
Stack Bounds Protection with Low Fat Pointers

Gregory J. Duck and Roland H. C. Yap†
Department of Computer Science
National University of Singapore
{gregory, ryap}@comp.nus.edu.sg

Lorenzo Cavallaro‡
Information Security Group

Royal Holloway University of London
lorenzo.cavallaro@rhul.ac.uk

Abstract—Object bounds overflow errors are a common
source of security vulnerabilities. In principle, bounds check
instrumentation eliminates the problem, but this introduces high
overheads and is further hampered by limited compatibility
against un-instrumented code. On 64-bit systems, low-fat pointers
are a recent scheme for implementing efficient and compatible
bounds checking by transparently encoding meta information
within the native pointer representation itself. However, low-fat
pointers are traditionally used for heap objects only, where the
allocator has sufficient control over object location necessary for
the encoding. This is a problem for stack allocation, where there
exist strong constraints regarding the location of stack objects
that is apparently incompatible with the low-fat pointer approach.
To address this problem, we present an extension of low-fat
pointers to stack objects by using a collection of techniques,
such as pointer mirroring and memory aliasing, thereby allowing
stack objects to enjoy bounds error protection from instrumented
code. Our extension is compatible with common special uses of
the stack, such as alloca, setjmp and longjmp, exceptions, and
multi-threading, which rely on direct manipulation of the stack
pointer. Our experiments show that we successfully extend the
advantages of the low-fat pointer encoding to stack objects. The
end result is a competitive bounds checking instrumentation for
the stack and heap with low memory and runtime overheads,
and high compatibility with un-instrumented legacy code.

I. INTRODUCTION

System code and applications with high-performance re-
quirements are usually written in low-level languages such
as C and C++. These programming languages do not provide
any protection against memory errors (e.g., buffer overflows),
and this is a well known source of security vulnerabilities
and exploits. Although memory errors have been well re-
searched with numerous proposed solutions [24], [26], the
threat nevertheless persists. For example, a search for CVEs

† This research was partially supported by a grant from the National Re-
search Foundation, Prime Minister’s Office, Singapore under its National Cy-
bersecurity R&D Program (TSUNAMi project, No. NRF2014NCR-NCR001-
21) and administered by the National Cybersecurity R&D Directorate.
‡ This research was partially supported by the UK EPSRC research grant

EP/L022710/1.

with “buffer overflow” on the NVD (National Vulnerability
Database) returns at least 972 entries for the past three years
alone. The 2014 Heartbleed [12] bug, which was perhaps one
of the most serious and widespread vulnerabilities of recent
times, was also a buffer overflow.

Given the well understood nature of buffer overflow and
the numerous proposed solutions, it is reasonable to ask why
protection mechanisms that prevent buffer overflow are not in
widespread use. There are a number of barriers to adoption
that have been identified [24], including:

• Performance: Does the solution slow the program down
too much? Does the solution use too much memory?

• Software Compatibility: Does the solution work with
existing code bases without additional modification?

• Binary Compatibility: Does the solution change the
Application Binary Interface (ABI) meaning that binary
modules (e.g., system or proprietary libraries) need to be
re-compiled?

Low runtime performance overheads are important (and in
general the lower the better), however the impact is application
dependent. For example, the AddressSanitizer [22]-hardened
Tor browser [25] is an example application where security
is prioritized over performance. Memory overheads are also
important, especially in server contexts where available sys-
tem memory may be at a premium. Memory overheads can
translate into time overheads under low memory conditions.
Software compatibility means that programs which use a
variety of compiler and language specific features continue
to work, e.g., undefined behavior (out-of-bounds pointers,
integer overflows, etc.), abnormal control-flow (longjmp, C++
exceptions, etc.), and inline assembly. Binary compatibility is
a necessity in the real world given that source code is not
always available for libraries. Solutions that change the ABI
are automatically incompatible with such applications.

Recently, a bounds overflow protection mechanism [10] for
C/C++ was proposed that achieves good runtime performance
and software compatibility, along with excellent memory per-
formance and binary compatibility. The protection mechanism
is based on low-fat pointers that transparently encodes bounds
meta information (i.e., an object’s base address and size) into
the native machine representation of a pointer itself. This meta
information can be later retrieved to check all read and write
accesses are within the bounds of the corresponding object,
a.k.a. bounds checking. Since low-fat pointers are also regular
machine pointers, good runtime performance and excellent
memory performance with binary compatibility is achieved.
The low-fat pointer approach is feasible on 64-bit systems with
sufficient pointer bit-width, such as the x86_64.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23287

The main challenge for low-fat pointers is that sufficient
control over the memory allocator is required in order to
enforce the pointer encoding. This is feasible for the heap allo-
cator (e.g., malloc), but is more difficult for stack allocations
where the placement of objects in memory is highly restricted.
This is a major deficiency since many buffer/object overflow
bugs still affect the stack [1].

In this paper, we show how to extend low-fat pointers
to stack objects, thereby enjoying the same bounds overflow
protection as heap objects. To achieve this, we introduce a low-
fat stack allocator, that replaces the default stack allocation
scheme automatically inserted by the compiler, but ensures
that pointers to allocated stack objects satisfy the location and
alignment requirements of the low-fat pointer encoding. The
low-fat stack allocator uses a variety of techniques introduced
in this paper, such as fast allocation size over-approximation,
dynamic stack object alignment, stack object pointer mirroring
(for location), and memory aliasing optimization to keep
memory overheads low. Our solution specially focuses on the
key practical barriers against adoption, such as overheads and
software/binary compatibility. Good software compatibility is
achieved by transparently supporting C and C++ features, which
make direct use of the stack, e.g., setjmp/longjmp, C++
exceptions. Binary compatibility is achieved because: (a) the
representation of pointers and the ABI is unchanged (low-fat
pointer are regular machine pointers); and (b) un-instrumented
code can be freely mixed with instrumented code that supports
bounds checking (e.g., can link un-instrumented libraries).

We have implemented a version of the low-fat heap+stack
allocators for C and C++ on the Linux x86_64 system architec-
ture. We experimentally evaluate the implementation against
the SPEC 2006 benchmarks [23], the Apache web server,
the Wilander [28] and RIPE [29] benchmarks, as well as
several recent CVEs concerning stack object overflows. We
show that runtime overheads are competitive: a 54% overhead
for memory read+write instrumentation on SPEC 2006 (while
protecting both heap and stack), and a 17% overhead by instru-
menting memory writes only. Memory overheads are as low
as 3%. Our performance figures are significantly better than
AddressSanitizer [22] memory error sanitizer and comparable
to the original work of [10] that protects heap objects only. The
Wilander, RIPE and CVEs benchmarks show that our method
is effective at protecting against stack object bounds overflows
for both artificial and real-world test cases.

II. BACKGROUND

Object bounds errors (e.g., buffer overflows) are a perennial
problem for low-level programming languages such as C and
C++. There exists a significant body of previous literature
regarding proposed solutions and mitigations, including [3],
[4], [9], [10], [11], [14], [15], [19], [20], [22], [30] amongst
others. In this section we give a brief overview of the different
approaches.

The threat model for bounds errors is well known, so we
only provide a summary below. An attacker can induce an
Out-of-Bounds (OOB) memory write to corrupt other objects
in memory. This forms the basis of several kinds of attacks:

- Control Flow Hijacking attacks, where the attacker over-
writes a code pointer (e.g. a return address on the stack)
to gain control over the execution of the program.

- Data Flow attacks [6], [13], where a data value is
overwritten causing the program to misbehave in a way
beneficial to the attacker, e.g., privilege escalation.

OOB reads can lead to:

- Information Leakage attacks, such as the exploitation of
the Heartbleed bug [12]. This can also be seen as a
subclass of data flow attacks.

One effective method for preventing OOB-errors is bounds
checking instrumentation. The basic idea is as follows: given
a pointer p associated with an object O with base address
(base) and size (size), then p is out-of-bounds with respect to
O if the following test (isOOB) succeeds:

(p < base) || (p > base+size−sizeof(*p)) (isOOB)

Object bounds errors can be prevented by instrumenting every
memory read or write involving p as follows (instrumentation
code is shaded):

if (isOOB(p,base,size))
error ();

v = *p; or *p = v;

Here function error() reports the bounds error and aborts the
program—preventing any control/data or information leakage
attacks. The object’s size and base is otherwise known as the
bounds meta information.

A. Traditional Bounds Checking Methods

Over the years many different bounds check instrumenta-
tion systems have been proposed. Most differ on the underlying
implementation technology, which we summarize below.

Systems such as Safe-C [4], CCured [20] and Cyclone [15]
use “fat pointers” which fuse pointer values and associated
bounds meta information into one unified object, e.g.:

struct { void *ptr; void *base; size_t size; }

The program is transformed such that fat pointer objects
replace native machine pointers. Bounds meta information can
then be read directly from the fat pointers, e.g., (p.base)
and (p.size), and this information can be used for bounds
check instrumentation. That said, there are several significant
disadvantages to this approach, namely: problems arising from
changes to memory layout, high performance overheads, in-
creased memory overheads, and near zero binary compatibility.
Fat pointers change the underlying ABI, meaning that libraries
(including system libraries) must be recompiled or marshalled.

