all together
	Put it all together
	Put it all together
	Put it all together
	Put it all together
	Put it all together
	Put it all together
	Outline
	IntScope Architecture
	How to use IntScope
	Evaluation
	Effectiveness
	Effectiveness
	Efficiency
	Outline
	Related Work
	Outline
	Conclusion
	Questions?
	Backup slides
	Modeling Integer Overflow Vulnerability
	Suspicious Paths
	False positives

