
Protecting C++ Dynamic Dispatch Through VTable
Interleaving

Dimitar Bounov
Computer Science and Engineering
University of California, San Diego

dbounov@cs.ucsd.edu

Rami Gökhan Kıcı
Computer Science and Engineering
University of California, San Diego

rkici@cs.ucsd.edu

Sorin Lerner
Computer Science and Engineering
University of California, San Diego

lerner@cs.ucsd.edu

Abstract—With new defenses against traditional control-flow
attacks like stack buffer overflows, attackers are increasingly
using more advanced mechanisms to take control of execution.
One common such attack is vtable hijacking, in which the attacker
exploits bugs in C++ programs to overwrite pointers to the virtual
method tables (vtables) of objects. We present a novel defense
against this attack. The key insight of our approach is a new
way of laying out vtables in memory through careful ordering
and interleaving. Although this layout is very different from a
traditional layout, it is backwards compatible with the traditional
way of performing dynamic dispatch. Most importantly, with this
new layout, checking the validity of a vtable at runtime becomes
an efficient range check, rather than a set membership test.
Compared to prior approaches that provide similar guarantees,
our approach does not use any profiling information, has lower
performance overhead (about 1%) and has lower code bloat
overhead (about 1.7%).

I. INTRODUCTION

For performance reasons, many applications are written in
languages without garbage collection, without memory bounds
checking, and without strong runtime type systems. At the
same time, these applications are large and complex, and
thus are usually implemented in a language that supports
abstraction. As a result, oftentimes, the language of choice
in practice for these applications is still C++.

Unfortunately, because there is no enforcement of runtime
type safety, C++ applications are vulnerable to many kinds
of attacks, including control-flow attacks that take control of
the program’s execution. The most commonly known such
attack is the traditional stack buffer overflow that overwrites
the return address. Because of the importance of such attacks,
defense mechanisms have been developed to mitigate these
attacks, including DEP [31], ASLR [29], stack canaries [6],
shadow stacks [3], SafeStack [20], etc.

As a result of these defenses, the cost of mounting stack-
based attacks has increased, and attackers have started looking
for new ways of compromising control-flow integrity (CFI).

One such approach which has received a lot of attention in
the past few years is known as vtable hijacking. In vtable
hijacking, an attacker exploits bugs in a C++ program to
overwrite the pointers to virtual method tables of C++ objects.
When the program performs a virtual method call later on, the
attacker-controlled virtual method table is used for dispatch,
causing the attacker to take over the control-flow of the
program. There are several kinds of bugs that can be used to
mount this attack, including heap overflow bugs and use-after-
free bugs. The importance of vtable hijacking is highlighted by
several high-profile attacks on up-to-date browsers [10], [14],
[12], [37], [34].

Because of the importance of vtable hijacking, several
recent research efforts have looked at how to protect against
this attack, including [16], [35], [42], [30]. In general these
techniques insert runtime checks before a virtual method call
that try to establish the safety of the call. Most of those checks
attempt to verify that when performing a virtual call on an
object of type A, the virtual method table used will be that
of A or a subclass of A. Enforcing this property efficiently is
non-trivial, as Section III will discuss in more detail.

The main contribution of this paper is an entirely new
approach for efficiently enforcing the above runtime type
safety property for C++ virtual method calls, thus protecting
against vtable hijacking. The key insight of our approach is
a new way of laying out vtables in memory through careful
ordering and interleaving. Although this layout is very different
from a traditional layout, it is still backwards compatible with
the traditional way of performing dynamic dispatch. Most
importantly, with this new layout, checking the validity of a
vtable at runtime becomes an efficient range check.

This achievement of using range checks to enforce runtime
types is made possible by three technical ingredients. First,
by ordering vtables using a preorder traversal of the class
hierarchy we ensure that vtables for classes in each subtree
of the hierarchy are consecutive in memory. Next by aligning
the vtables properly, we demonstrate how range checks modulo
alignment become precise enough to guarantee that only stati-
cally type-safe vtables are allowed at each virtual method call
site. Finally through careful interleaving, we remove the extra
padding for alignment, pack the vtables tightly and greatly
reduce our memory footprint, while still being able to use
efficient range checks modulo alignment.

As we will describe in more detail later in the paper,
compared to prior approaches that provide similar guarantees,

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23421

our approach does not use any profiling information, has lower
performance overhead (about 1%) and has lower code bloat
overhead (about 1.7%).

In summary, our contributions are:

• We present a new approach for enforcing precise
CFI for C++ virtual method calls using simple range
checks and alignment (Sections II through VI).

• We show how our approach can be adapted to work for
all the corner cases of C++ hierarchies, including mul-
tiple inheritance and virtual base classes (Section VII).

• We formalize our approach in a well defined algo-
rithm and prove several important properties about it,
including correctness with respect to C++’s dynamic
dispatch mechanism (Section VIII).

• We perform a comprehensive performance evaluation
of our approach for runtime and memory overhead
on the C++ SPEC2006 benchmarks and the Chrome
browser (Section X). We even experimentally compare
our approach against the state of the art for protecting
against vtable hijacking that was recently added to
LLVM (but which has not been published in an
academic venue), and show that our approach reduces
the runtime overhead from about 2% to about 1%,
a significant reduction when considering the small
margins that are in play (in essence, we cut the
overhead in half). Finally we discuss the security
guarantees provided by our algorithm.

II. BACKGROUND

A. C++ VTables

Dynamic dispatch in C++ is implemented using tables
of function pointers (vtables). We use a running example
to explain how vtables work, and how our approach works.
Consider the C++ code in Figure 1a, which defines the class
hierarchy shown in Figure 1b. Figure 2 shows the traditional
vtable layout for this example. Note that the details of vtable
memory layout are dictated by two Application Binary Inter-
faces (ABIs) - Itanium and MSVC. We will use Itanium for the
remainder of the paper, but our technique transfers naturally
to MSVC.

VTables are contiguous arrays of pointer-sized entries con-
taining function pointers and other metadata such as Run-Time
Type Information (rtti), virtual base and call offsets (relevant to
virtual inheritance) and offset-to-top (used for casting). Object
instances contain at offset 0 a pointer (vptr) to the first function
pointer (the address point) of their corresponding vtable. For
example in Figure 2 the object of type D points to the 2nd
entry in its vtable - Dfoo. Elements of the vtable are indexed
relative to vtable’s address point, with function pointers found
at positive indices and other metadata laid out at negative
indices. For example, in Figure 2, method foo can be found
at index 0 relative to the address point; bar is at index 0x8,
and so is baz; finally boo is at index 0x10.

Note that bar and baz are mapped to the same index
since no class in the hierarchy has both a bar and a baz
method. Also note that for simplicity, we only show one

kind of metadata at negative offsets, namely Run-time Type
Information - other kinds of metadata at negative offsets are
handled similarly.

To illustrate how dynamic dispatch works, we use the sam-
ple method calls shown in Figure 1c. The resulting assembly
code, shown in Figure 1d, works in three steps, which are
labeled in the generated assembly:

1) Dereference the object pointer to obtain the vptr.
2) Use the method offset to index into the vtable to

obtain the actual function pointer. For the first call
site (C1) the called method foo has offset 0 and for
the second call site (C2) the called method bar has
offset 0x8.

3) Finally invoke the obtained function pointer. For
simplicity we omit the assembly code that passes
parameters, including passing this.

B. Threat Model

We assume an adversary capable of arbitrarily and concur-
rently modifying the heap (similarly to [35]). We assume that
values in registers are safe from tampering. We assume that
the attacker does not compromise the stack. This assumption is
necessary since our technique is currently implemented at the
LLVM Intermediate Representation (IR) level, where we have
no control over register spilling. Thus it is possible that a value
verified by our runtime checks is spilled to the stack prior to
use, thus introducing a time-of-check-time-of-use vulnerability.
To overcome this limitation we would need to reimplement our
defense as a lower level compiler transformation.

C. VTable Hijacking

While vtables reside in read-only memory and are thus
safe from tampering, vptrs are stored in writable memory and
become the target of vtable hijacking attacks [16]. Attackers
usually exploit a bug already present in the program to
overwrite the vtable pointer of an object and later trick the
program into invoking a function on the compromised object.
We illustrate this with a use-after-free bug, because this has
been a common way of launching recent high-profile vtable
attacks [14], [37]. Consider for example the code excerpt in
Figure 3, which suffers from a use-after-free bug: object d is
used (4) erroneously after it is deleted at (1). Now suppose
that an attacker is capable of controlling a memory allocation
(2) in the window between (1) and (4) in such a way that
the memory allocator places the new memory where object d
used to live. Furthermore, let’s assume that the attacker also
controls writes to this new allocation (3), thus being able to
place attacker controlled data where the vptr used to be; the
new vptr is constructed by the attacker to point to a specially
crafted fake vtable with malicious entries. As a result, when
d->foo() is invoked at (4) control-flow is redirected to a
location of the attacker’s choice (e.g. the system call).