An alternative to fat pointers is to store (some represen-
tation of) the bounds meta information in a shadow space or
shadow memory that is separate from the main memory of the
program. Some form of shadow memory is used in memory
safety systems such as SoftBound [19], PAriCheck [30], Baggy
Bounds Checking [3], [9], MudFlap [11] and Intel MPX [14].
The basic idea is to map objects/pointers in the main memory
to associated meta information stored in the shadow memory.
AddressSanitizer [22] uses a slightly different approach in that
shadow memory is used to track poisoned red-zones placed
around objects. Here, an overflow into a red-zone is detected
as an error. That said, overflows that skip red-zones into other
valid objects may not be detected.

2

Shadow memory schemes tend to have better binary com-
patibility since the layout of objects in main memory has not
changed. That said, binary compatibility is not perfect. For
example, linking against un-instrumented code that allocates
memory without updating the corresponding shadow memory
may lead to inconsistencies that cause program misbehavior.
Another problem is that shadow memory consumes additional
resources leading to higher memory overheads.

Another difference between bounds instrumentation sys-
tems is the scope of the OOB-error protection. For example,
PAriCheck [30] and Baggy Bounds Checking [3], protect array
bounds errors only. In contrast, systems such as AddressSan-
itizer [22] and SoftBound [19] also protect against overflows
arising from implicit pointer arithmetic from field access (e.g.,
p->val). Furthermore, most bounds instrumentation systems,
such as [3], [10], [30], protect against allocation bounds only—
meaning that only overflows beyond the allocation size of
the object (including any padding added by the allocator)
are detected. Overflows into padding are normally considered
benign (such an overflow cannot overwrite code pointers nor
data values and is generally not exploitable). These systems
also do not detect sub-object bounds overflows. However,
the issue is complicated by the fact that many sub-object
bounds overflows are intentional, e.g., initializing an object
with memset.

B. Other Protection Mechanisms

Due to the cost and compatibility issues of bounds checking
many other different protection mechanisms have been pro-
posed. These alternatives generally attempt to disrupt attacks
or protect control flow rather than prevent memory errors. We
give a brief overview of some of the more prominent solutions.

ASLR [21] randomizes memory layout and DEP [27] pre-
vents data execution. These methods aim to frustrate attacks.
ASLR is widely deployed, but implementations tend to be
incomplete for performance/compatibility reasons.

Shadow stacks [8] split the stack into two parts: a “shadow”
stack for storing sensitive data such as code pointers (e.g., the
return address) and the main stack for storing everything else.
Another variant [31] splits the stack into multiple parts based
on object type. Security is derived from the physical separation
of the main and shadow stacks. Traditional shadow stacks
store code pointers contiguously, and parallel shadow stacks
double stack memory to maintain a one-to-one correspondence
between main and shadow locations. Performance overheads
range from ∼10% for traditional [8], ∼4% for parallel [8], and
<1% for multi-stacks [31].

Control Flow Integrity (CFI) [2] ensures that all indirect
jumps target some statically determined set of valid locations.
The performance overhead of CFI is ∼16% [2]. Data Flow
Integrity (DFI) [5] is analogous to CFI but for data-flow
attacks. The overhead of DFI is higher at ∼104% [5].

Code Pointer Integrity (CPI) [16] and the relaxation Code
Pointer Separation (CPS) use program analysis and instru-
mentation to isolate code pointers into a separate region of
memory. The protection is similar to that of shadow stacks,
but also covers code pointers in globals and heap objects (e.g.,
C++ virtual method tables). SafeStack [16] is a stack-specific
instance of CPS. Because code pointers are typically sparse,

performance overheads are very good: ∼8.4% for CPI, ∼1.9%
for CPS, and <0.1% for SafeStack [16].

One problem with shadow-stacks, CFI, CPI, CPS, and
SafeStack schemes is that they only target control flow attacks
(with varying degrees of completeness). Turing completeness
of non-control data attacks means that arbitrary code exe-
cution can happen even without a control-flow attack [13].
Conversely, DFI only targets data flow attacks but not control
flow. Bounds checking can protect against control flow, data
flow and information leakage attacks, all at once.

III. LOW-FAT POINTERS

Low-fat pointers [10], [17] are a recent method for track-
ing bounds meta information that takes advantage of 64-bit
systems with sufficient pointer bit-width. The basic idea is
to encode bounds meta information within the representation
of machine pointer itself. This is in contrast to fat pointer
or shadow space methods that store bounds meta information
explicitly in separate memory. Many possible low-fat pointer
encodings are possible:

Example 1 (A Hypothetical Low-Fat Pointer Encoding):
The following is a simple low-fat pointer encoding:

union { void *ptr;
struct {uintptr_t size:10; // MSB

uintptr_t unused:54; } meta;} p;

Here (p.ptr) is a native machine pointer to an object that
also stores the object size (p.size) in the upper 10 bits. The
base pointer of p can be stored implicitly by ensuring that all
objects are aligned to multiples of the object size. The base
can therefore be retrieved by rounding (p.ptr) down to the
nearest object size multiple. Variable p is a low-fat pointer
since (a) p is a regular machine pointer (via cast p.ptr), and
(b) p can be used to extract bounds meta information, e.g., the
object size via (p.size) and the object base via rounding.

The hypothetical encoding from Example 1 is difficult to
implement in practice as it imposes strong constraints on the
program’s virtual address space layout. Other low-fat pointer
encodings have been proposed, including [17] (for specialized
hardware) and a more flexible encoding [10] for standard
architectures such as the x86_64.

A. Flexible Low-Fat Pointers

In this paper we use the more flexible encoding from [10]
which is summarized below. The flexible encoding was ini-
tially designed for heap allocation only, i.e., low-fat replace-
ments for the malloc-family of functions (malloc, realloc,
memalign, etc.). The main contribution of this paper is to
extend this encoding to stack allocation in addition to the heap.

The basic idea of the flexible low-fat encoding from [10]
is to divide the program’s virtual address space into several
regions of equal size (as specified by a REGION_SIZE param-
eter). Regions are contiguous and can be very large, e.g., the
implementation in this paper assumes REGION_SIZE=32GB .
Regions are further classified into two main types: low-fat
regions and non-low-fat regions (or non-fat regions for short).
Low-fat regions are reserved for the low-fat heap allocator, and
non-fat regions cover everything else (including text, global,

3

.
t
e
x
t

.
d
a
t
a

.
b
s
s

b
r
k

s
u
b
h
e
a
p

#
1

s
u
b
h
e
a
p

#
2

s
u
b
h
e
a
p

#
3

s
u
b
h
e
a
p

#
M

s
t
a
c
k

region #0 region #1 region #2 region #Mregion #3 region #stack

0x0 32GB 64GB 96GB 128GB

... ...

M×32GB

Fig. 1. Program virtual address space layout illustration.

stack and file mappings, etc.). Figure 1 illustrates the low-fat
scheme used in [10] and extended in this paper, as follows:

- The stack is placed in the non-fat region labelled #stack.
- Globals and code (bss, data, text) are placed in the

non-fat region #0.
- The heap is split into several sub-heaps that are placed

in low-fat regions #1 to #M .

Each of the low-fat regions #1-#M is associated with a specific
allocation size (or allocSz for short) that is determined by a
size configuration (or Sizes) parameter. The size configuration
represents the sequence of allocation sizes supported by the
low-fat heap allocator. For example, the size configuration:

Sizes = 〈16, 32, 48, 64, 80, 96, ..〉
specifies that the low-fat allocator supports allocation sizes of
16bytes (region #1), 32bytes (region #2), 48bytes (region #3),
etc. During allocation, the requested object size (i.e., the size
parameter to malloc) is rounded-up (over-approximated) to
the nearest allocation size (allocSz) that fits. For example,
consider an object O of type char[50] with an object size of
size=sizeof(O)=50. Assuming the above size configuration,
size will be rounded up to an allocation size of allocSz=64
by adding 14bytes of padding. To be consistent with the C
standard, at least one byte of padding is always added (so
allocSz>size) to ensure the pointer-to-the-end-of-an-object is
never considered OOB.

The large region size (32GB) ensures that it is unlikely any
given region will be exhausted for a typical program. If a full
region does occur, this can be handled by returning ENOMEM
or by reverting to libc malloc as a fail-safe, depending on
the configuration. Unused memory, including padding on large
(>1 page) objects, is marked as NORESERVE1 meaning that it
will not consume physical memory (RAM/swap) resources.

By design, the memory layout described in Figure 1 is
compatible with the traditional layout of a standard Linux
process. That is, the standard memory segments (text, stack,
etc.) are all placed in their standard locations.

