A2C: Self Destructing Exploit Executions
via Input Perturbation

Yonghwi Kwon?, Brendan Saltaformaggio?, | Luk Kim?,
Kyu Hyung Lee?, Xiangyu Zhang!, and Dongyan Xu'

!Department of Computer Science, Purdue University
’Department of Computer Science, University of Georgia

R PURDUE &

GEORGIA

SSSSSSSSS

Observation

In most attacks, attackers need to inject
malicious payloads

and they are brittle

Our Solution: A2C
Observation

Malicious Input: ...01010101010... ‘

Malicious Payload: Shellcode/ROP

Shellcode (Payload) Corresponding Instructions

31 c0 31 f6 50 5f 50 b0 66 6a 01 | xor eax, eax; xor esi, esi;
5b 53 6a0289elcd8096... push eax; pop edi; push eax; ...

XOR 0xAA

fwait; push Oxffffff9b; pop esp;
cli; cmmc; cli; sbb cl, ah; shr ...

9b 6a 9b 5c fa f5 fa 1la cc cO ab
f1f9c0a8234b 67 2a3c...

Payload is broken!

Our Solution: A2C

Benign execution

Input (HTTP request)

POST /index.php HTTP/1.1 ...

Encoded input
ONRS..hmcdw-0g0.GSS0O.0-0 ...

Web server Encoded input
ONRS/hmcdw-0gdGSSO.0-0...

Parses/Processes Inputs * * {
Generates Outputs POST |[/index.php||HTTP/1.1

Output (HTML page)

<html><head><title>....</html>

Our Solution: A2C

ldea
Inputs Encoded inputs Program
Encodes j ')
— —
Exploit
—
» Payload is encoded:
Attack Failed
Decodes

Benign request

Our Solution: A2C
Why payloads are not decoded?

Decoding based on input processing semantics

We statically analyze a program and decode when inputs are
used by the program (as intended data)

Inputs should be data, not code

A2C allows inputs to be accessed as (intended types of) data, but
breaks if they are code (or unintended types of data (e.g., ROP

gadgets))

Our Solution: A2C

Overview

@
— +
Original Program Program Analysis
(Constraint Solving +

Static Analysis)

23—~

Instrumented Runtime
Program Support

2LLVM

=a3C © M PILER
INFRASTRUCTURE

P
y Ao

Step 1: Program Analysis

When to encode and decode?

When to encode?

Encode incoming inputs from untrusted sources at
library calls (e.g., recv, read)

When to decode?

Decode when the encoded values are consumed by the
program’s input processing logic

Z3p Program Analysis
When to decode?

=] ——r —

Encoded Program Outputs
Inputs
@fe]0)Y

Read/Compare (Parse)
Conversion (e.g., Charset conversion)

Computation

Program Analysis
When to decode?

=] ——r —

Encoded Program Outputs

Inputs
Copy No Decode

Read/Compare (Parse) Decode

Conversion (e.g., Charset conversion) @

Computation

10

Z3

Program Analysis
Can an attacker control results?

Operation 1

&)oL,

Malicious Inputs
(Payload)

Conversion (e.g., Charset conversion) @

Computation

11

Z3

Program Analysis
Can an attacker control results?

Operation 2

20,2

Malicious Inputs
(Payload)

Conversion (e.g., Charset conversion) @

Computation

12

Z3

Program Analysis

Not Sure? Ask Constraint Solver!

// Declarations (Data Types)
unsigned int m7[...][...];
unsigned short imgl...][...];
unsigned short mprl...][...];

// Transformative Operations
for (intx=0; ...; x++)
for (inty=0; ...; y++)

13

23+ Program Analysis

Not Sure? Ask Constraint Solver!