Such use-after-free bugs have been successfully exploited
in the wild to launch vtable hijacking attacks, most notably
in browser security exploits [10], [14], [12], [37], [34], [24],
[27]. However, use-after-free bugs are only one possible vector
for vtable hijacking, another option being direct heap-overflow
attacks [1], [2]). Our approach detects all vtable hijacking
attacks, regardless of their source.

2

class A {
public:

int mA;
virtual void foo();

}
class B : public A {
public:

int mB;
virtual void foo();
virtual void bar();

}
class C : public A {
public:

int mC;
virtual void baz();

}
class D : public B {
public:

int mD;
virtual void foo();
virtual void boo();

}

(a) C++ Code

(b) Class Hierarchy

C1: A* a = ...
a->foo();

...

C2: B* b = ...
b->bar();

(c) Sample Callsites

C1: $a = ...
(1) $avptr = load $a
(2) $foo_fn = load $avptr
(3) call $foo_fn

C2: $b = ...
(1) $bvptr = load $b
(2) $bar_fn = load ($bvptr+0x8)
(3) call $bar_fn

(d) Callsite Instructions

Fig. 1: C++ Example

Fig. 2: Normal Vtable Layout in Memory

D *d = new D();
...
(1) delete d;
(2) // attacker controlled

// allocation
(3) // attacker controlled

// writes to allocation
(4) d->foo();

// system called

Fig. 3: VTable hijacking example

III. OVERVIEW

Having presented how vtable hijacking works, we now
focus on how to prevent such attacks. Most defenses against
vtable hijacking (ours included) employ Inline Reference Mon-
itors (IRMs) inserted before dynamic dispatch sites. At an ab-
stract level, the callsites from Figure 1d would be instrumented
as shown in Figure 4a, where the isvalid $v C instruction
denotes a runtime check whether the vptr $v is valid for a class
of static type C. The key challenge, as we will shortly see, is
how to make these checks efficient.

C1: $a = ...
$avptr = load $a
assert isvalid $avptr, A
$foo_fn = load $avptr
call $foo_fn

C2: $b = ...
$bvptr = load $b
assert isvalid $bvptr, B
$bar_fn = load ($bvptr+0x8)
call $bar_fn

(a) Abstract Check

C1: $a = ...
$avptr = load $a
assert $avptr ∈ {0x8,0x18,

0x30,0x48}
$foo_fn = load $avptr
call $foo_fn

C2: $b = ...
$bvptr = load $b
assert $bvptr ∈ {0x18,0x48}
$bar_fn = load ($bvptr+0x8)
call $bar_fn

(b) Vptr check semantics

Fig. 4: Instrumented Callsites

In practice, isvalid has the semantics of a set check,
as shown in Figure 4b. For example, callsite C2 is safe if at
runtime the loaded vptr $bvptr is in the set {0x18,0x48}.
This safe set is determined statically by looking at the type
in the source code of the object being dispatched on. In this
case, the method call is done using variable b in the source
code of Figure 1c, which is statically declared of type B. The
valid vtables that can occur at runtime for an object of static
type B are the vtables of B and all of its subclasses, in our
example B and D. This is why the safe set is {0x18,0x48},
the vtables of B and D. Similarly, the set for C1 in Figure 4b
are the vtables of A (the statically declared type of a) and its
sublcasses, namely the vtables of A, B, C, and D.

Efficient enforcement of these vptr checks is difficult, due
to the fact that vtable address points occur at non-uniform
addresses in memory (Fig 2). This has forced previous work
to resort to various general set data structures such as bitsets
[22], [30] and linear arrays with inlined checks [16].

Our Approach. The key insight in our approach is that
we carefully arrange and interleave the vtables so that the
addresses to check for at a given call site become continuous
modulo some alignment. We can check membership in these
sets of continuous addresses using a simple range and align-

3

Fig. 5: Ordered Vtable Layout in Memory

ment check. These checks are very efficient and their overhead
is independent of the size of the set being checked.

Our vtable layout is motivated by the observation that the
sets of classes to be checked are not arbitrary. Instead these
sets are all so-called cones in the class hierarchy, namely a set
containing a given class and all of its subclasses.

As a result, our first key idea is to order the vtables in
memory using a pre-order traversal of the class hierarchy.
This places all the vtables belonging to a cone continuously in
memory. In addition, if we align the vtables appropriately, this
ordering allows us to check cone membership using a simple
range check modulo alignment. Section IV will present this
ordering technique, called OVT (Ordered VTables).

Although this ordering gives us the range checks we want,
it has high memory overhead because of the additional padding
required for alignment. As a result, our second key idea is to
interleave the vtables in such a way that padding is not required
anymore. Section V will present this interleaving technique,
called IVT (Interleaved VTables).

Throughout the following sections, we present OVT and
IVT through our running example. We then show how to effi-
ciently implement the checks, and then how to handle complex
cases like multiple inheritance and virtual inheritance. Finally,
we will present the detailed algorithms for our approach.

IV. VTABLE ORDERING

Figure 5 presents an ordered vtable layout for our running
example from Figure 1. The vtables are ordered by a preorder
traversal order of the class hierarchy (resulting in C and D
being switched). Given this new layout, the vtables of any
cone (subtree) in the class hierarchy are laid out consecutively.
Furthermore, padding has been added so that all vtable address
points are 32 byte aligned (multiples of 0x20). Thus, in the
new memory layout, the valid vptrs for a variable of static
type C are the vtables for classes in the cone rooted at C,
and these vtables are precisely the 32-byte aligned entries in a
given range. The two checks from Figure 4b become aligned

C1: $a = ...
$avptr = load $a
assert (0x20 ≤ $avptr ≤ 0x80)∧($avptr & 0x1f == 0)
$foo_fn = load $avptr
call $foo_fn

C2: $b = ...
$bvptr = load $b
assert (0x40 ≤ $bvptr ≤ 0x60)∧($bvptr & 0x1f == 0)
$bar_fn = load ($bvptr+0x8)
call $bar_fn

Fig. 6: Ordered VTable Range Checks

Class Set of Runtime Types Start End Alignment
A A,B,C,D 0x20 0x80 0x20
B B,D 0x40 0x60 0x20
C C 0x80 0x80 0x20
D D 0x60 0x60 0x20

Fig. 7: Valid Address Point Ranges for Ordered VTables

range checks as shown in Figure 6. The correct ranges for all
classes in Figure 5 are shown in Table 7.

It is crucial to align vtables and perform the alignment
checks, since otherwise the range check by itself would not
catch vptrs that (incorrectly) point into the middle of a vtable.
We choose alignment as the method for preventing middle-of-
vtable pointers because as we will show in Section VI, we can
perform such alignment checks very efficiently. The alignment
size is 2n for the smallest n such that 2n is larger than the
largest vtable, which allows us to fit any vtable between two
alignment points, and thus place address points in memory at
2n intervals.

Note that in our example (Figure 5) we cannot immediately
start laying out vtables at offset 0. This is due to the fact that
address points are generally not the first entry in a vtable but
we want precisely address points to be aligned modulo a power
of 2. In particular, since Afoo is the 2nd entry in A’s vtable,
we need to add 0x18 bytes of padding before A’s vtable, so
that Afoo ends up being a multiple of 0x20.

V. VTABLE INTERLEAVING

VTable ordering provides an efficient way of checking
set membership for cones of the class hierarchy. However,
the ordering approach imposes a significant memory overhead
(as discussed further in Section X): every vtable in the same
class hierarchy must be padded up to the smallest power of 2
larger than the size of the biggest vtable. This overhead can
be especially problematic in memory constrained environment
such as mobile and embedded development.

To reduce this memory overhead, we introduce another
technique, which is far more radical than the ordering idea:
we make vtables sparse and interleaved in such a fashion that
no space will be wasted, and address points will end up being
consecutive entries in memory. As we will see shortly, the
new layout of vtables will be very different than a traditional
layout, but quite surprisingly will still be compatible with the
traditional technique of doing dynamic dispatch.