1) Low-fat Conditions: In order to implement low-fat
pointers, the heap allocator allocates objects O (of allocation
size allocSz) according to the following conditions:

• Region: The object O is allocated from the sub-heap in
region #I, where Sizes[I] = allocSz ; and

• Alignment: The object O is allocSz -aligned.

An object O that satisfies these conditions is known as a low-
fat object. Both low-fat conditions are relatively easy to satisfy
for heap allocation, where the allocator has significant control

1See the mmap manpage.

over the placement and alignment of objects. However, satis-
fying these conditions is more challenging for stack allocation,
as will be discussed later in this paper.

2) Reconstructing Meta-information: A pointer p that
points to (possibly the interior of) a low-fat object is a low-
fat pointer. We can reconstruct the size and base bounds meta
information from p using the following operations:

size(p) = TABLE[p / REGION_SIZE].size

base(p) = (p / size(p)) * size(p)

Here (/) and (*) are 64-bit integer division and multiplication
respectively, and TABLE is a pre-defined lookup table2 that
maps the region index, computed by (p / REGION_SIZE), to
the corresponding allocation size from the size configuration
(Sizes). The size of the object can then be retrieved by a TABLE
lookup. The base of the object is calculated by rounding p
down to the nearest multiple of size(p); taking advantage of
the low-fat alignment condition. The base(p) operation can be
optimized using bit-masks if Sizes are all powers-of-two or
fixed point division otherwise. See [10] for more details.

Not all pointers are low-fat (e.g., code, globals, file map-
pings). To handle non-fat pointers, we define:

TABLE[I].size = SIZE_MAX I 6∈ 1..M

for all non-fat regions #I. Thus, if q is a non-fat pointer, then
size(q) = SIZE_MAX (largest possible size) and base(q) =
0 = NULL. By design, non-fat pointers have the widest possible
bounds, and thus will “pass” any bounds check. This property
of non-fat pointers is essential for binary compatibility.

B. Bounds Checking with Low-Fat Pointers

With low-fat pointers we can reconstruct bounds meta
information and use this for dynamic bounds check instrumen-
tation that enforces spatial memory safety. To associate bounds
meta information with pointers, we transform the program
using the meta information propagation schema from [10].
The transformation is applied automatically using an LLVM
compiler infrastructure [18] pass. The basic idea is summarized
as follows: for a given function f , the size(p) and base(p)
primitives are used to construct meta information for all input
pointers p. Here an input pointer p is any pointer value that
is a function argument (f(int *p) {..}), return value from
another call (p = g(..)), read from memory (p = *q), or
cast from an integer (p = (int *)i). Next, meta information
is propagated using the following rule: if a pointer q is derived
from pointer p through pointer arithmetic (e.g., p = q + 100),
then q inherits the same meta information as p. Note that,

2TABLE is read-only and small (one entry per 32GB region).

4

1 void memcpy(void *dst , void *src , int n)
2 {
3 void *dst_base = base(dst);
4 size_t dst_size = size(dst);
5 void *src_base = base(src);
6 size_t src_size = size(src);
7 for (int i = 0; i < n; i++) {
8 void *dst_tmp = dst + i;
9 void *src_tmp = src + i;

10 if (isOOB(dst_tmp , dst_base , dst_size))
11 error ();
12 if (isOOB(src_tmp , src_base , src_size))
13 error ();
14 *dst_tmp = *src_tmp;
15 }
16 }

Fig. 2. Instrumented version of simple memcpy.

contrary to some related work (e.g., [3], [30]) we also consider
field access (e.g., q = &p->val) to be pointer arithmetic.

Example 2 (Instrumented Memory Copy): The following
simplified memcpy is to show meta information propagation.

void memcpy(void *dst, void *src, int n) {
for (int i = 0; i < n; i++) dst[i] = src[i];

}

The instrumented form is shown in Figure 2 with the instru-
mentation highlighted. Here, dst and src are input pointers,
and dst_tmp and src_tmp are derived pointers from pointer
arithmetic. The bounds meta information for the input pointers
is calculated on lines 3-6. The memory operation on the
derived pointers (line 14) is protected by the bounds checks
on lines 10-13.

By design, the code in Figure 2 is compatible with both
low-fat and non-fat pointers. However, only low-fat pointers
enjoy bounds protection. For non-fat pointers, the size and
base operations return “wide bounds” meaning that the isOOB
checks on lines 10-13 never fail.

1) Handling OOB Pointers: Bounds meta information
propagation handles the case where the input pointer is within
bounds, and a subsequent derived pointer is out-of-bounds.
However, it does not handle the case where the input pointer
itself is already out-of-bounds. To catch such cases [10]
enforces a global invariant that all escaped pointers must be
within bounds. Here, an escaping pointer p is any pointer that
is passed to another function as an argument (f(p)), returned
from the current function (return p), written to memory
(*r = p), or cast to an integer value (i = (int)p). OOB-
pointers are prevented from escaping by inserting a bounds
check before the relevant operation, i.e.:

p = q + k;
if (isOOB(p, q_base, q_size))

error ();
i=(int)p; or *r=p; or f(p); or return p;

C. Compatibility

The flexible low-fat pointer encoding and bounds instru-
mentation summarized in Sections III-A and III-B achieves

good software compatibility and excellent binary compatibility.

Binary compatibility is a consequence of the fact that low-
fat pointers are also regular machine pointers, and can therefore
be passed to and from non-instrumented code without any
special handling or marshalling. Likewise, non-fat pointers
generated by non-instrumented code are automatically compat-
ible with instrumented code, albeit without bounds protection.
Binary compatibility is very important in practice [24], since
it is not always possible to recompile code, such as system or
external proprietary libraries.

The low-fat pointer encoding also achieves a high degree of
software compatibility. The main source of software incompat-
ibility arises from code that intentionally creates OOB-pointers
(technically undefined behavior under the C standard). That
said, many intentional OOB-pointers are compatible, provided
the (1) OOB-pointer is not accessed (read or write) and (2)
does not escape according to the rules in Section III-B1.
Exceptions include some uncommon programming idioms,
such as: using base−1 as a sentinel, accessing arrays via
offsets (e.g. using (a−k)[k] to access a[0]), and copying
objects using pointer difference. Such idioms are relatively
rare in practice—with only 24 functions out of the SPEC
2006 benchmark (∼1.1 million lines of C/C++ code) being
affected [10]. The rest of the SPEC 2006 code is compatible
without any additional modification.

Low-fat pointers are not compatible with all machine ar-
chitectures. Specifically, low-fat pointer encodings assume that
the native pointer bit-width is sufficient to encode bounds meta
information. In practice this means only 64-bit architectures
(such as the x86_64) are supported. We do not consider
this to be a significant limitation as 64-bit architectures are
commonplace. For the rest of the paper, we assume the
underlying target architecture is the x86_64. The paper is
written targeting x86_64 assembler and Linux where needed
to clarify details.

IV. LOW-FAT STACK ALLOCATION

The flexible low-fat pointer encoding presented in Sec-
tion III was initially designed for heap allocation only. This
means that stack allocated objects are non-fat by default and
thus are not protected against bounds errors. In this section,
we design a new stack allocator, called the low-fat stack
allocator, that extends the coverage of the flexible low-fat
pointer encoding to also include stack objects. The low-fat
stack allocator aims to retain all of the desirable properties of
the default stack allocator, such as efficiency and automatic
stack object deallocation (for both normal and abnormal con-
trol flow). The latter excludes replacing stack allocation with
heap allocation, such as that with CCured’s heapified stack
objects [20]. Furthermore we wish to retain the existing flexible
low-fat pointer encoding so that stack and heap allocation are
compatible.

The low-fat stack allocator must allocate objects according
to the alignment and region conditions from Section III-A1.
Satisfying these conditions is not a problem for the heap
allocator (which has significant freedom regarding the location
and alignment of objects). However, stack allocation is much
more restricted:

5

1) Stack allocation works by modifying the stack pointer
which can only ever point-to/allocate-from a single region
of memory. Under the reasonable assumption that stack
objects are not of uniform size, it is necessary to allocate
objects from different memory regions.

2) The stack pointer is only guaranteed to be aligned to the
default system stack alignment, typically 8 or 16 bytes.
Low-fat objects are required to be aligned by allocation
size. Furthermore, for variable sized objects, such as
variable length arrays (VLAs), the stack alignment must
be calculated dynamically for a given object size.

Problem 1) will be addressed by splitting the stack across
several regions—one for each potential stack object allocation
size. The result of a stack allocation will be a pointer to local
stack memory contained within the appropriate low-fat region.
The challenge for such a split is twofold: (a) maintaining a
small allocation state that is compatible with the default stack
allocator (e.g., used by un-instrumented code), and (b) avoiding
excess memory usage caused by fragmenting stack objects over
multiple memory regions. We shall present solutions to both
of these challenges. Problem 2) will be addressed by suitably
aligning all low-fat stack allocated objects.

For the rest of this section we shall review the default stack
allocator, discuss some assumptions, and then present the low-
fat stack allocation schema.

