Physical-Layer Key Generation for Automotive Cyber-Physical System Security

Jiang Wan, M.S., Anthony Lopez, B.S., Mohammad Al Faruque, Ph.D. **Electrical Engineering and Computer Science** University of California, Irvine

through WiFi to a PC

during runtim

Summary

- Developed a fast and novel secret key generation technique for automotive systems based on RSSI values of wireless channel physical layer.
- Performed proof of concept through experimentation with RC cars and automobiles.

- Vehicular communication (V2X) is a proposed solution to human-caused collisions (80% of all collisions) [2].
- Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) Communication confidentiality, integrity, and authentication [1][3].
- Vehicular wireless channel randomness is a novel source to quickly generate secret keys with lower storage and energy overhead [4][5].

Figure 1. Typical network on vehicle

Figure 2. Examples of V2V and V2I Communication

Key Generation

Numbers of RSSI values Car 1 from Car Car 0 from Car Car 1 from Car Car 2 from Car 0000011111100000 000001111000001

Figure 4. Fetching RSSI Values using PUTTY and simple Bash script to generate keys

Figure 5. Sample RSSI values and generated secret keys (must be unique)

Generated 64-bit Kev

Can help realize encryption for vehicular wireless communication security.

Future Work

- **Implement** the algorithm on actual vehicular communication devices and experiment in realtime.
- **Develop new** key generation algorithms dependent on signal phase and channel impulse response.
- **Evaluate** which among these algorithms are fastest, efficient, and secure for automotive networks.

• Key Bit Quantization Method: If RSSI_{Value} > Thresh_{Upper}-> 1 If RSSI_{Value} < Thresh_{Lower}-> 0

Experimentation with Automobiles

References

- Else keep repeating on rest of values
- Wait Time Interval (T_{step}) >= **Coherence Time (T_c)**
- T_c depends on the **absolute** velocity difference (ΔV)
- Mismatching key bit elimination \bullet

Attack Model

Mismatc check

- Understands protocol and can read messages over the air.
- Physically nearby the targeted vehicles.
- We want to **prevent** the attacker from computing the secret key.

Lower Threshold

- -1.5 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Testing Time (ms)
 - Figure 6 Sample RSSI values and corresponding thresholds
- Figure 7 Setup with two automobiles and phones

- 1. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al., "Comprehensive experimental analyses of automotive attack surfaces," USENIX Security Symposium, 2011.
- 2. Weiß. V2x communication in europe-from research projects towards standardization and field testing of vehicle communication technology. Computer Networks, 55(14):3103–3119, 2011.
- 3. T. Schutze. Automotive security: Cryptography for car2x communication. In Embedded World Conference. Citeseer, 2011.
- 4. M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin. Wireless information-theoretic security. IEEE Transactions on Information Theory, pages 2515– 2534, 2008.
- 5. S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik, "Radiotelepathy: extracting a secret key from an unauthenticated wireless channel," Proceedings of the 14th ACM international conference on Mobile computing and networking, pp. 128–139, 2008