4

Fig. 8: Sparse and Interleaved VTables

Fig. 9: Interleaved Vtable Layout in Memory

Continuing with our running example, Figure 8 presents
the corresponding interleaved layout for the Ordered VTables
from Figure 5. We have spread the vtable entries in separate
columns to highlight what original vtable each entry belongs
to. Figure 9 shows another view of the interleaved vtables, with
the original vtable membership marked with lines of different
colors.

To better understand how the interleaving works, consider
the interleaved vtable for class D (3rd column in Figure 8). This
vtable is equivalent to the original vtable, except that 3 empty
entries have been inserted between Drtti and Dfoo, and 2
empty entries have been inserted between Dfoo and Bbar
(in D’s vtable). These additional entries are “empty” from the
point of view of D’s vtable, but in the final memory layout
they are filled with entries from other interleaved vtables.

The number of empty spaces to insert between two entries
is the key to getting the different interleaved vtables to “grid-
lock” together perfectly. The number of empty spaces inserted
between two entries of an original vtable is determined by the
shape of the class hierarchy and the number of new methods
defined by each class in the hierarchy. Note that this can vary
for different pairs of entries in a single vtable.

One very important property of our interleaved layout is
that the amount of space inserted between two entries is always

VTable Entry Old Offset New Offset
rtti -0x8 -0x20
foo 0 0
bar 0x8 0x18
boo 0x10 0x20
baz 0x8 0x20

Fig. 10: New Method Offsets

C1: $a = ...
$avptr = load $a
assert (0x20 ≤ $avptr ≤ 0x38)∧($avptr & 0x7 == 0)
$foo_fn = load $avptr
call $foo_fn

C2: $b = ...
$bvptr = load $b
assert (0x28 ≤ $bvptr ≤ 0x30)∧($bvptr & 0x7 == 0)
$bar_fn = load ($bvptr+0x18)
call $bar_fn

Fig. 11: Interleaved VTable Range Checks

the same in all vtables that define or overload these two entries.
For example, the additional empty space inserted between foo
and bar is always two “empty” entries, in all vtables that
define or overload them (B and D in this case). This means
that, although vtable entries in our interleaved layout are now
at different offsets than in a traditional layout, the offsets are
still the same across all vtables which define or overload them,
which is the property needed for dynamic dispatch. Figure 10
shows the old and new constant offsets for each one of the
vtable entries in our running example. Our implementation
must therefore not only change the vtable layout but also all the
vtable offsets used in code sections for indexing into vtables.

Although here we have only given an intuition of how
our approach works, a detailed algorithm for building vtables
and computing the new offsets, and a formal proof of our
preservation of vtable offsets between parent and child classes
can be found in Section VIII.

Finally, runtime checks for interleaved vtables have exactly
the same form as before – range checks modulo alignment. The
only difference is that, whereas previously the alignment of
ordered vtables varied by vtable, the alignment for interleaved
vtables is always 8 bytes, the size of a vtable entry. A uniform
8-byte alignment is sufficient because, as can be seen in
Figures 8 and 9, the address points of all vtables are now
contiguous in memory: the address points for A, B, C and D are
all consecutively laid out between 0x20-0x38. For example
the valid address points for B (which are the vtables for B
and its subclass D) are the 8-byte aligned values in the range
0x28-0x30. As another example, the valid address points for
A (which are the vtables for A and its subclasses, B, C and D)
are the 8-byte aligned values in the range 0x20-0x38.

The corresponding checks for IVTs for our example in
Figure 4 are shown in Figure 11. The set of ranges for all
classes in our example hierarchy is shown in Table 12. Note
that unlike previous fine-grained vtable protection work [16],
[22] the overhead of our runtime checks is independent from
the size and complexity of the class hierarchy.

5

Class Set of Runtime Types Start End Alignment
A A,B,C,D 0x20 0x38 0x8
B B,D 0x28 0x30 0x8
C C 0x38 0x38 0x8
D D 0x30 0x30 0x8

Fig. 12: Valid Address Point Ranges for Interleaved VTables

...
cmp $vptr, $a
jlt FAIL
cmp $vptr, $b
jgt FAIL
and $vptr, 1111l
cmp $vptr, 0
jne FAIL
... // Success

(a) 3-branch check

...
and $vptr, 1...164−l0...0l
cmp $vptr, $a
jlt FAIL
cmp $vptr, $b
jgt FAIL
... // Success

(b) 2-branch check

Fig. 13: Naive Range Check Implementation

VI. RANGE CHECK OPTIMIZATION

We implement 3 further optimizations to reduce the cost
of range checks. These optimizations are adapted from similar
optimizations in the implementation of forward-edge CFI in
LLVM [22].

A. Single Branch Range Checks

Both IVT and OVT rely on an efficient check of the form
“is value v in a range [a, b] and aligned modulo 2l ?”. In the
case of OVT each tree in the decomposed hierarchy has its
own specific l. For Interleaved VTables, we always have l = 3
(i.e. we maintain that candidate vptr values are aligned modulo
the size of a vtable entry).

A naive implementation of this check requiring 3 branches
is presented in Figure 13a. Code is presented in a simpli-
fied assembly where cmp represents the unsigned compari-
son operator, jlt jgt and jne denote “jump-if-less-than”,
“jump-if-greater-than” and “jump-if-not-equal” respectively,
and and represents the bitwise and operator. The 3 branches
in Figure 13a respectively check whether $vptr is below
the desired range, above it, or not properly aligned. We can
eliminate the last branch by enforcing alignment rather than
checking for it as shown in Figure 13b. This however still
requires 2 branches.

We perform both the range and alignment check with a
single branch using the instruction sequence in Figure 14, a
technique we adapted from the LLVM 3.7 forward-edge CFI
implementation [22]. Here rotr $v, l signifies the right bit
rotation of $v by l bits.

To see how the code in Figure 14 is equivalent to the
original range and alignment check, we will show that it fails
in all cases when the original check does - when $vptr >
$b, when $vptr < $a, and when $vptr is not aligned.

First note that if $vptr > $b then ($vptr-$a)
> ($b-$a) and therefore $diff > ($b-$a) and fi-
nally ($diff >> l) > (($b-$a) >> l). For unsigned
comparisons (rotr $diff, l) ≥ ($diff >> l), and

...
$diff = $vptr - $a
$diffR = rotr $diff, l
cmp $diffR, ($b-$a) >> l
jgt FAIL
... // Success

Fig. 14: Range Check Implementation

therefore $diffR ≥ ($diff >> l) > (($b-$a) >>
l). Therefore in this case we will fail the check.

If $vptr < $a then $diff is negative and thus has
its highest bit set. Therefore one of the l+1 highest bits of
$diffR is set. However none of the highest l+1 bits of
(($b-$a) >> l) can be set. Therefore, since the compar-
ison is unsigned again we fail the check.

If $vptr is between $a and $b, and any of its l lowest
bits is set, then after the rotation we will fall in the previous
case and again fail the check.

Finally if $vptr is between $a and $b and l bit
aligned, rotr $diff, l becomes equivalent to $diff
>> l. Since no arithmetic operations overflow, the check
succeeds in this case.

Thus we have reduced our runtime check to a shorter
instruction sequence, containing a single branch that is never
taken during normal program execution (unlike [16]). In the
future, our enforcement check can be further sped up by using
hardware acceleration through the Intel MPX bounds checking
instructions coming in the Skylake architecture [15].

B. Single Value Ranges

When a given range contains a single value the aligned
range check can be reduced to an equality check. Tradition-
ally one would expect all such cases to be devirtualized by
earlier compiler optimizations. However, as we will discuss in
Section X we observe singleton ranges surprisingly often. We
believe that this discrepancy is due to the fact that LLVM’s
optimizer does not implement a C++ specific devirtualization
pass. LLVM’s optimizations are aimed to be language agnostic
and devirtualization happens as the result of several simpler
optimizations including Global Value Numbering and Constant
Load Elimination. Each of those relies only on the information
available at the LLVM IR level. We on the other hand
implement a C++ specific IR transformation, that leverages
C++ metadata propagated down to our optimization passes.
Furthermore our transformations work in a fully statically
linked setting, and thus assume that the whole class hierarchy
is known at link time. Note that we could actually optimize
this case further by devirtualizing these single target calls that
LLVM does not optimize.