A. Default Stack Allocation

On most systems, stack objects are (de)allocated by ad-
justing the stack pointer. For example, on the x86_64 (where
the stack grows down towards low memory addresses), the
allocation of an S-byte object is traditionally handled by decre-
menting the stack pointer register (%rsp) by S bytes. Likewise
the object can be deallocated by incrementing %rsp by S
bytes—restoring the old value of the stack pointer. Compilers
emit code that automatically deallocates all stack objects on
function exit and (in the case of optimizing compilers) when
stack objects go out-of-scope under the C/C++ scoping rules.
From the point of view of the programmer, stack allocation
has several advantages, namely:

- Efficiency ((de)allocation is a few instructions);
- Automatic lifetime management and deallocation on func-

tion exit, including normal return or abnormal function
exit such as C++ exceptions or longjmp.

- Small allocation state (single word stack pointer).

Stack objects are allocated from stack memory, which is
created by the operating system before the program starts.
Since stack memory is outside the low-fat heap regions #1-
#M (see Figure 1), stack objects are non-fat by default.

B. Assumptions

In order to simplify the low-fat stack allocator we make
several assumptions that are listed below. The assumptions
include: a generalized stack allocation template, the implemen-
tation details of the default stack allocator, and a restricted set
of allocation sizes supported by the low-fat stack allocator.

1) Stack Allocation Template: Stack allocation has many
forms, as illustrated by the following pseudo-code:

void f(int len) {
int x; // Local variable
int buf1[50]; // Local array (fixed-length)
float buf2[len]; // Local array (variable-length)
char *buf3 = alloca(len); // Explicit allocation
... }

Stack space for &x/buf1/buf2 will be implicitly allocated
by code generated by the compiler. Stack space can also be
explicitly allocated using the alloca standard library call,3
where alloca(size) allocates size bytes of space from the
stack frame of the caller. Here buf3 is allocated using this
method.

Without loss of generality, we shall assume that all stack
allocations are of the explicit alloca-form:

void *ptr = alloca(size); (STACKALLOC)

Here input size is the object size and output ptr is the resulting
pointer to the stack allocated object. All other forms of stack
allocation are rewritten into the (STACKALLOC) form, e.g.:

int x &x=alloca(sizeof(int))
int buf1[50] → buf1=alloca(50*sizeof(int))
float buf2[len] buf2=alloca(len*sizeof(float))

The LLVM compiler infrastructure [18] already does such a
transformation internally.

2) Default Stack Allocator Implementation: The default
stack allocator implementation is compiler, hardware and
operating-system specific. For this paper, we assume the de-
fault stack allocator as implemented by the LLVM compiler
infrastructure [18] for the Linux x86_64 target. That is, stack
(de)allocation is implemented by (de-)incrementing the stack
pointer that is stored in the %rsp register. The low-fat stack
allocation method presented in this paper can be adapted to
other compilers and targets.

3) A Special Size Configuration for Stack Allocation: The
size configuration (Sizes) specifies the set of all allocation
sizes supported by the low-fat heap allocator. For low-fat
stack allocation, we shall assume a special stack-specific
size configuration (StkSizes) that comprises the powers-of-two
subset of Sizes. Here StkSizes can be defined as follows:

StkSizes = Sizes ∩ {16, 32, 64, 128, ..}

We assume Sizes contains a reasonable StkSizes subset. Ap-
pendix A gives the configuration used by our implementation.

The motivation for StkSizes is to speed up low-fat stack al-
location (and fast allocation is important for the stack). Specif-
ically, powers-of-two sizes allow for efficient stack object
allocation size over-approximation (discussed in Section IV-C)
and allocation size alignment (discussed in Section IV-D). The
main disadvantage is that the more coarse-gained size config-
uration leads to higher memory over-approximation overheads
for stack allocated objects. We note that this does not affect
heap allocated objects which continue to use the original fine-
grained size configuration (Sizes).

We shall now introduce the low-fat stack allocation schema
that replaces default stack allocation represented by the tem-
plate (STACKALLOC) defined above. The schema is divided

3See the alloca man page.

6

into three parts: allocation size over-approximation (Sec-
tion IV-C), allocation size alignment (Section IV-D), and stack
object pointer mirroring (Section IV-E).

C. Allocation Size Over-approximation

During allocation, the object size is over-approximated
(a.k.a. rounded up) to the nearest size from StkSizes that fits.
For stack allocation, it is important for this operation to be
fast. Our basic approach is to map object sizes to allocation
sizes using a lookup table. This is a two-step process:

1) First the object size (size) is mapped to an index (idx ∈
0..64) using a suitable logarithmic index function we
name index (size). One possible definition is:4

idx = index (size) = dlog2(size + 1)e

2) Next we use (idx) to lookup the corresponding allocation
size from a pre-defined lookup table we name SIZES.

Our approach takes advantage of the fact that StkSizes contains
only power-of-two sizes, meaning that the base-2 logarithm of
each allocation size maps to a unique index. The schema for
allocation size over-approximation is therefore as follows:

size_t idx = index(size);
size_t allocSz = SIZES[idx];

Here size is the input object size and allocSz is the resulting
allocation size. The SIZES table is pre-computed as follows:

fits(allocSz , i) = ∀size, index (size) = i : size ≤ allocSz

SIZES[i] = min {allocSz ∈ StkSizes | fits(allocSz , i)}

Essentially SIZES[i] is the “best-fit” allocation size with re-
spect to all possible object sizes (size) where i=index (size).

A suitable choice for the index function (index) depends
on what can be efficiently implemented for a given underlying
system architecture. For the x86_64, a good choice is the
leading zero count function (clz) that returns the number of
leading zero bits in a 64-bit word, defined as follows:

clz (size) = 64− dlog2(size + 1)e

For example, clz (50)=clz (0x32)=58. The leading zero count
function is available as an LLVM [18] compiler built-in
function (clzll) which compiles down a single leading zero
count instruction (lzcnt) on modern versions of the x86_64
architecture. On older x86_64 CPUs, that do not support the
lzcnt instruction, bitscan forward (bsf) is a good substitute.5

Example 3 (Over-approximation): Assuming that leading
zero count is used as the index function, then the SIZES lookup
table is defined as follows:

· · ·
SIZES[57] = 128 SIZES[61] = 16
SIZES[58] = 64 SIZES[62] = 16
SIZES[59] = 32 SIZES[63] = 16
SIZES[60] = 16 SIZES[64] = 16

Suppose the program intends to allocate a stack object of size

4The increment (size+1) ensures (allocSz>size), see Section III-A.
5The main disadvantage of bsf is that it is undefined for size = 0.

50bytes, i.e. size=50, then

index (size) = clz (50) = 58

allocSz = SIZES[58] = 64

Note that the indexes idx∈60..64 correspond to object sizes
of size∈0..15bytes. These map to the minimum allocation size
of 16bytes.

D. Allocation Size Alignment

Low-fat objects are required to be aligned to a multiple of
the allocation size as specified by the alignment condition of
Section III-A1. To support dynamic alignment, we use a pre-
computed MASKS lookup table (analogous to the SIZES table
defined above). The MASKS table is defined as follows:

MASKS[i] = UINT64 MAX << log2(SIZES[i])

Given allocSz = SIZES[i], a pointer p can be allocSz -aligned
by the bit-mask operation (p & MASKS[i]). This is possible
because stack allocation sizes are always powers-of-two. The
schema for aligned stack allocation is therefore:

...
%rsp = %rsp - allocSz;
uint64_t mask = MASKS[idx];
%rsp = %rsp & mask;
void *ptr = %rsp;

Here (idx) and (allocSz) are calculated according to the
schema from Section IV-C which is represented by the vertical
ellipses. Aligned stack allocation proceeds as follows:

1) Stack space is reserved by decrementing the stack pointer
%rsp by the allocation size of allocSz bytes.

2) Next the stack pointer %rsp is allocSz -aligned by mask-
ing %rsp with mask=MASKS[idx].

3) Finally, pointer ptr is set to the now allocSz -aligned
stack pointer %rsp. The allocated object spans addresses
ptr ..ptr + size , where size is the original object size.

In LLVM, the stack pointer register %rsp can be indirectly
manipulated using the stack_save/stack_restore builtins.

Example 4 (Alignment): We continue Example 3. Suppose
that the stack pointer is %rsp = 0x7fff00001110 and given:

index (50) = clz (50) = 58 allocSz = SIZES[58] = 64

then aligned stack allocation proceeds as follows:

%rsp := 0x7fff00001110− 64 = 0x7fff000010d0

%rsp := %rsp & MASKS[58]

= 0x7fff000010d0 & (UINT64 MAX << 6)

= 0x7fff000010c0 = ptr

By design, the output ptr is allocSz -aligned, i.e.

