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What is Integer Overflow ?

An integer overflow occurs when an operation results in a 
value greater than the maximum one of the integral data 
type.

Integer overflow vulnerability is an underestimated threat

unsigned int a = 0xffffffff;
unsigned int b = 0x1

 

;
a = a + b

 

;//now, a is 0!
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The # of integer overflow vulnerabilities grows 
rapidly
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Integer Overflow Vulnerabilities affected various 
kinds of software

OS Kernel
CVE-2008-4036 (Windows 
XP, Server 2003, Vista)
CVE-2008-3276 (Linux)
CVE-2008-4220 (Mac OS)
CVE-2008-1391 (NetBSD) 
…

Libraries
CVE-2008-2316 (Python)
CVE-2008-5352 (JAVA)
…

Applications
CVE-2008-0726 (Adobe Reader)
CVE-2008-4061 (Firefox)
CVE-2008-2947 (IE7)
CVE-2008-0120 (PowerPoint) 
CVE-2008-1722(CUPS)
CVE-2008-2430(VLC)
CVE-2008-5238(Xine)
…



2009-2-23 ICST@PKU 6

According to Common Vulnerability Scoring System(CVSS), 
more than 60% of Integer Overflow vulnerabilities have the 
highest severity score. 

Most of Integer Overflow Vulnerabilities are 
dangerous

Data Source: Common Vulnerability Scoring System
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What are the common features of integer 
overflow vulnerabilities?

unsigned int x = read_int();
if ( x > 0x7fffffff

 

)
abort();

unsigned int s = x*sizeof(int);
char* p=malloc(s);
read_int_into_buf(p, x);

an untrusted 
source

an incomplete 
check

an integer 
overflow

a sensitive 
operationa heap 

overflow 
followed
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CVE-2008-5238(Xine)

……
if (version == 4) {    

const uint16_t sps = _X_BE_16 (this->header+44) ? : 1;    
this->w

 

= _X_BE_16 (this->header+42);    
this->h

 

= _X_BE_16 (this->header+40);    
this->cfs         = _X_BE_32 (this->header+24);    
this->frame_len

 

= this->w * this->h;    
this->frame_size

 

= this->frame_len * sps;    
this->frame_buffer = calloc(this->frame_size, 1);

……

an untrusted 
source

an integer 
overflow

a sensitive 
operation
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CVE-2008-1722(CUPS)

png_get_IHDR(pp, info, &width, &height, &bit_depth, &color_type,
&interlace_type, &compression_type, &filter_type);� 

{
……
if (width == 0 || width > CUPS_IMAGE_MAX_WIDTH ||

height == 0 || height > CUPS_IMAGE_MAX_HEIGHT)
{//error 

return (1); 
} 
img->xsize = width; 
img->ysize = height; 
……
if (color_type == PNG_COLOR_TYPE_GRAY ||color_type == 
PNG_COLOR_TYPE_GRAY_ALPHA) 

in = malloc(img->xsize * img->ysize);
else 

in = malloc(img->xsize * img->ysize * 3);
……

�}

an untrusted 
source

an incomplete 
check

an integer 
overflow

a sensitive 
operation
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CVE-2008-2430(VLC)

……
if( ChunkFind( p_demux, "fmt ", &i_size

 

) )
{

msg_Err( p_demux, "cannot find 'fmt ' chunk" );
goto error;

}
if( i_size < sizeof( WAVEFORMATEX ) -

 

2 )
{

msg_Err( p_demux, "invalid 'fmt ' chunk" );
goto error;

}
stream_Read( p_demux->s, NULL, 8 );   /* Cannot fail */

/* load waveformatex */
p_wf_ext = malloc( __EVEN( i_size ) + 2 );
……

an untrusted 
source

an incomplete 
check

an integer 
overflow

a sensitive 
operation
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What’s the essential feature of integer overflow 
vulnerabilities?

unsigned int x = read_int();
if ( x > 0x7fffffff

 

)
abort();

unsigned int s = x*sizeof(int);
char* p=malloc(s);
read_int_into_buf(p, x);

an integer 
overflow

an untrusted 
source

an incomplete 
check

a sensitive 
operation
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What’s the essential feature of integer overflow 
vulnerabilities?