C. Constant Vptrs

We have observed a small percentage of cases where a
vptr can be statically checked. In such cases the safety of
the virtual call can be discharged statically, and no runtime
check is needed. We believe such instances arise when short
constructors are inlined into larger functions. At that point,
the address pointer becomes available as a constant value in
the larger function and can be used directly rather than being

6

...
class E {
public:

int mE;
virtual void faz();

}
class D : public E, public B {
...

(a) C++ Code (b) Class Hierarchy

Fig. 15: Multiple Inheritance Example

Fig. 16: Multiple Inheritance Memory Layout for D

loaded from the object. Similarly to the case of singleton
ranges we believe these callsites have not been devirtualized by
LLVM since devirtualization is the result of language agnostic
passes.

VII. COMPLEX CLASS HIERARCHIES

Our discussion so far assumed a simple tree-shaped hierar-
chy. C++ however supports multiple and virtual inheritance,
which result in non-tree class hierarchies. To explain our
handling of these we extend the example in Figure 1 with
multiple inheritance by adding another base class E for D
(Figure 15).

To handle multiple inheritance C++ dictates that for classes
with multiple bases a separate sub-object is emitted within each
object instance - one for each direct base class. Furthermore
each sub-object contains a separate vptr pointing into a differ-
ent sub-vtable within the object’s vtable. In the ABI’s terms the
object’s vtable becomes a vtable group consisting of multiple
primitive vtables. For example Figure 16 shows the two sub-
objects within D corresponding to the two base classes - E and
B.

Each sub-object contains a vptr to a different sub-vtable
within D’s vtable group. Note that since each primitive vtable
inherits its layout from precisely one (primitive) base vtable
we can break down a complex hierarchy into several simple
tree-shaped hierarchies containing only primitive vtables, as
shown in Figure 17

Virtual Inheritance throws a kink in this approach as virtual
diamonds can sometimes result in diamonds even in the de-
composed hierarchies. We handle these cases by breaking one
of the diamond edges to layout the vtables. This necessitates
support for multiple ranges per check. In practice multiple
ranges per check are very rare. Even in our largest benchmark
(chrome), the average number of ranges per callsite is very
close to 1 (≈ 1.005).

This decomposition allows us to reduce complex hierar-
chies with both multiple and virtual inheritance to forests of

Fig. 17: Decomposed Class Hierarchy

Order(R)1

// List of ordered and aligned vtable entries2

ovtbl = []3

order = pre(R)4

// Map of new address points for each class5

addrPtM = { }6

7

n = max(len(vtbl(C)) for C in order)8

padLen = 2dlog2(n)e + 19

10

for C in order do11

v = vtbl(C)12

nzeros = padLen - ((len(ovtbl)+addrPt(v)) mod padLen)13

ovtbl.append(zeros(nzeros))14

addrPtM[C] = len(ovtbl) + addrPt(v)15

ovtbl.append(v)16

17

return (ovtbl, addrPtM)18

Fig. 18: VTable Ordering Algorithm: Given the root R of a
tree in the decomposed class hierarchy, the Order function
returns the ordered vtable layout in memory, and a map from

each class to its address point in the memory layout.

primitive tree hierarchies which we know how to handle.

VIII. ALGORITHMS

In this section we discuss the algorithms used for building
Ordered and Interleaved VTables and their correctness. For
both, we assume that the class hierarchy has already been
decomposed into a collection of trees containing only primitive
vtables. Both algorithms operate on one tree at a time. We
denote by pre(R) the list of classes of a tree rooted at class
R in preorder traversal order. We further denote by vtbl(C)
the primitive vtable for class C (represented as a list of entries)
in the tree, by addrPt(v) the offset of the unique address
point in the primitive vtable v and by zeros(n) a function
returning a list of n zeros.

A. Ordering

To build Ordered VTables, for each tree in the class
hierarchy, we follow the algorithm in Figure 18. The presented
algorithm finds the size of the largest vtable n (line 8) in the
current tree, and using n, stores in padLen a sufficiently large
power of 2 (line 9) so that no two consecutive address points
in the preorder traversal are more than padLen entries apart.
Next it performs a preorder traversal and appends primitive
vtables consecutively (lines 11-16), while adding sufficient
0-padding (lines 13-14) before each appended vtable (line
16) so that its address point is a multiple of padLen. The
algorithm returns the newly ordered vtables ovtbl along
with the generated map addrPtM describing the new address
points of all classes in the tree. This information is sufficient

7

Interleave(R)1

// Map (classes->(old indices->new indices))2

newInd = { }3

ivtbl = [] // list of interleaved entries4

order = pre(R)5

posM = { } // Map (classes->cur. position)6

addrPtM = { } // Map (classes->new addr. point)7

8

i = 09

for C in order do10

posM[C] = 011

addrPtM[C] = i12

i++13

14

do15

for C in order do16

v = vtbl(C)17

if (posM[C] < len(v))18

newInd[C][posM[C]] = len(ivtbl) - addrPtM[C]19

ivtbl.append(v[posM[C]])20

posM[C]++21

while (ivtbl changes)22

23

return (ivtbl, addrPtM, newIndM)24

Fig. 19: VTable Interleaving Algorithm: : Given the root R of
a tree in the decomposed class hierarchy, the Interleave
function returns the interleaved vtable layout in memory, a

map from each class to its address point in the memory
layout, and a map from each class and each index in its old
vtable to the corresponding new index in the memory layout.

to generate checks and update all uses of the old vtables with
the new ordered ones.

Termination. The algorithm obviously terminates (it contains
a single bounded loop) and preserves all original primitive
vtables in t in ovtbl (since it appends each at some iteration
in line 16).

Correctness. Since addrPtM[C] is set only once for each
class C at line 15, and at that point it correctly reflects C’s
new address point in ovtbl we can reason that addrPtM
correctly translates address points.

To show that address points can be efficiently checked for
any subtree in C, it is sufficient to note that:

1) All address points are multiples of padLen, which
is a power of 2.

2) For each subtree the valid address points lay in a
continuous range due to preorder traversal (line 11).

3) In a given range, there is no value that is a multiple
of padLen and not an address point (this follows
from the fact that no 2 address points are more than
padLen appart).

B. Interleaving

In Figure 19 we present the algorithm used for building
the interleaved vtable for each tree of primitive vtables. To
simplify presentation the algorithm shown here handles only
the positive indices in a vtable and assumes that the original
address point for each vtable is 0. Handling negative indices
of vtables and a non-zero address point is analogical.

The algorithm in Figure 19 takes in the root R of a tree of
primitive vtables and initializes the following data structures:

• newInd - a map from the classes in pre(R) and
their old vtable indices to their new indices in the
interleaved layout

• ivtbl - the new interleaved memory layout repre-
sented as a list of all the entries of the original vtables
in the interleaved order

• posM - a temporary map containing for each class
the index of the next vtable entry to be added to the
interleaved layout

• addrPtM - a map containing the new address point
in ivtbl of each class in pre(R).

In lines 10-13 the algorithm initializes the posM map to all
0s, and addrPtM with the new address point for each class.
As evident from the loop, for each class C the new address
point becomes its position in the preorder traversal. The core
of the algorithm consists of the two nested loops on lines 15-
22. The outer loop (lines 15-22) iterates as long as we are
accumulating values in ivtbl, while the inner loop (lines 16-
21) traverses the classes in preorder traversal order (order)
accumulating (if possible) an entry from each vtable. The inner
loop uses the posM map to keep track of its current position
in each vtable. At each iteration of the inner loop, if we have
not reached the end of the current vtable (line 18), we add
one entry from this vtable to ivtbl (line 20) and increment
the current position posM[C] for this vtable (line 21). Note
that when adding a new entry to ivtbl in the inner loop,
we also record in newInd (line 19) what the new index of
this entry is. The algorithm returns a triple containing ivtbl,
addrPtM and newIndM which is sufficient for building the
interleaved vtable and updating all uses and indices of the old
vtables.

Termination. The algorithm terminates, since:

1) The outer loop (lines 15-22) terminates when ivtbl
stops changing.

2) Whenever we add an entry to ivtbl (line 20) we
also increment some entry in posM (line 21).

3) All entries in posM are bounded due to line 18.

Correctness. To establish the correctness of the algorithm we
must further show that:

1) All entries from the old vtables are present in ivtbl.
2) When we update address points and indices in the

program using addrPtM and newIndM we will not
change old behavior.

3) Indices for inherited fields are consistent between
base and derived classes.