0x7fff000010c0 mod 64 = 0

E. Stack Object Pointer Mirroring

The default stack allocator allocates objects from a non-fat
region (region #stack in Figure 1) meaning that stack objects

7

.
t
e
x
t

.
d
a
t
a

.
b
s
s

b
r
k

s
t
a
c
k

region #0 region #1 region #2 region #Mregion #3 region #stack

0x0 32GB 64GB 96GB 128GB

... ...

s
t
a
c
k

#
1

s
t
a
c
k

#
3

s
t
a
c
k

#
2

s
t
a
c
k

#
M

M×32GB

Fig. 3. Modified Program virtual address space layout illustration.

are non-fat by default. For the low-fat stack allocator, the
region condition (Section III-A1) requires that objects are al-
located from the low-fat region corresponding to the allocation
size. To achieve this, this section introduces the notion of stack
object pointer mirroring that maps non-fat stack object pointers
to an equivalent low-fat pointer to the corresponding region.
We show that pointer mirroring preserves the key properties
of the default stack allocator, namely: automatic deallocation,
a small allocator state and compatibility with existing code.

The basic idea of pointer mirroring is to split the main
program stack into several region-local virtual stacks, one
for each possible allocation size from (StkSizes). Here each
region-local virtual stack #I is wholly contained within the
low-fat region #I. When space for an object (of allocation
size allocSz) is allocated on the main program stack, the
corresponding space for an object (of size allocSz) will be
implicitly allocated on virtual stack #I. The pointer to the
original space on the main stack is thus “mirrored” by the
pointer to the space on virtual stack #I. The mirrored pointer
is low-fat since it satisfies the alignment and region conditions,
and will be afforded OOB-error protection in instrumented
code. The main stack (in region #stack) is not completely
replaced by the virtual stacks and is retained for several
reasons:

- Function prologue/epilogues;
- Register spills and other non-fat stack allocations that do

not need OOB-error protection; and
- Compatibility with non-instrumented code.

Essentially, each virtual stack #I is analogous to the main
stack, but is specialized for objects of the specific allocation
size corresponding to low-fat region #I. One problem is how
to maintain the virtual stack state analogous to the main stack
state, a.k.a. the stack pointer (%rsp). Explicitly maintaining
separate virtual stack pointers conflicts with our design goal
of keeping the overall low-fat stack allocator state small. For
example, a function return or longjmp would require restoring
all virtual stack pointers, rather than one (%rsp) in the default
case. To solve this problem we represent each virtual stack
pointer implicitly as a linear function of the main stack pointer
(%rsp), similar to parallel shadow stacks [8]. In the case of
function return and longjmp, restoring the main stack pointer
(%rsp) to an old value also implicitly restores all virtual stack
pointers.

Initially, we assume the naı̈ve approach where the main
stack and virtual stacks are distinct physical regions of mem-
ory. This is potentially wasteful: as the overall stack memory
usage is, in the worst case, multiplied by the total number of
virtual stacks. Later in Section VI we shall introduce a memory
aliasing optimization that maps all stacks to the same physical

memory—thereby reducing memory overheads.

1) Stack Memory Layout: To implement virtual stacks, the
program’s virtual address space layout of Figure 1 is modified
to that shown in Figure 3. The main difference is that each
region #I is now partitioned into disjoint stack and heap sub-
regions, as represented by the dashed lines bisecting each
low-fat region. Each virtual stack #I is wholly contained
within the stack sub-region #I. The exact partition between
the heap and stack sub-regions is left as a design choice. Our
implementation reserves 4GB for the stack sub-region6 and
28GB for the heap sub-region (for a 32GB total region size).
Each virtual stack #I is configured to satisfy the following key
properties:

1) Same size: The main/virtual stacks are the same size; and
2) Same offset: The base address of virtual stack #I relative

to region #I is equal to the base address of the main stack
relative to region #stack, thus giving the relationship:

basestack #I−base region #I = basestack−base region #stack

Here baseobject represents the base address of object .

The purpose of these properties is to establish the following
linear relationship between a pointer (ptr) to the main stack
and “mirrored pointers” (ptr#I) to each virtual stack #I:

ptr#I = ptr + (I − 4095)×REGION SIZE (MIRRORING)

Here the constant 4095 is region index of region #stack. The
virtual stack pointer #I for each I is defined to be the mirrored
main stack pointer (%rsp).

2) Implementation: Assuming the modified layout de-
scribed above, pointer mirroring is implemented using a pre-
computed OFFSETS lookup table analogous to the SIZES and
MASKS tables defined previously. The OFFSETS table contains
the pointer difference between the main stack and the virtual
stack corresponding to each allocation size. Pointer mirroring
can then be achieved by the addition of the appropriate entry
from the OFFSETS table to a main stack object pointer.

The OFFSETS table is indexed by the index (size) function,
and is defined as follows:

OFFSETS[i] = (I − 4095)×REGION SIZE

Here I is the region index corresponding to SIZES[i] and
constant 4095 is region index of region #stack.

A pointer (ptr) to a main stack allocated object is mirrored
to the appropriate virtual stack using the following schema:

6Enough to support multiple stacks for multi-threaded programs.

8

...
int64_t offset = OFFSETS[idx];
ptr = ptr + offset;

Note that since the region size (REGION_SIZE) and stack
allocation sizes (StkSizes) are both powers-of-two, pointer
mirroring will preserve the allocation size alignment of the
transformed pointer. The resulting mirrored pointer therefore
satisfies both the low-fat alignment and region conditions, and
thus will enjoy OOB-error protection in instrumented code.

Example 5 (Pointer Mirroring): We continue Example 4:

allocSz = 64 idx = 58 ptr = 0x7fff000010c0

The final step is to mirror (ptr) to the appropriate virtual stack.
Assuming the size configuration (Sizes) from Appendix A,
then allocSz = 64 corresponds to region #4, thus:

OFFSETS[58] = (4−4095)×REGION_SIZE = −140565689663488
ptr := ptr + OFFSETS[58]

= 0x7fff000010c0+ (−140565689663488)
= 0x27000010c0

The resulting mirrored pointer ptr = 0x27000010c0 satisfies
the region and alignment conditions of low-fat pointers:

• region condition: (0x27000010c0 / REGION_SIZE) = 4
• alignment condition: 0x27000010c0 mod 64 = 0

Object pointer mirroring is similar to shadow stacks [8],
[31], which also splits the main stack into distinct regions of
memory. The main difference is how security guarantees are
enforced: we rely on the low-fat pointer encoding and bounds
checking instrumentation, whereas shadow stacks mitigate
control flow attacks by physically separating memory. In the
case of pointer mirroring, it is not required that the memory be
physically separated, as will be explained further in Section VI.

F. Low-fat Stack Allocation

Finally, we combine allocation size over-approximation
(Section IV-C), allocation size alignment (Section IV-D) and
stack object pointer mirroring (Section IV-E) to derive the
complete low-fat stack allocation schema as shown in Fig-
ure 5. The low-fat stack allocator itself is implemented as
an LLVM compiler pass that replaces default stack allocation
(STACKALLOC)—as represented by the LLVM intermediate
representation alloca instruction—with an instantiation of
the pseudo-code shown in Figure 5. As discussed above,
the resulting pointer (ptr) satisfies both the alignment and
region conditions, and thus will enjoy OOB-error protection
in instrumented code.

Example 6 (Low-Fat Stack Allocaton): The complete low-
fat stack allocation sequence for Examples 3, 4 and 5 is shown
in Figure 4. The allocation sequence proceeds as follows:

(a) The initial state with %rsp=0x7fff00001110. The initial
virtual stack pointer #4 is implicitly the mirrored pointer:
%rsp+ (4− 4095)×REGION SIZE = 0x2700001110.

(b) The stack pointer %rsp is decremented by allocSz = 64
bytes (Example 3);

/* Compute allocation size (Section IV-C). */
size_t idx = index(size);
size_t allocSz = SIZES[idx];

/* Allocate aligned object (Section IV-D). */
%rsp = %rsp - allocSz;
uint64_t mask = MASKS[idx];
%rsp = %rsp & mask;
void *ptr = %rsp;

/* Mirror allocated pointer (Section IV-E). */
int64_t offset = OFFSETS[idx];
ptr = ptr + offset;

Fig. 5. The complete low-fat stack allocation schema.

(c) The stack pointer %rsp is aligned to an allocSz -boundary
(Example 4);

(d) The final state with %rsp=0x7fff000010c0;
(e) The final state of virtual stack #4, where (OBJECT) is

allocated at virtual stack pointer #4 (Example 5):
%rsp+ (4− 4095)×REGION SIZE = 0x27000010c0.

Low-fat stack deallocation is identical to that of the default
stack allocator, and is achieved by restoring the stack pointer
%rsp to its original value 0x7fff00001110. This implicitly
restores the virtual stack pointer #4 to its original value of
0x2700001110, thereby deallocating (OBJECT).

We shall now discuss compatibility issues and optimiza-
tions of the low-fat stack allocator.