Typical view
the essential feature is the actual overflow itself 

unsigned int x = read_int();
if ( x > 0x7fffffff

 

)
abort();

unsigned int s = x*sizeof(int);
char* p=malloc(s);
read_int_into_buf(p, x);

an integer 
overflow

an untrusted 
source

an incomplete 
check

a sensitive 
operation
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Integer Overflow != Integer Overflow Vulnerability

Case 1: The overflowed value is NOT used in any sensitive 
operation

e.g. TCP sequence number rolls back per 4GB

Case 2: The overflowed value is NOT tainted
Most untainted integer overflows are on purpose, i.e., benign 
overflows, e.g. computing random seeds

So Integer overflow itself is not the essential part of the 
vulnerability
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What’s the essential feature of integer overflow 
vulnerabilities?

The essential feature is those sensitive operations which 
use some tainted overflowed data.

unsigned int x = read_int();
if ( x > 0x7fffffff

 

)
abort();

unsigned int s = x*sizeof(int);
char* p=malloc(s);
read_int_into_buf(p, x);

an integer 
overflow

an untrusted 
source an incomplete 

check

a sensitive 
operation
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Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink
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Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

an 
untrusted 

source: 
fread(), 
fscan(),

…
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Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

an 
untrusted 

source: 
fread(), 
fscan(),

…

a sink using 
tainted 

overflowed data:
*alloc(),

array index,
pointer offset,

some predicates,
…
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Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

an 
untrusted 

source: 
fread(), 
fscan(),

…

a sink using 
tainted 

overflowed data:
*alloc(),

array index,
pointer offset,

some predicates,
…

A feasible path 
connecting the 
source and the 

sink
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Natural Approach

Based on general static taint analysis

Given a binary program

Main
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Natural Approach 

Decompile the binary program
Generate the intermediate representations, call graphs, CFGs, …

Main
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Natural Approach

Decompile
Traverse all paths from main() using symbolic execution

Main



2009-2-23 ICST@PKU 25

Natural Approach

Decompile
Traverse, Prune infeasible paths, whose path constraints 
cannot be satisfied, during traversing

Main
X

X

X
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Natural Approach

Decompile
Traverse, Prune, Check possible integer overflows during 
traversing

Main
X

X

X
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Natural Approach

Decompile
Traverse, Prune, Check, Tag sources and sinks during 
traversing

Main

Source Sink

X

X

X
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Natural Approach

Decompile
Traverse, Prune, Check, Tag
Output suspicious paths in which tainted overflowed data 
used in sinks

Main

Source Sink

X

X

X
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Does this natural approach work efficiently?

Major Challenges
1. Lack of type information
2. Path explosion
……
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Challenge 1. Lack of type information

During traversing, how can we determine there is an 
overflow or not?

mov

 

eax, 0xffffffff

 

; eax = 0xffffffff or -1

add

 

eax, 2 ; eax = eax + 2

Overflow 
or not?
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How to solve this? 

Lazy check : only check integer overflows used in sinks

Decompile
Traverse, Prune, Tag, Check, 
Output

Decompile
Traverse, Prune, Check, Tag
Output
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Lazy check

Only check integer overflows used in sinks

mov

 

eax, 0xffffffff

add

 

eax, 2

sub    eax, 4

jb     label1

unsinged cmp => eax is unsigned

eax is 0xffffffff, not -1

eax is 1 now, overflowed
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Benefit of Lazy check

Useful type information hints
Signed/unsigned comparisons

signed: JG, JGE, JNL, JNGE, JLE, JNG, JE, JNE
unsigned: JA, JAE, JNB, JB, JNAE, JBE, JNA, JE, JNE

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
…

Much less checks, much more efficiency
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Challenge 2. Path explosion

We need path-sensitive analysis, but the number of paths 
through software is very large.
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Exponential Traversing Time

Only pruning during execution is not enough

branches in path (QEMU)

ti
m
e 

sp
en

t 
in
 t

ra
ve

rs
in
g

(s
ec

)

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60



2009-2-23 ICST@PKU 36

Solution: Pre-pruning before traversing

Only consider paths between sources and possible sinks

Main
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Pre-pruning

Tag sources and possible sinks before traversing

Main

Source Sink
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Pre-pruning

Tag
Cut off those paths irrelevant to sources and sinks using 
some inter-function slicing algorithms

Main

Source Sink

X

X

X

X
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Put it all together

Decompile
Tag, Pre-prune
Traverse, Prune, Lazy Check
Output suspicious paths

Main

Source Sink
X
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Put it all together