Our strategy for proving the above properties is that we will
establish several key lemmas and corollaries, which together
will immediately imply the above properties. In the following
lemmas, unless otherwise mentioned, when referring to the
newInd, ivtbl and addrPtM data structures, we mean their
state after the algorithm is done. We start with the following
helper lemma:

Lemma 1. Lines 19-21 are executed exactly once for each C ∈
pre(R) such that pos[C] = i ∀i.0 ≤ i < len(vtbl(C))

8

Proof: This follows from the fact that for all C ∈
pre(R): (1) posM[C] is initialized to 0, (2) posM[C] in-
creases monotonically and (3) the algorithm doesn’t terminate
until posM[C]=len(vtbl(C)).

The above lemma implies that each entry in newInd is
set precisely once and never changed, and that for each C ∈
pre(R) and ∀i.0 ≤ i < len(vtbl(C)) newInd[C][i] is
well defined. Additionally, since by the previous lemma the
values of C and i span all classes in pre(R) and all vtable
indices for each class, then the value of v[posM[C]] at line
20 spans (exactly once) all entries of all original primitive
vtables. Therefore we can establish the following corollary:

Corollary 1. ∀C ∈ pre(R) and ∀E ∈ vtbl(C) E occurs
exactly once in ivtbl.

Corollary 1 establishes requirement (1) - that each entry
from the original vtables is represented once in the interleaved
layout. Next we establish requirement (2) with the following
lemma:

Lemma 2. ∀C ∈ pre(R) and ∀i.0 ≤ i < len(vtbl(C))
vtbl(C)[i]=ivtbl[addrPtM[C]+newInd[C][i]]

Since we use addrPtM and newInd to translate address
points and vtable indices, after translation the expression used
to obtain the i-th entry of the vtable of a class C would
be ivtbl[addrPtM[C]+newInd[C][i]]. Therefore the
above lemma states that after translating the indices and
address points with addrPtM and newInd, when getting the
i-th entry of the vtable of a class C, we would obtain precisely
the same value (vtbl(C)[i]) that we would have gotten
using normal vtables.

Proof: By Lemma 1 ∀C ∈ pre(R) and
∀i.0 ≤ i < len(vtbl(C)) newInd[C][i] is well defined
and set only once at line 19. Lets denote by m the length
of ivtbl at the time that newInd[C][i] is set. Since in
that same iteration vtbl(C)[i] is appended at the end of
ivtbl, and ivtbl only grows, it follows that at the end of
the algorithm ivtbl[m] = vtbl(C)[i]. However at the
end of the algorithm newInd[C][i] = m− addrPtM[C]
(line 19). Therefore, at the end of the algorithm
ivtbl[newInd[C][i]+addrPtM[C]]=vtbl(C)[i].

Next, to establish requirement (3) we first prove a small
helper lemma:

Lemma 3. For ∀B, D ∈ pre(R) where B is a superclass of
D if at the beginning of an iteration of the outer loop (line 16)
posM[B] < len(vtbl(B)) then posM[B] = posM[D].

Proof: This follows by induction on the number of
iterations of the outer loop. First posM[B] and posM[D]
are both initialized to 0. Next, lets assume that at the be-
ginning of some iteration of the outer loop posM[D] =
posM[B]. Since posM[B] < len(vtbl(B)) and since
len(vtbl(B)) ≤ len(vtbl(D)) (because D is derived from
B) it follows that posM[D] < len(vtbl(D)). Therefore,
since both posM[B] < len(vtbl(B)) and posM[D] <
len(vtbl(D)) at the start of the outer loop, then both
posM[B] and posM[D] are incremented in that iteration of

the outer loop at line 21. Therefore they will be equal in the
next iteration of the outer loop as well.

Now using Lemma 3 we can finally establish requirement
(3):

Lemma 4. ∀B, D ∈ pre(R) where B is a su-
perclass of D, and ∀i.0 ≤ i < len(vtbl(B)),
newInd[B][i]=newInd[D][i].

Proof: Let newInd[B][i] be set in the k-th iter-
ation of the outer loop. Therefore at the start of the k-
th iteration posM[B] < len(vtbl(B)) (due to line 18).
Therefore by Lemma 3 at the beginning of that k-th iteration
of the outer loop posM[D] = posM[B] = i. Further-
more, since posM[D] = posM[B] < len(vtbl(B)) ≤
len(vtbl(D)) it follows that newInd[D][posM[D]]
also is set in the k-th iteration of the outer loop. But
posM[D]=posM[B]=i therefore newInd[D][i] is set in
the k-th iteration of the outer loop.

Finally, let len(ivtbl)B denote len(ivtbl)
when newInd[B][i] is set (in the inner loop)
and len(ivtbl)D denote len(ivtbl) when
newInd[D][i] is set. Since the inner loop follows
preorder traversal, then all classes X visited by the inner
loop from the time we set newInd[B][i] to the time
we set newInd[D][i] are derived from B. By applying
Lemma 3 for each of those classes X, it follows that
posM[X] = posM[B] and by the same argument as for
D, for each of those classes lines 19-21 will be executed
and thus an entry will be appended to ivtbl. Therefore
len(ivtbl)D = len(ivtbl)B + (order.indexOf(D) −
order.indexOf(B)). Therefore:

newInd[D][i] = len(ivtbl)D − addrMap[D] =

len(ivtbl)B + (order.indexOf(D)−

order.indexOf(B))− order.indexOf(D) =

len(ivtbl)B − order.indexOf(B) = newInd[B][i]

The remainder follow from the fact that newInd[D][i]
and newInd[B][i] are set only once by Lemma 1.

To rehash, we have shown that our interleaving algorithm
is correct by establishing 3 properties - it preserves all of the
original vtable entries (Corollary 1), it correctly computes the
new indices for vtable entries in the IVT (Lemma 2), and
finally it does not break the assumptions on layout preservation
between base and derived classes (Lemma 4).

IX. IMPLEMENTATION

We implemented our technique in the LLVM [19] compiler
framework. Our implementation required change to about 50
lines of C++ code and the addition of another 6820 lines of
C++ code. Our change is split between the Clang compiler
frontend (approx. 900 LOC), and several new link-time passes
we added (approx 5900 LOC). Our tool supports separate
compilation by relying on the link time optimization (LTO)
mechanism built in LLVM [21]. To support LTO all interme-
diate object files are emitted in LLVM’s higher-level IR, which

9

C++

C++

C++

C

L

A

N

G
IR

IR

IR

Linker

1 0 1 0
0 1 1 1

Fig. 20: Tool Workflow

retains additional semantic information necessary at link time
to reconstruct the global class hierarchy and identify all sites
in the code that must be modified. The workflow of our tool
is presented in Figure 20.

First source files are fed through our modified Clang
compiler, which adds some semantic information for use by
later passes:

• Metadata describing the structure of vtable groups and
local class hierarchies

• Placeholder instructions for vptr checks

• Placeholder instructions for new vtable indices

Note that placeholder instructions are necessary, as the pre-
cise ranges for vptr checks and new indices (for interleaving)
depend on the global class hierarchy which is not known at
compile time.

Work at link time is done as part of the LLVM gold plugin,
and is spread in several steps:

• CHA - gather vtable metadata; construct global class
hierarchy; decompose it in primitive vtable trees

• VTBL - build the new ordered/interleaved vtables

• INST - replace placeholder instructions based on the
previous 2 steps

X. EVALUATION

We evaluate our approach on several C++ benchmarks
including several C++ programs from SPEC2006 as well as
the Chrome browser. For the Chrome browser we evaluate
performance overhead on several standard industry benchmark-
ing suites including sunspider, octane, kraken and some of
the more intensive parts of Chrome’s performance tests suite.
Figure 21 lists our benchmarks along with statistics like line
count, number of classes, and number of static sites in the code
where a virtual method is called. These benchmarks represent
realistic large bodies of C++ code (e.g. Chrome contains over
1M lines of C++ code). Chrome especially exercised many
corner cases of the C++ ABI, including combinations of virtual
and multiple inheritance, all of which we handled. All of the
benchmarks ran unmodified, with the exception of xalancbmk
which contained a CFI violation: a class is cast to its sibling
class and methods are invoked on it. We are not the only ones
to report this violation – LLVM-VCFI also reports it. Because
the layouts of the two sibling objects in this benchmark are
similar enough, the violation went by unnoticed before. We
fixed this CFI violation in xalancbmk (4 lines of code) before
running it through our experimental setup.