V. COMPATIBILITY

One of the main advantages of low-fat pointers is that
they maintain very high compatibility with existing non-
instrumented binary code. This is because (a) low-fat pointers
are regular machine pointers, so the binary interface (ABI)
remains unchanged, and (b) there is no shadow memory that
needs to be maintained, which is especially problematic for
non-instrumented code. Although binary compatibility is a
security trade-off (non-instrumented code is not afforded OOB-
error protection), in practice it is not always possible to re-
compile and re-instrument everything, such as with closed-
source or system libraries. Solutions like [7] work on binaries,
but provide stack-only protections and generally introduce
overheads higher than the one reported in our experiments.
The lack of binary compatibility inhibits the adoption of a
solution in the real world [24]. It is therefore essential that the
low-fat stack allocator exhibits a high-level of compatibility
similar to that of the heap allocator.

In this section we examine compatibility issues concerning
the low-fat stack allocator, including compatibility with the
default allocator (still used by uninstrumented code), multi-
threading, and the compiled code.

A. Comparison with the Default Stack Allocator

1) Allocator State: Both the default and low-fat stack allo-
cators use the same allocator state, i.e., the stack pointer that is
stored in the %rsp machine register. The low-fat stack allocator
also maintains several virtual stacks. However, the virtual stack
pointers are derived from a linear function (mirroring) of the

9

(a) (b) (c) (d) (e)

0x7fff00001110

0x7fff000010d0

0x7fff000010c0 0x27000010c0

0x2700001110

main stack virtual stack #4

OBJECT

Fig. 4. Example low-fat stack allocation sequence. States (a), (b), (c) and (d) apply to the main stack, and (e) to virtual stack #4.

main stack pointer %rsp value, and thus do not need to be
represented/stored explicitly.

Since both the default and low-fat stack allocators use the
same allocation state, no special treatment is required when
transitioning to and from legacy (non-instrumented) code. The
legacy code may continue to allocate objects on the (main)
stack as normal. However, pointers to these objects will be
non-fat and not enjoy OOB-error protection.

2) Deallocation: Both default and low-fat stack deallo-
cation works by restoring the main stack pointer (%rsp) to
some previous value. In the case of the low-fat stack allocator,
this also implicitly restores the virtual stack pointers for
all virtual stacks, thereby deallocating any relevant low-fat
stack objects. This means that the low-fat stack allocator is
automatically compatible with all of the kinds of standard
stack deallocation, including stack frame clean-up on normal
function exit, abnormal function exit (such as longjmp and
C++ exceptions), and even direct stack pointer manipulation
(e.g., via inline assembly). Furthermore, C++ stack unwinding
(that automatically runs destructors for stack objects on the
event of an exception) is not affected by the low-fat stack
allocator.

3) Alternative Stacks and Multi-threading: A program may
use more than one stack—the most common case being multi-
threaded programs where a new stack is created for each
thread. The default stack allocator is compatible with any stack
provided the corresponding memory is accessible. However,
the low-fat stack allocator imposes the additional requirement
that (a) each stack be allocated from region #stack (to be
compatible with the OFFSETS table), and (b) be “mirrored”
to a set of virtual stacks as illustrated in Figure 3.

For common cases, such as multi-threading, our prototype
implementation intercepts relevant standard library function
calls, such as pthread_create, to create low-fat allocator
compatible stacks. This achieves a high degree of compatibility
with most programs. However, it does not guarantee full
compatibility with more esoteric programs that create custom
stacks using other methods, e.g., direct allocation of stack
memory and manipulation of the stack pointer (%rsp).

4) Speed: The default stack allocator is very fast, with
(de)allocation typically implemented in a few low-latency
instructions. The low-fat stack allocator, as represented by
the schema in Figure 5, is more complicated. In lieu of the
experimental results in Section VII, we first compare the

(a)
sub %rax, %rsp
and $-8, %rsp
mov %rsp, %rbx

(b)

lzcnt %rax, %rax
sub SIZES(,%rax,8), %rsp
and MASKS(,%rax,8), %rsp
mov %rsp, %rbx
add OFFSETS(,%rax,8), %rbx

(c)
sub $56, %rsp
mov %rsp, %rbx

(d)

sub $64, %rsp
and $-64, %rsp
mov %rsp, %rbx
add OFFSETS+464(%rip), %rbx

Fig. 6. Comparison of stack allocator compiled code, assuming %rax=size
(if applicable) and %rbx=ptr : (a) default (variable length) (b) low-fat (variable
length) (c) default (fixed length=50, rounded up to length=56 to preserve
alignment) (d) low-fat (fixed length=50, rounded up to length=64).

x86_64 compiled version7 of the low-fat stack allocator, as
shown in Figure 6(b), with that of the default stack allocator,
as shown in Figure 6(a). Here we assume that the input size
parameter is stored in the general purpose register %rax, and
the resulting allocated ptr is to be stored in register %rbx.
The default stack allocation (Figure 6(a)) consists of three
instructions:

- Decrementing size (%rax) bytes from the stack pointer
%rsp;

- Aligning the stack pointer to the default stack alignment
(here is assumed to be 8); and

- Saving the new stack pointer value into ptr (%rbx).

By comparison, low-fat stack allocation consists of five in-
structions, including:

- a leading zero count lzcnt instruction that implements
the index function introduced in Section IV-C; and

- table lookups for SIZES, MASKS and OFFSETS and the cor-
responding over-approximation/alignment/mirroring oper-
ations.

The insertion of extra instructions and memory reads intro-
duces some runtime overhead compared with the default stack

7Here we use AT&T style syntax for assembly code: op src dst .

10

allocator. However, the impact of the memory reads is partially
mitigated by the fact that the lookup tables are small (all three
fit into a single page) and are read-only, and thus are cache
friendly. The overall performance impact of the low-fat stack
allocator will be experimentally evaluated in Section VII.

VI. OPTIMIZATIONS

The low-fat stack allocator introduces both time and space
overheads compared with the default stack allocation scheme.
In this section we consider three optimizations, namely fixed-
sized objects, non-escaping pointers, and memory aliasing, that
help reduce the overhead of the low-fat stack allocator. Of
these optimizations, memory aliasing is particularly important
with respect to the overall feasibility of our approach.

A. Fixed-size Stack Objects

It is common for stack allocated objects to have a known
fixed size at compile time. We can exploit this to optimize low-
fat stack allocation by using constant propagation to simplify
the compiled code. This optimization can be described by the
following example:

Example 7 (Fixed-Size Stack Objects): Assuming the
fixed object size of size=50, the following values can be
evaluated at compile time:

idx = 58 allocSz = 64
mask = 0xffffffffffffffc0 = −64

Under these assumptions, the schema from Figure 5 can be
compiled into the more optimal code shown in Figure 6(d).
The optimized allocation has eliminated the lzcnt (clz)
index calculation and the SIZES/MASKS table lookups from
Figure 6(b). The resulting code uses two instructions over the
default allocator of Figure 6(c). Note that the OFFSETS table
lookup is not removed.8 This is because, unlike allocation sizes
and masks, offsets are too big to store as x86_64 immediate
values (constants are limited to 32-bit values under x86_64).

B. Non-Escaping Stack Object Pointers

A pointer to a stack object escapes if it can be passed
(directly or indirectly) to another function invocation. Stack
object pointers can be passed directly as function parameters
or indirectly by being stored in memory.

If a stack object pointer (1) does not escape, and (2) all
access to the object can be statically determined to be within
bounds, then the object can be allocated using the default stack
allocator. This eliminates all low-fat stack allocator overheads
for that object. Escape analysis (already provided by the
LLVM compiler infrastructure) can be used to determine if
pointers to stack objects escape or not.

C. Stack Memory Aliasing

In order to satisfy the low-fat region condition, objects are
allocated from the virtual stack corresponding to the allocation
size. Thus far, it has not been specified how the main and

8The operand (OFFSETS+464(%rip)) represents the OFFSETS[58] lookup
generated by the compiler, where 58× sizeof(ssize t) = 464.

main stackvirtual stack #3virtual stack #2virtal stack #1

...

Fig. 7. Low-fat stack (3 different object sizes).

virtual stack memory is arranged. The naı̈ve approach is to
keep each stack in separate regions of physical memory—a
similar approach to parallel shadow stacks [8].

The problem with the naı̈ve approach is that it can lead
to high memory overheads. In the worst-case, physical stack
memory usage will be multiplied by N+1, where N is
the number of virtual stacks. The overhead can be partially
mitigated by using NORESERVE memory—meaning that virtual
pages that are never touched (e.g. if the program does not
allocate stack objects of a particular size) will not consume
physical memory resources. Nevertheless the potential for
significant stack memory overheads remain.

We address this problem by using the memory aliasing
optimization, where each virtual stack is backed by the same
physical memory as the main stack. This optimization exploits
the virtual memory implementation of modern CPUs, such as
the x86_64, where a single page of physical memory can be
mapped multiple times to different pages of virtual memory
at different addresses. Each virtual addresses can then be
used to access and modify the underlying physical memory
equally. Where applicable, memory aliasing reduces memory
overheads—i.e., although logically multiple virtual pages exist,
in reality only a single page of physical memory is actually
consumed.

