

1

Privacy-Preserving Stream Aggregation

Elaine Shi (PARC/UC Berkeley), T-H. Hubert Chan (HKU), Eleanor Rieffel (FXPal), Richard Chow (PARC), Dawn Song (UC Berkeley)

Privacy in Smart Grids

Privacy in Population Surveys

How can we allow a data aggregator to perform data analytics, while preserving individual privacy?

Our Results – Privacy Notion

Encryption Scheme

Aggregator Obliviousness

(Aggregator learns only desired statistic, and nothing else)

Distributed Noise Generation

Differential privacy against an untrusted aggregator

Computing on Multiple Users' Encrypted Data

Homomorphic Encryption?

New Paradigm

New Paradigm

Expressiveness: Summation

Expressiveness: Distributions

Aggregate Once: Simple Construction

Aggregate Once: Simple Construction

Aggregate Once: Simple Construction

Multiple Time Steps

Differential Privacy against an Untrusted Aggregator

Differential Privacy

[Dwork06]

8 neighboring vectors x and x', 8 sets of transcripts S: $Pr[\pi(x) \in S] \leq exp(\epsilon) \cdot Pr[\pi(x') \in S]$

Naïve Scheme

Crypto + Differential Privacy

Open Problems and Future Work

- More expressive queries
- Larger plaintext space
- Fault tolerance [CSS10]
- Reduce privacy loss over multiple time steps [CSS10]

Take-Home Messages

 Differential Privacy against an Untrusted Aggregator

 The Power of Combining Cryptography and Differential Privacy

Thank you!

Our Results – Property

Periodic aggregation

- Non-interactive
 - No interactions among users
 - Users upload ciphertext to aggregator, and no more communication needed

Power of Combining Crypto and Differential Privacy

Scheme	Error Bound
Differential Privacy	$\Omega(\sqrt{n})$ [CSS10]
Crypto + Differential Privacy	<i>O</i> (1)

Privacy in Sensor Networks

Privacy in Market Research