Name #LOC #Classes #Callsites Avg. #T/C
astar 11684 1 1 1

omnetpp 47903 111 961 21.1235
xalancbmk 547486 958 11253 5.96188

soplex 41463 29 557 4.00359
povray 155177 28 120 1.74167
chrome 1M 20294 129054 51.0186

Fig. 21: Benchmark names along with several statistics:
#LOC is number of lines of code; #Classes is the number of

classes with virtual methods in them; #Callsites is the
number of virtual method calls; and #T/C is the average
number of possible vtables per virtual method call site,

according to the static type system.

A. Runtime Overhead

Figure 22 shows the percentage runtime overhead of our
approach, with the baseline being LLVM O2 with link time
optimizations turned on. The bars marked OVT correspond to
checks based on Ordered VTables, while IVT bars correspond
to checks based on Interleaved VTables. For comparison, we
also include the runtime of the very recent LLVM 3.7 forward-
edge CFI implementation [22] (columns labeled LLVM-VCFI).
This LLVM work has not been published in an academic
venue, but as far as we are aware, it is the fastest technique
to date that offers similar precision to ours. For each static
type, LLVM-VCFI emits a bitset that encodes the set of valid
address points for that type. Dynamic checks are then used to
test membership in these bitsets. By default, LLVM-VCFI also
checks downcasts, which we don’t do. As a result, we disabled
this option in LLVM-VCFI in our experimental evaluation.
Runtimes for each benchmark are averaged over 50 repetitions.

Interleaving achieves an average runtime overhead of
1.17% across all benchmarks, and 1.7% across the Chrome
benchmarks. Note that this is almost 2 times faster compared
to LLVM-VCFI, which achieves 1.97% on average for all
benchmarks, and 2.9% on Chrome benchmarks. Additionally,
the average overhead of ordered vtables is 1.57%, which is
higher than interleaved vtables, but lower than LLVM-VCFI.
Given that interleaving and ordering employ the same runtime
checks, the faster runtime of interleaving stems from better
memory caching performance due to the removed padding.

One of the benchmarks (soplex) exhibits a small (<-1%)
negative overhead for all 3 compared techniques. We believe
this to be due to alignment or memory caching artifacts.

There are two benchmarks where, according to the exact
numbers, LLVM-VCFI appears slightly faster than OVT: astar
and omnetpp. We talk about each of the two benchmarks
in turn. All of the overheads in astar are extremely small.
This is because there is a single virtual method call site in
this benchmark. If we look at the exact numbers for that
benchmark, LLVM-VCFI has an overhead of about 0.1%
and IVT has a slightly larger overhead, about 0.13%. The
difference of 0.03% is so small that it is comparable to same-
run variations caused by noise. Regarding omnetpp, LLVM-
VCFI has overhead of 1.17% and IVT has overhead of 1.18%
– again the difference of 0.01% is so small that it is in the
noise of same-run variations.

10

sunspider kraken octane html5 balls
line

layout astar omnetpp xalan soplex povray mean

R
un

tim
e

O
ve

rh
ea

d
%

−
1

0
1

2
3

4
5

6

LLVM−VCFI
OVT
IVT

Fig. 22: Percentage runtime overhead. The baseline is LLVM O2 with link-time optimizations. LLVM-VCFI is the recent
state-of-the-art LLVM 3.7 forward-edge CFI implementation; OVT is our ordering approach; IVT is our interleaving approach,

which provides the best performance.

To better understand the source of runtime overhead in the
interleaved approach, we disable our checks while maintaining
the interleaving layout. We find that interleaving alone, without
any checks, causes roughly 0.5% overhead across all bench-
marks. This tells us that out of the total 1.17% overhead in
the interleaving approach, 0.5% is due to caching effects from
the vtable layout itself, and the additional 0.67% is caused by
the checks.

B. Size Overhead

Figure 23 presents binary size overhead, again for LLVM-
VCFI, OVT and IVT. On average, OVT has the highest
increase in binary size, about 5.9% – this is because in addition
to adding checks to the binary, OVT also adds a lot of padding
to align vtables (and the vtables are also stored in the binary
text). LLVM-VCFI has the next largest binary size overhead,
at about 3.6%. LLVM-VCFI’s binary size overhead comes
from checks that are added to the binary, vtable aligning and
from the bitsets that are stored in the binary. Finally, IVT
has the smallest binary size overhead, at about 1.7%. The
only overhead in IVT are the checks – there is no alignment

overhead and no additional data structures that need to be
stored.

C. Range Check Optimization Frequency

To better understand how frequently the range-check opti-
mizations from Section VI are applied, Figure 24 shows the
breakdown of these different optimizations as a percentage of
all virtual method call sites. Each bar represents a benchmark,
and the shaded regions in each bar show the percentage of
virtual method call sites that are optimized in a particular
way. More specifically, regions shaded no_check represent
the percentage of call sites in which the check was optimized
away due to a statically verified vptr. On average, these account
for about 1.5% of all virtual method call sites. Regions shaded
as eq_check represent the percentage of call sites for which
the range check was optimized to a single equality. On average
these account for a surprisingly large percentage of all call
sites - approximately 26%, indicating that this optimization
is particularly valuable. Finally the regions shaded range
represent the remaining call sites, where a full range check
was needed, on average approximately 72%.

11

omnetpp xalan soplex povray chrome mean

S
iz

e
O

ve
rh

ea
d

%

0
5

10
15

OVT
LLVM−VCFI
IVT

Fig. 23: Percentage binary size overhead. The baseline is
LLVM O2 with link-time optimizations.

omnetpp xalancbmk soplex povray chrome mean

S
ta

tic
 c

al
ls

ite
 o

pt
im

iz
at

io
n

br
ea

kd
ow

n

0
10

20
30

40
50

60
70

80
90

10
0

no_check eq_check range

Fig. 24: Callsite optimization breakdown

D. Overhead comparison with existing work

Our experimental evaluation in the prior sections com-
pared against the state-of-the-art LLVM 3.7 forward-edge CFI
(LLVM-VCFI), which is the most efficient implementation of
similar precision to our work. Here we broaden the scope of
our comparison to also include performance numbers reported
in other academic papers. In this broader setting, our tech-
nique achieves lower runtime and memory overhead compared
to all vtable protection techniques of comparable precision.
SafeDispatch [16] and LLVM-VCFI both achieve roughly 2%
overhead on the Chrome and SPEC benchmarks we evaluated,
compared to our overhead of about 1.17%. SafeDispatch also
requires profile-guided optimizations, and the SafeDispatch

paper [16] shows that when programs are profiled on one set of
inputs, but then run on a different set if inputs, the overhead
increases even more. VTV[35] has around 4% overhead on
SPEC2006, whereas our overhead on the same subset of
SPEC2006 (471.omnetpp, 473.astar, 483.xalancbmk) is about
0.9%.

vfGuard[30] and vtInt[42] both have higher overhead (18%
and 2% respectively). The main focus of those techniques is
identifying vtables and virtual call sites in stripped binaries,
and extracting a class hierarchy. Because this is a very hard
task, these techniques inevitably will have less precise informa-
tion than our approach, which naturally leads to less precision
in the checks.

As mentioned and fixed in a recent paper [13], there are
some corner cases that certain vtable integrity techniques,
including LLVM-VCFI, do not handle precisely. We have a
way in our system to handle these cases, using multiple range
checks, as was mentioned in Section VII. Because LLVM-
VCFI does not handle these cases, we have disabled multiple
range checks in our system when collecting the numbers
reported in this section. If we enable these checks, thus
getting more precise protection, we would handle the corner
cases mentioned in [13] – although note that an empirical
comparison of precision with [13] is difficult due to the large
difference in tested versions of chrome (version 32 vs. version
42). If we enable multiple range checks, our overhead for
Chrome remains the same, whereas our overall overhead for
all SPEC2006 benchmarks goes from about 0.45% to 0.89%.

Finally, while an improvement from 2% to 1% may seem
small initially, it is important to realize that it corresponds to
a halving of the overhead, without the need for profile guided
optimizations and also with minimal memory overhead.

E. Security Analysis

Our technique enforces the C++ type system constraints at
each dynamic dispatch site. Namely we guarantee that if in
the source code a given dynamic dispatch is performed on a
variable of static type C, then the vtable used at runtime will
be the vtable for C or a subclass of C. In column 5 of Figure 21
we list the average number of possible vtables for a dynamic
dispatch site in each benchmark. As such, we believe our
defense is effective against attack such as Counterfeit Object-
Oriented Programing[32].