In the context of the low-fat stack allocator, memory alias-
ing takes advantage of the fact that allocated stack objects are
pairwise disjoint with respect to other objects from different
virtual stacks. That is, when an object is allocated on virtual
stack #I, the corresponding memory remains unallocated on
the main stack and all virtual stacks #J for J 6=I, as partly
illustrated by Figure 4. All stack allocated objects can therefore
be mapped to the same physical memory without collision.
This can be illustrated with a simple example:

Example 8 (Stack Memory Aliasing): Consider the simpli-
fied virtual stack layout as shown in Figure 7. Here we
assume there are three low-fat regions and virtual stacks #1,
#2, #3. Each stack object is allocated from the virtual stack
corresponding to the allocation size, with small objects from
virtual stack #1, medium from #2, and large from #3. All
objects are pairwise disjoint and can be projected back onto
the main program stack. The main and virtual stacks can use
memory aliasing to share the same physical memory without
objects overlapping.

Memory aliasing can be implemented using POSIX shared
memory objects9 and the Linux shm_open API. The basic idea

9Not to be confused with shared objects. See the shm_overview manpage.

11

is to create a shared memory object and map it multiple times,
once for each of the main and virtual stacks. This effectively
replaces N+1 stacks with a single physical stack.

Finally we note that allocation size over approximation and
allocation size alignment also introduce memory overheads
unrelated to memory aliasing. These overheads are unavoidable
but are less significant. We defer further discussion to the
experimental evaluation in Section VII.

1) Implementation Issues: The shm_open call unavoidably
creates a temporary name on the filesystem that can be used by
other programs to access the object. This name is immediately
deleted but a race condition remains. To solve this, our
implementation ensures that the object is opened exactly once
(i.e., by the program) using the Linux fcntl lease API.

If memory aliasing is used, care must be taken with
handling the fork family of system calls. The problem arises
from the Linux fork semantics concerning shared memory
mappings, such as the aliased stack. Ordinarily, the stack is
a private mapping, meaning that fork will create a local
copy of the stack for the child process that is backed by
different physical memory. In contrast, shared mappings are
directly inherited by the child. This means that the parent and
child will compete for the same physical stack memory, which
inevitably results in memory corruption. To solve this problem,
our implementation intercepts the fork system call and copies
the stack manually. Note that this problem does not exist for
operating systems that do not support fork-like operations,
such as Windows.

VII. EXPERIMENTS

In this section we evaluate the performance and effec-
tiveness of an implementation of the low-fat stack allocator.
Our implementation, called LOWFAT, extends the low-fat
heap allocator described in [10]; and is configured using the
parameters from Appendix A. The low-fat stack allocator
is implemented as an LLVM compiler infrastructure [18]
pass that replaces default stack allocation (as represented by
the LLVM intermediate representation alloca instruction)
according to the schema shown in Figure 5. The compiler pass
implements all of the optimizations described in Section VI.
The runtime component is implemented as a library that is
linked against the resulting executable.

All experiments were run on a x86_64 GNU/Linux system
with an Intel Xeon E5-2660 v3 CPU (clocked at 2.60GHz)
with 64GB of RAM. We use the clang-3.5 compiler for
both the instrumented and un-instrumented tests.

A. Performance

To measure the performance of the LOWFAT implemen-
tation we use the SPEC 2006 benchmark suite [23]. For
these experiments we focus on the combined performance
of the heap and stack OOB-error protection, as this is the
intended use case. The results are shown in Figure 8(a) for
timings and 8(b) for memory usage. We compare the LOWFAT
implementation with:

- Orig: The un-instrumented program that uses the default
heap (i.e., stdlib malloc) and stack allocators; and

- ASAN a.k.a. AddressSanitizer [22]: a popular and robust
programming tool for detecting memory bugs based on
poisoned red-zones.

For a fairer comparison we disable AddressSanitizer’s instru-
mentation for globals, alloc/free mismatch detection, and leak
detection. We choose to compare against AddressSanitizer for
several reasons, namely: prominence (actively used by large
projects such as Google Chrome [22] and Mozilla Firefox),
stability, accessibility (already “built-in” to clang [18]), and
works “out-of-the-box” (after a patch10 is applied) on the SPEC
2006 benchmark suite. The tested version of AddressSanitizer
does have one notable limitation in that it only instruments
fixed-sized stack objects. LOWFAT instruments both fixed and
variable-sized stack objects which may translate to a small
performance disadvantage in our tests.

Our LOWFAT implementation detects all 24 OOB-pointer
violations summarized in Section III-C. For the sake of perfor-
mance testing, we disable instrumentation for the correspond-
ing functions for both LOWFAT and AddressSanitizer. The only
known unintentional SPEC 2006 stack bounds overflow relates
to an off-by-one error in the h264ref benchmark. Under LOW-
FAT this overflow affects allocation padding only—and does
not affect other objects. Again for the sake of testing, this error
is patched for both LOWFAT and AddressSanitizer. Finally, out
of all the SPEC 2006 benchmarks, only perlbench uses the
fork system call. This is handled using the method described
in Section VI-C1.

1) Timings: The timings for the SPEC 2006 benchmarks
are shown in Figure 8(a). The original timings and the best
instrumented timings are highlighted in bold. Here (Total)
represents the sum of each column and (Avg. Ratio) the
average ratio per benchmark relative to the (Orig) baseline.
In addition to the (base) LOWFAT implementation, we also
test the following variants:

- +alias: Enables memory aliasing (Section VI-C);
- +pow2 : Restrict both heap and stack allocations to

power-of-two sizes for faster bounds checking (see [10]
Section 5.2); and

- +w .o.: Instrument memory write operations only.

Optimizations are cumulative left-to-right. Note that both the
fixed-object-size optimization (Section VI-A) and the no-
escape optimization (Section VI-B) are enabled by default for
all LOWFAT variants. The +w .o. variant reduces instrumen-
tation (no reads) and thus exchanges security for speed. The
rationale is that most control and data flow attacks require
an OOB write, so the +w .o. variant still provides sufficient
defense. That said, the +w .o. variant will not protect against
information leakage attacks, such as Heartbleed [12].

The base LOWFAT implementation exhibits a 62% (63%
avg. ratio) overhead compared with the un-instrumented bench-
marks (Orig). This is reduced to a 58% overhead when +alias
is enabled. The +alias variant benefits from better stack object
locality in physical memory; translating in to a ∼4% overall
reduction in overhead.

The +pow2 optimization restricts the size configuration
(Sizes) to be powers-of-two for both the heap and stack. This

10https://github.com/google/sanitizers/blob/master/address-sanitizer/spec/
spec2006-asan.patch

12

Orig LOWFAT ASAN
Bench. base base +alias +pow2 +w .o. base +w .o.

perlbench 310 494 485 464 393 1032 921
bzip2 479 829 799 793 589 866 633
gcc 288 585 580 541 497 656 571
mcf 244 296 308 299 252 401 276
gobmk 452 585 571 543 512 820 594
hmmer 423 1070 1070 987 538 819 473
sjeng 480 554 548 550 514 884 618
libquantum 321 364 347 361 331 392 353
h264ref 537 1070 1072 1003 611 1236 734
omnetpp 306 480 393 490 392 647 578
astar 393 642 621 592 433 636 449
xalancbmk 204 306 290 277 185 435 372
milc 529 718 659 674 477 616 504
namd 356 565 568 552 390 563 376
dealII 275 561 549 499 349 621 457
soplex 217 312 301 304 229 337 279
povray 142 299 297 277 172 408 277
lbm 341 408 402 401 339 361 339
sphinx3 482 870 853 804 693 903 549
Total 6779 162% 158% 154% 116% 186% 138%
Avg. Ratio 100% 163% 158% 154% 117% 192% 145%

(a) Timings (s)

Orig LOWFAT ASAN
Bench. base base +alias +pow2 base
perlbench 680 650 632 735 2461
bzip2 872 883 869 869 917
gcc 908 928 897 897 3030
mcf 1718 1724 1718 1718 1956
gobmk 31 60 34 34 449
hmmer 28 42 29 29 643
sjeng 180 213 182 182 206
libquantum 100 109 100 100 415
h264ref 67 91 69 74 427
omnetpp 175 189 171 223 943
astar 335 362 348 570 1138
xalancbmk 432 522 511 646 1817
milc 697 712 698 698 1025
namd 49 67 51 51 127
dealII 815 863 843 1047 2214
soplex 443 638 621 621 1001
povray 7 27 9 9 400
lbm 420 427 421 421 496
sphinx3 46 69 48 48 591
Total 8003 107% 103% 112% 253%
Avg. Ratio 100% 135% 106% 115% 797%

(b) Memory usage (MB)

Fig. 8. SPEC2006 benchmark timings and memory usage.

allows for faster bounds check instrumentation that uses bit-
masks in place of fixed-point division for calculating the base
address of objects. This optimization reduces the overhead
to 54% at the cost of higher memory usage (see below).
Finally, the +w .o variant significantly reduces the amount of
instrumentation leading to an overall 16% (avg. ratio 17%)
overhead. This is low enough to be used in production code
for some applications.