6.

m7[x][y] = img][...][...] - mpr][...][...];

. Constraints for Operations (img - mpr)

m7(0,1,2,3] =img|[0,1,2,3] - mpr|[0,1,2,3]
; Constraints for the range of unsigned short

0 <=img[0,1,2,3] /\ 0 <=mpr[0,1,2,3]
img[0,1,2,3] <= 65535 /\ mpr[0,1,2,3] <= 65535

. Constraints for Payloads (n will select a /al@)

m7[0,1,2,3] = payload[n, n+1, n+2, n+3] || Large

Payload

Pool o
\(1.4G)

23+ Program Analysis

Not Sure? Ask Constraint Solver!

EXPLOIT &
DATABASE

‘Bucearch Ropgadget[ﬁ]metasploit®

Z 3 tool ghell-storm.org
@% a Ropper tool

Z3 Solver Payloads

15

Z3 Program Analysis

Not Sure? Ask Constraint Solver!

Constraint Solver returns ...
SAT: Attackers can control

TIMEOUT and UNKNOWN: Don’t know =»
Attackers might control!

UNSAT
=» Attackers cannot control!

16

Z3

Decoding Frontier
Exploitable and Post-Exploitable Space

Encoded Program Outputs

Inputs

Copy No Decode

Conversion (e.g., Charset conversion) No Decode Zs

Simple Computation No Decode zs

Read/Compare (Parse) Decode

Certain Complex Computation Decode zs

17

ALLVM))
Z3p Decoding Frontier
Exploitable and Post-Exploitable Space

S —8

Encoded Program Outputs

nputs Encoded | Decoded

Conversion (e.g., Certain Complex
Charset conversion) Computation
Simple Computation

Exploitable Space | Post-exploitable Space

>

Decoding Frontier

18

#)C O MPILER
INFRASTRUCTURE

Step 2: Instrumentation

When to encode?

- Encode incoming inputs from untrusted sources at
library calls (e.g., recv, read)

- Encode “constants” that can be written to encoded
buffers (Details in the paper)

When to decode?

- Decode when encoded values are consumed by the
program’s input processing logic

- Decode permanently at decoding frontier

18% -

16% -

14% -

12% -

10% -

8%

Evaluation

Performance (18 real world apps + SPEC
CPLI?20NA)

Average of all (30 programs):

20

Evaluation
Effectiveness

23 different exploits on 18 programs
Tested 100 payloads (50 shellcode/50 ROP) for each program

Mutation will break malicious

payloads execution,
and it will break early

Almost no ROP gadgets were executed.

21

Discussion
Limitations

Attacks in Post-exploitable Space

We use a large pool of payload test cases that models the
distribution of valid payloads to determine the DF with strong
probabilistic guarantees.

Memory Disclosure

We use a different dictionary (encoding key) for each buffer and
each request. Knowing a previous buffer’s dictionary does not
help in subsequent attacks.

Related Works

CFl Practical CFI (V. van der Veen et al. in CCS’15, B. Niu et al. in CCS’15,
C.Ticeetal.in SEC’'14, C. Zhang et al. in SP’13, M. Zhang et al. in SEC'13,

V. Pappas et al. in SEC’13, Y. Xia et al. in DSN’12, ...), SafeDispatch (D. Jang et
al. in NDSS’14), Control Flow Locking (T. Bletsch et al. in ACSAC'11), ...

Malicious Payloads Detection z. Liang et al. in CCS'05, T. Toth et
al. in RAID’02, P. Fogla et al. in SEC'06, M. Polychronakis et al. in RAID’07, K.
Snow et al. in SEC'11],

Randomizations AsLr (R. Wartell et al. in CCS’12, V. Pappas et al. in

SP’12, D. Bigelow et al. in CCS’15, S. Crane et al. in SP’15, J. Hiser et al. in
SP’12), ISA (G. Portokalidis et al. in ACSAC’10, G. S. Kc et al. in CCS’03), Data
Space Randomization (S. Bhatkar et al. in DIMVA’08) ...

Bound Checkers Address Sanitizer (K. Serebryany et al. in ATC'12),
Cling (P. Akritidis et al. in SP’08), StackGuard (C. Cowan et al. in SEC’98), ...