Since our technique is implemented at the LLVM IR level,
it is possible for the later register allocator to decide to
spill a checked vptr value on the stack. In this case, if the
attacker can additionally mount a stack overwrite attack, this
opens up the possibility for a time-of-check-time-of-use attack.
The stack can be protected through a variety of mechanisms,
including [6], [20] (although recent work [5] has shown that
many of these stack defenses are not as strong as originally
thought). To fully overcome these kinds of attacks, we believe
we would need to implement our approach at a lower-level in
the LLVM compiler, to achieve explicit control over register
allocation, and prevent register spilling of vptr values between
the time they have been checked and the time they are used.

Finally, similarly to LLVM-VCFI our technique does not
currently handle C++ pointers to member function. Pointers to

12

member functions are a C++ construct containing an index to
a method in a vtable. When used for dynamic dispatch, the
stored index is used to look up the target method in the vtable
of the object on which we are invoking. In the case of Ordered
VTables it is possible to check that the index is contained
in the vtable of the target class with a single range check.
This however still leaves considerable freedom for an attacker,
and might be insufficient. In the case of Interleaved VTables
handling member pointers is further complicated by the fact
that vtables are broken up in multiple ranges. Member pointers
are currently left as future work as discussed in Section XII.

XI. RELATED WORK

The cost of control-flow hijacking attacks has motivated a
rich body of research on prevention and mitigation. We can
broadly split related work into 4 groups – vtable protection,
general CFI enforcement, Software Fault Isolation (SFI) and
other mitigation techniques.

A. VTable Protection

Closest to our work are techniques focusing on vtable pro-
tection and forward-edge control-flow enforcement. SafeDis-
patch [16] and VTV [35] both present compiler-based trans-
formations that achieve similar precision to us. SafeDispatch
incurs higher overhead – 2.1% on Chrome and SPEC2006
(vs. 1.1% for us across all benchmarks), and requires profile
guided optimizations to achieve its overhead (which we do
not). VTV has lower precision [13] and has higher overhead –
4.1% on the C++ benchmarks of SPEC2006 (vs. 0.9% for us
on the C++ benchmarks SPEC2006). Additionally unlike those
two techniques, the overhead of our runtime checks does not
depend on the size of the class hierarchy.

Another branch of work focuses on VTable protection
for COTS binaries, an approach that does not require source
code. vfGuard [30] reconstructs a coarse class hierarchy from
stripped binaries by relying on C++ ABI derived invariants.
It incurs a higher overhead (18% on Firefox modules) due
to the use of dynamic instrumentation. Their class hierarchy
reconstruction is orthogonal and complimentary to our work.
VTint [42] identifies writeable vtables and relocates them to
read only memory, separate from other data. At each virtual
method call site they check that the target vtable is read-only
by attempting to write to it, and thus forcing an exception.
Since these exceptions involve a context switch to the kernel,
we believe that their overhead will be significantly higher
compared to our technique. The reported overhead for vtInt is
only 2% on average, however it is measured over a significantly
smaller number of instrumented call sites. For example for
xalancbmk the authors report only 1.12% overhead, but they
find only 29 vtables and instrument 4248 call sites whereas
we find 958 vtables and instrument 11253 call sites. In our
experience we have not encountered any vtables laid out in
writable memory by LLVM.

LLVM 3.7 [22] implements a virtual call CFI scheme
utilizing bitsets (we called this the LLVM-VCFI technique
in our experimental evaluation). As we have already shown
in Section X, their technique has the same precision as ours,
but at higher runtime overhead (1.97% vs 1.17%) and higher
memory overhead (3.6% vs 1.7%).

Redactor++[8] provides a probabilistic defense against
vtable confusion attacks with similar overhead to us – 1.1%
over Chrome and SPEC2006. Unlike their work, our guaran-
tees are not probabilistic.

B. General CFI

General CFI techniques protect all computed control trans-
fers – including normal function pointer calls and returns.
Due to this difference in scope a direct comparison of the
runtime overhead between our technique and work described
in this section is difficult. In general we achieve lower runtime
overhead than all surveyed work here. It’s important to keep
in mind that we protect a smaller set of computed transfers
than general CFI techniques, although for that smaller set, we
typically provide stronger guarantees.

CFI was first introduced by Abadi et al. [3]. In their
approach, fine grained CFG’s derived from static analysis were
enforced by grouping sets of targets into equivalence classes,
and marking each with a secret cookie. Indirect control-flow
instructions are instrumented to check at runtime the cookie
(placed as a no-op prior to the target). This enforcement
scheme is less precise than ours, as any two overlapping sets
of targets must be merged. In our setting, a similar technique
would not be able to distinguish different subtrees of a prim-
itive hierarchy. MCFI [28] extends Abadi’s work by adding a
level of indirection via runtime maps from branches and branch
targets to their corresponding equivalence class. Further MCFI
utilizes a thread safe dynamic update mechanism that allows
control-flow graphs to be merged at runtime, thus allowing
separate compilation and dynamic linking. WIT [4] similarly
uses equivalence classes (colors) to protect indirect control-
flow and extends this technique to protect writes as well.

CCFIR [43], HyperSafe [39] and MoCFI [9] replace code
pointers in writable memory with indices/pointers into tram-
poline sections. CCFIR utilizes randomization to reduce the
chance that an attacker can guess the index of a specific sen-
sitive function, while HyperSafe utilizes multiple springboard
sections to increase precision. Our technique could possibly be
used to extend these approaches by ordering the springboard
sections appropriately. As a result higher precision might be
achievable without additional runtime overhead and without
the need for randomization/multiple trampoline sections. This
is important, as the loss of precision has for example enabled
exploits of CCFIR [11].

binCFI [44] extends CFI to COTS binaries (similarly to
CCFIR) by combining reliable disassembly and binary trans-
lation. Computed transfers in binCFI are rewritten to index into
translation table using the candidate target, which restricts the
possible control-flows.

Opaque CFI[26] combines coarse-grained CFI with code
randomization to defeat attackers with full access to the pro-
cess code section. Their technique covers all control transfers
and achieves 4.7% overhead over a set of SPEC benchmarks.
Their technique employs bound checks similarly to us, and is
the first CFI technique to mention the potential for hardware
acceleration of bound checks via the upcoming Intel MPX
instructions[15].

13

C. SFI

SFI [38], [23], [40], [33], [41] is generally built on top of
a coarse-grained form of CFI, usually combining instructions
into aligned bundles. SFI techniques also leverage hardware
techniques such as segmentation or software techniques such
as masking to restrict writes to a given region. SFI has also
been applied to the Chrome through the Native Client [40]
project, where it provides sandboxing for parts of the browser.

D. Other Mitigation Techniques

Modern operating systems employ DEP [31] and
ASLR [29] to prevent code injection attacks and increase
the cost of jump-to-libc attacks. PointGuard [7] and [36]
propose pointer encryption as a means to prevent attackers
from accurately redirecting control-flow. In their work code
pointers are encrypted (e.g. XOR-ed) using a secret key, and
unencrypted prior to use. An attacker would require the secret
key to accurately redirect control flow. A slew of techniques
have been also proposed and deployed for protecting the stack
including stack canaries [6], SafeStack [20], shadow stacks [3]
and SafeSEH [25]. These techniques provide additional safety
complimentary to our work but recent work [5] shows that
they are not as secure as previously thought.

Kuznetsov et. al. [17] present CPI – a code pointer integrity
technique that protects all data which influences control-flow.
Their technique provides stronger guarantees than us and
protects more computed transfers, but at a higher runtime
cost 8.4% (23% on the C++ benchmarks in SPEC2006). A
relaxation of CPI – Code-Pointer Separation (CPS) – provides
less precise protection for virtual dispatch than us, but still
covers more computed transfers (e.g. returns). CPS does not
protect the integrity of pointers to code pointers, which include
vptrs, and thus would allow vtable confusion attacks. CPS
incurs 1.9% on average (4.2% on the C++ benchmarks in
SPEC2006).

XII. LIMITATION AND FUTURE WORK

Our approach currently protects only C++ dynamic dis-
patch. We believe however that it might be possible to adapt
our technique so that it also checks the type safety of generic
function pointers. The idea would be to use a trampoline-
based technique such as CCFIR, while also laying out the
trampolines in memory using a “mock” class hierarchy based
on the function signatures. The merit of such an approach
requires further investigation as function signatures might be
too loose a safety criteria.