Given a binary program

Main
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Put it all together

Decompile the program
Generate the IR, call graph, CFGs, and so on

Main
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Put it all together

Decompile
Tag possible sources and sinks

Main

Source Sink
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Decompile
Tag, Pre-prune: Cut off those paths irrelevant to sources and 
sinks

Put it all together

Main

Source Sink

X

X

X

X
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Put it all together

Decompile
Tag, Pre-prune
Traverse paths left using symbolic execution

Main

Source Sink

X

X

X

X
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Put it all together

Decompile
Tag, Pre-prune
Traverse, Prune infeasible paths during traversing

Main

Source Sink

X

X

X

X

X
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Put it all together

Decompile
Tag, Pre-prune
Traverse, Prune, Lazy Check : check integer overflows used 
in sinks

Main

Source Sink

X

X

X

X

X
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Put it all together

Decompile
Tag, Pre-prune
Traverse, Prune, Lazy Check
Output suspicious paths

Main

Source Sink
X
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IntScope Architecture

IntScope
Decompiler

BESTAR [SAS2007]
Cut off irrelevant paths

Pre-pruning Engine
Symbolic Execution

Environment
Engine

Pruning during traversing
Constraint Solver

Lazy Checker

3rd Party Modules
Disassembler: IDA Pro
CAS: GiNaC
Constraint Solver:  STP

IntScope

Symbolic Environments

Suspicious 
Paths

Symbolic 
Execution 

Engine

PANDA

Constraint 
Solver

Lazy 
Checker

Pre-
pruning

BESTAR Decompiler

Binary
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How to use IntScope

Binary ConfirmSuspicious

Paths
Report

IntScope
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Evaluation

Two Windows DLLs
GDI32.dll
comctl32.dll

Several widely used applications
QEMU, Xen
Media players

Mplayer
Xine
VLC
FAAD2
MPD

Others
Cximage, Hamsterdb, Goom



2009-2-23 ICST@PKU 52

Effectiveness

Detected known integer overflow bugs in Windows DLLs 

Detected 20+ zero-day integer overflow vulnerabilities
Confirmed by developers or concrete test cases
Some projects have released patches

We have reported vulnerabilities in QEMU and FAAD2 to 
French Security Incident Response Team (FrSIRT)

CVE-2008-4201
FrSIRT/ADV-2008-2919
……
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Effectiveness

Among 26 integer overflow vulnerability points, 21 of them have been 
confirmed
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Efficiency

AMD Opteron Server (2.6 GHz) with 8GB memory

Average time : about 5 min
Longest time : < 12 min
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Related Work
w/ source code

Run-time Protection
Safe integer libraries
RICH [NDSS’07]
GCC

Dynamic and/or Static analysis
Range checker [S&P’02]
CQual[PLDI02], EXE[CCS06], KLEE[OSDI08], DART[PLDI05], 
CUTE[FSE05]

w/o source code
Fuzzing

SAGE [NDSS’08]
Catchconv [Molnar and Wagner, Berkeley]

Static analysis of integer overflows using sym exec <= IntScope
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Conclusion

IntScope
Modeling Integer Overflow Vulnerability as a taint-based problem
Lazy Check : only check integer overflows lazily at sinks
Pre-prune : prune paths irrelative to sources and possible sinks 
before traversing

Detect 20+ Zero-day integer overflow vulnerabilities
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Questions?

weitao@icst.pku.edu.cn
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Backup slides
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Modeling Integer Overflow Vulnerability

An instance of taint-based problem

Source Sink

an 
untrusted

 source: 
fread(), 
fscan(),

…

a sink using 
tainted 

overflowed data:
*alloc(),

array index,
pointer offset,

some predicates,
…

A feasible path 
connecting the 
source and the 

sink
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Suspicious Paths

IntScope is a static analysis tool, so it may generate false 
positives.

Missing of the constraints between inputs.
Lack of global information
Imprecise symbolic execution

For each vulnerability, if we cannot construct a concrete test 
case to trigger it, we leave it as a suspicious one.
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False positives

IntScope is a static analysis tool, so it may generate false 
positives.

Missing of the constraints between inputs.
Lack of global information
Imprecise symbolic execution

It’s hard to prove an alert is a real vulnerability
we need to construct a concrete test case to trigger the vulnerability.

If we can not construct such test cases, we take these alerts 
as suspicious ones.
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