Conclusion

A2C provides a general protection
against a wide spectrum of payload injection attacks

- Malicious Input: program breaks, and breaks early
- Benign Input: program executes correctly

Key Idea: encodes inputs, decodes depending on the
input processing semantics

A2C prevents payload injection with low overhead

Q&A

Thank you

Yonghwi Kwon
PhD student, Purdue University

Contact: yongkwon@purdue.edu
Web: http://yongkwon.info

More Slides

* Backup Slides

Evaluation
Decoding frontier computation

M Controllable ™ Uncontrollable

More decoding frontiers
71% of decoding frontiers turned out
they are indeed decoding frontiers.

Exploitable-Space is Small

Inputs are quickly parsed and do not
usually propagate deeply into a
program. Exploitable-space is not huge
which is a key reason of our low
overhead.

27

Case Study
Preventing ROP Attacks

ROP Gadget Instruction

void process _font_table (...) { 0x804d820 mov ebx,0x0

ret

- 0x804ec7d mov eax,0x806275c
char name[255]; ret

while (w2) { -
: XOR 0xAA
tmp = word_string(w?2);

f (tmp &8& DEC(tmp(0]) 1="\\')

strcat(name, tmp); Oxa2ae728a Invalid address
Oxa2ae46d7 Invalid address

28

#)C O MPILER

7= pecoding/Encoding Sets
Static Analysis

Encoding Set: When to encode?

Encode Incoming Untrusted Sources at Library Calls
(e.qg., recv, read)

Decoding Set: When to decode?
Decode when encoded values are used
- Decode permanently at decoding frontier

Finding Decoding/Encoding Sets
Flow-, Context-, Field-sensitive Static Analysis

RRRRRRRRRRRRRR

Decoding/Encoding Sets

Instrumentation

recv(..., untrusted_buf, ...); |[ENC(untrusted_buf);

|f(DEC(untrusted_buf[0]) == ‘C") {

J

int ret = memcmp(| DEC(untrusted buf), ...);

30

RRRRRRRRRRRRRR Decoding/Encoding Sets

Instrumentation

Decoding is not simple

recv(..., untrusted_buf, ...); ENC(untrusted_buf);

if (DEC(untrusted buf[0]) ==C"){
me buf|“CONSTANT”]} ...);

J

int ret = memcmp(DEC(untrusted_buf), ...);

31

CCCCCCCC

TTTTTTTTTTTTTT Decoding/Encoding Sets

Instrumentation

Decoding untrusted_buf will break
when it holds “CONSTANT”

Not Decoding untrusted_buf will break
when its value is from recv

32

CCCCCCCC

""""""""""""" Decoding/Encoding Sets

Instrumentation

We also encode “CONSTANT”

Now, decoding untrusted_buf will not
break in any context.

33

RRRRRRRRRRRRRR

Decoding/Encoding Sets
Instrumentation

Decoding is not simple
recv(..., untrusted_buf, ...); ENC(untrusted_buf);

if (DEC(untrusted buf[0])==‘C"){

memcpy(untrusted_buf, ENC(“CONSTANT"), ...);

J

int ret = memcmp(DEC(untrusted_buf), ...);

34

Evaluation
Different Types of Decoding Frontiers

1. Comparative:

100% - X == y
2. Terminal:
80% 1 Comparative
(63%) send(x)
60% - H H .
Uncontrollable transformative 3. Type Wldenlng'
18% .
(18%) inty = (char)x;
40% - \
Tf{’;’o’/""l r N\ 4. Primitive Type
20% - Type Irreversible Primitive Type _ i .
Widening Calculation Conversion Yy ndeoxmg Conversion:
— (G0} o %) float v = atof(x);

0% -

5. Indexing:
o 9 e Q 9 y = array[x];

35

20

Evaluation
Decoding Frontier Computation

14 = Avg. Constraints

We mostly find that # of
constraints for decoding
frontier computation is not
very large (10-20). This
makes the fast computation
possible.

36