Another barrier to adoption that we plan on addressing is
the lack of support for dynamic linking and loading. While
dynamic linking could be supported through extending the
runtime linker, dynamic loading is a more difficult feat. Merg-
ing the CFI policies of the modules concurrently with their
code running in itself is a difficult problem [28]. In our setting
this is further complicated by the ordering and interleaving we
impose on pieces of data, and the immediate values in the code
section that depend on it.

Another interesting direction for future work would be to
adapt our technique to check C++ downcasts for safety at
runtime. Exploiting bugs in programs can lead to incorrect

C++ downcasts, which in turn can lead to type confusion and
heap corruption. Recent work [18] has shown that C++ casts
can be checked for safety with an overhead of about 7.6% on
Chrome (64.6% on Firefox). Since our approach is precisely
meant for checking that a vptr points to the vtable of a given
class or any of its subclasses, we believe that our approach
could possibly be a good fit for checking dynamic casts too.
One slight caveat is that our approach would only work for
classes that have virtual methods (polymorphic classes), but
we believe this could be resolved using a hybrid approach: we
could use our approach for classes with virtual methods, and
the approach from [18] on all other classes.

Another direction for future work is protecting pointers to
member functions, and more specifically checking the validity
of the indices stored inside them. As already mentioned in
Section X-E, our approach does not currently handle such
pointers to member functions. LLVM-VCFI [22] also does not
handle such pointers, but SafeDispatch [16] does, by adding an
additional range check. OVT can trivially use the same check
as SafeDispatch since entries for a single (primitive) vtable are
still continuous. In the case of IVT this is more complicated
as entries of one vtable are interleaved with entries of related
subclasses and superclasses. One possible approach is to keep
old vtables, and refer to them from IVT for dereferencing
pointers to member functions, at the cost of additional code
bloat. Another possibility is to check member pointers directly
on the interleaved layout, but this would require coming up
with a set of carefully crafted range and stride checks.

XIII. CONCLUSION

We have presented an approach for protecting the control-
flow integrity of C++ virtual method calls. Our approach is
based on a novel layout for vtables. Although our layout is
very different from a traditional one, our layout is backwards
compatible with the traditional way of doing dynamic dispatch.
Most importantly, our layout allows us to check the safety of
vtables using efficient range checks. We have implemented
our approach in the LLVM compiler, and have experimentally
evaluated its runtime and memory overhead, showing that it
has lower overhead than the state-of-the-art techniques that
provide the same guarantee.

Although this paper focuses on protecting dynamic dis-
patch, our approach could possibly be a stepping stone to more
complicated forms of runtime enforcement. For example, as
we have already alluded to, our approach could possibly be
adapted to check the safety of C++ downcasts, or the type
safety of arbitrary function pointers.

ACKNOWLEDGMENTS

We would like to thank reviewers for their insightful
feedback, and Dongseok Jang for his guidance and advice.
This work was supported by NSF grant CNS-1228967 and a
generous gift from Google.

REFERENCES

[1] “CWE-122.” Available from MITRE, CWE-ID CWE-122. [Online].
Available: https://cwe.mitre.org/data/definitions/122.html

[2] “CVE-2012-0167.” Available from MITRE, CVE-ID CVE-2014-0160.,
2011. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-0167

14

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in CCS, 2005.

[4] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in S&P, 2008, pp. 263–277.

[5] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
M. Qunaibit, and A.-r. Sadeghi, “Losing control : On the effectiveness
of control-flow integrity under stack attacks,” In CCS, 2015.

[6] C. Cowan, “Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks,” in USENIX Security, A. D. Rubin, Ed., 1998.

[7] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointguardTM:
Protecting pointers from buffer overflow vulnerabilities,” in USENIX
Security, 2003.

[8] S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz, “Its a trap: Table
randomization and protection against function-reuse attacks,” In CCS,
2015.

[9] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A. Sadeghi, “Mocfi: A framework to mitigate
control-flow attacks on smartphones,” in NDSS, 2012.

[10] C. Evans, “Exploiting 64-bit linux like a boss.” http://scarybeastsecurity.
blogspot.com/search?q=Exploiting+64-bit+linux, 2013.

[11] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in In S&P, 2014.

[12] Google, “Heap-use-after-free in WebCore (exploitable),” https://code.
google.com/p/chromium/issues/detail?id=162835, 2012.

[13] I. Haller, E. Göktas, E. Athanasopoulos, G. Portokalidis, and H. Bos,
“Shrinkwrap: Vtable protection without loose ends,” in ACSAC, 2015,
pp. 341–350.

[14] M. InfoSecurity, “Pwn2own at cansecwest 2013,” https://labs.
mwrinfosecurity.com/blog/2013/03/06/pwn2own-at-cansecwest-2013,
2013.

[15] Intel, “Introduction to intel memory protection extensions,”
https://software.intel.com/en-us/articles/introduction-to-intel-memory-
protection-extensions, 2013.

[16] D. Jang, Z. Tatlock, and S. Lerner, “SafeDispatch: Securing C++ virtual
calls from memory corruption attacks,” in NDSS, 2014.

[17] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in OSDI, J. Flinn and H. Levy, Eds., 2014, pp.
147–163.

[18] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification:
Stopping an emerging attack vector,” in USENIX Security, 2015.

[19] LLVM Team, “The llvm compiler infrastructure project,” http://llvm.
org/.

[20] ——, “http://clang.llvm.org/docs/safestack.html,” http://clang.llvm.org/
docs/SafeStack.html, 2014.

[21] ——, “Llvm link time optimization: Design and implementation,” http:
//llvm.org/docs/LinkTimeOptimization.html, 2014.

[22] ——, “Control flow integrity design documentation,” http://clang.llvm.
org/docs/ControlFlowIntegrityDesign.html, 2015.

[23] S. McCamant and G. Morrisett, “Evaluating SFI for a CISC architec-
ture,” in In USENIX, 2006.

[24] Microsoft, “Vulnerability in Internet Explorer could allow remote
code execution,” http://technet.microsoft.com/en-us/security/advisory/
961051, 2008.

[25] Microsoft Visual Studio, “Image has safe exception handlers,” http:
//msdn.microsoft.com/en-us/library/9a89h429%28v=vs.80%29.aspx,
2005.

[26] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in NDSS, 2015.

[27] H. D. Moore, “Microsoft Internet Explorer data binding
memory corruption,” http://packetstormsecurity.com/files/86162/
Microsoft-Internet-Explorer-Data-Binding-Memory-Corruption.html,
2010.

[28] B. Niu and G. Tan, “Modular control-flow integrity,” in PLDI, 2014.
[29] PaX Team, “Pax address space layout randomization (aslr),” http://pax.

grsecurity.net/docs/aslr.txt, 2003.
[30] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual

function calls in COTS C++ binaries,” in NDSS, 2015.

[31] V. A. S. Andersen, “Data execution prevention: Changes to func-
tionality in microsoft windows xp service pack 2, part 3: Mem-
ory protection technologies,” http://technet.microsoft.com/en-us/library/
bb457155.aspx, 2004.

[32] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in S&P, 2015,
pp. 745–762.

[33] C. Small, “Misfit: A tool for constructing safe extensible C++ systems,”
in USENIX Conference on Object-Oriented Technologies (COOTS),
S. Vinoski, Ed., 1997, pp. 175–184.

[34] Symantec, “Microsoft Internet Explorer virtual function table re-
mote code execution vulnerability,” http://www.symantec.com/security\

response/vulnerability.jsp?bid=54951, 2012.
[35] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,

L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in GCC & LLVM,” in NDSS, 2014.

[36] N. Tuck, B. Calder, and G. Varghese, “Hardware and binary modi-
fication support for code pointer protection from buffer overflow,” in
37th Annual International Symposium on Microarchitecture (MICRO-
37, 2004, pp. 209–220.

[37] VUPEN, “Exploitation of Mozilla Firefox use-after-free vulnerabil-
ity,” http://www.vupen.com/blog/20120625.Advanced\ Exploitation\
of-Mozilla\ Firefox\ UaF\ CVE-2012-0469.php, 2012.

[38] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in SOSP, 1993, pp. 203–216.

[39] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in S&P, 2010.

[40] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” in S&P, 2009, pp. 79–93.

[41] B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow integrity
and static analysis for efficient and validated data sandboxing,” in CCS,
2011, pp. 29–40.

[42] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “Vtint: Protecting
virtual function tables’ integrity,” in NDSS, 2015.

[43] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in S&P, 2013, pp. 559–573.

[44] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
USENIX Security, 2013, pp. 337–352.

15