AddressSanitizer exhibits higher overheads, with 86% (avg.
ratio 92%) for base and 38% (avg. ratio 45%) for the +w .o.
variant. The LOWFAT +w .o. variant is faster in 16 out of
19 benchmarks with one benchmark (lbm) tied. We note that,
for some benchmarks, the overhead of AddressSanitizer is
particularly high, e.g., almost 3x slower for perlbench.

2) Memory Usage: One of the main advantages of low-
fat pointers is that there is no need to explicitly store bounds
meta information, meaning that memory overheads are low
compared with the un-instrumented code (Orig). That said,
the low-fat stack allocator introduces several new sources of
memory overheads, namely:

- Extra space for virtual stacks (assuming that the +alias
optimization is disabled);

- Allocation size over-approximation (Section IV-C);
- Allocation size alignment (Section IV-D).

The extra overheads are balanced by the fact that stack memory
tends to be small (Linux default is 8MB) and stack objects are
typically short-lived. In this section we experimentally evaluate
the memory overheads of the low-fat stack allocator, including
the overall program memory usage and the precise memory
usage for stack memory only.

The results for the overall memory usage are shown in
Figure 8(b). For these tests we measure the peak resident set
size (RSS), the same method used in [10]. The base LOWFAT
implementation introduces a 7% (35% avg. ratio) memory

overhead compared with the un-instrumented baseline. This is
further reduced to a 3% (6% avg. ratio) overhead when +alias
is enabled. Finally, we see that +pow2 trades speed for higher
memory overheads, with 12% (15% avg. ratio) overall.

In contrast to LOWFAT, AddressSanitizer exhibits a very
high 153% (avg. ratio 697%) memory overhead overall. This is
because AddressSanitizer uses poisoned red-zones which are
memory intensive.

In addition to the “big picture” results in Figure 8(b), we
also measured the precise stack memory usage overheads for
each benchmark. For this experiment, we initialize each page
of stack memory with a random nonce during program initial-
ization. Next we measure the number of pages that were altered
at program exit. Assuming that memory aliasing optimization
was disabled, it was determined that the stack memory usage
for the SPEC 2006 benchmarks is 5.20x over the (Orig)
baseline. The worst affected benchmark was xalancbmk, with
an 8.01x increase in stack memory usage. With the +alias
optimization enabled, the overall physical stack memory usage
is reduced to 1.95x, which is comparable with parallel shadow
stacks [8]. For many programs, the space used by the stack is
only a small fraction of the total memory usage. Therefore the
overall memory overhead for LOWFAT in Figure 8(b) remains
low.

B. Web Server

To test the performance for I/O bound applications, we
compiled the Apache HTTP server (∼275K lines of code)
using LOWFAT and compared it with an un-instrumented
version (Orig). For this test we transfer a 2GB file with the
daemon connected to the local host. Two types of tests were
performed: one where the file was cached in RAM, and the
other where the disk cache was purged. Each test was run for
a total of 50 times and results averaged.

13

Bench. Orig LOWFAT

httpd-2.4.23 (cached) 1.06 1.07
httpd-2.4.23 (purged) 24.0 24.4

Fig. 9. Apache HTTP server benchmark timings.

The results (in seconds) are shown in Figure 9. In both
cases, the overhead of LOWFAT was very low (<2%). In
applications such as Apache, which is not primarily CPU-
bound, we expect that the overheads of LOWFAT bounds
checking to be small.

C. Effectiveness

To test the effectiveness of the low-fat stack allocator we
use the Wilander [28] and RIPE [29] benchmarks in addition
to some recent CVEs. The results are shown in Figure 10.
Here, (sLOC) is the number of source lines of code, (#Test)
is the number of test cases, (Abort) is the number of allocation
bound overflows that were detected (causing LOWFAT to abort
execution), and (Pad) is the number of overflows into padding
introduced by allocation size over-approximation. The latter is
considered benign for the application of program hardening,
i.e., an overflow in padding cannot corrupt code pointers or
data values stored in other objects.

The Wilander benchmarks [28] consist of 12 stack-based
overflows, all of which are detected by LOWFAT.

The RIPE benchmarks consists of several test cases that
combine a bounds overflow error followed by a control flow
hijack attack. Some issues were encountered when testing the
RIPE benchmarks, namely:

1) RIPE requires 32-bit whereas LOWFAT requires 64-bit;
and

2) The RIPE attacks are fragile and break when ported.

To solve these issues we only port (to 64-bit) the RIPE tests
such that execution only up to the buffer overflow error is
preserved. The rationale is: if the memory error is detected then
any subsequent control flow hijack attack will be prevented.
The RIPE benchmarks contain 10 unique bounds errors: one
direct array overflow (homebrew), and 9 errors induced by
passing invalid parameters to stdlib functions such as sprintf,
sscanf, etc. For this experiment we recompile the relevant
glibc functions with LOWFAT instrumentation enabled.11 We
test all RIPE parameter combinations that (1) are stack object
overflows, (2) are not reported as “impossible” by the RIPE test
framework, and (3) are not sub-object overflows. This yields
a total of 70 tests, all of which are detected as OOB-errors by
LOWFAT (Abort).

Finally we test several recent (2016 at the time of writing)
CVEs relating to stack buffer overflows that are listed in
Figure 10. The purpose of these tests is to show that LOWFAT
is applicable to real world bugs in addition to artificial tests.
The CVEs originate from glibc (standard C library), pcre2
(Perl Compatible Regular Expressions) and php (a server-side
scripting language). As above, for the glibc test, we recompile
only the function(s) relevant to the error, and this is reflected in

11Currently it is not possible to recompile glibc in its entirety. This is
because glibc requires gcc whereas LOWFAT is implemented using clang.

Bench. sLOC #Test Abort Pad
Wilander [28] 0.4K 12 12 0
RIPE [29] + glibc 6.7K 70 70 0
CVE-2016-1234 (glibc-2.19) 1.4K 1 1 0
CVE-2016-3191 (pcre2-10.20) 73.6K 1 0 1
CVE-2016-6297 (php-7.0.3) 759.5K 1 0 1
CVE-2016-6289 (php-7.0.3) ′′ 1 1 0
CVE-2016-2554 (php-5.5.31) 781.6K 1 0 1

Fig. 10. Effectiveness against various benchmarks and CVEs.

the sLOC column from Figure 10. For all five CVEs tested, two
are detected (Abort) and three overflow into padding (Pad).

D. Comparison with Other Systems

Our system extends [10] with low-fat pointers for stack
objects in addition to the heap. Our 58% overhead result for
+alias corresponds to the 67% overhead result for +fdiv
from [10] Figure 4(a). Despite protecting both the heap and
stack our version is faster overall—the result of an improved
implementation with better optimization. For the +w .o. variant
we are slightly slower, with 17% overhead versus 13%. The
overall memory performance is similar.

Our results are also competitive with other bounds in-
strumentation systems. PAriCheck [30] and BaggyBounds [3]
report 49% and 60% overheads respectively for the SPEC
2000 benchmarks. Note that this paper uses the SPEC 2006
benchmarks so the results are not directly comparable. Further-
more, unlike LOWFAT, both PAriCheck and BaggyBounds do
not instrument field access, resulting in less bounds checking.
SoftBound [19] reports a similar 67% performance overhead
for SPEC 2000, but with a significantly higher 64% mem-
ory overhead. For SPEC 2006, CPI reports that they could
only compile four benchmarks with SoftBound and the time
overheads range between 60–249% [16]. This also highlights
the importance of compatibility issues. Alternatives to bounds
checking, such as shadow-stacks, CPI, CPS, SafeStack [8],
[16], tend to have lower performance overheads, ranging from
0.1%–10% depending on the solution. That said, none of these
solutions prevent memory errors. Rather, such solutions aim
to mitigate any subsequent control flow attack. The LOWFAT
+w .o. variant with a 17% overhead can protect against control
flow attacks in addition to other kinds of attacks, such as
data flow [6]. This, combined with high compatibility, makes
LOWFAT a competitive solution.

VIII. CONCLUSION

Object bounds errors are a common source of security
vulnerabilities and bounds check instrumentation with low-
fat pointers (with low overheads and high compatibility) is an
attractive solution. However, low-fat pointers require sufficient
control over object allocation, and as such, previous work was
limited to heap objects only. In this paper, we have shown
how to extended low-fat pointers to stack objects by using a
combination of techniques, including: fast allocation size over-
approximation, dynamic stack object alignment, stack object
pointer mirroring, and the memory aliasing optimization. We
show that the new low-fat stack allocator is compatible with
existing software and binary code. Our experiments show that
the overall performance and memory impact of stack object

14

protection is minimal over the previously published results [10]
for heap only. Furthermore, for protecting memory writes only,
the overhead drops to 17%, which is low enough for enabling
real-world deployments while still preventing many attacks.

With low-fat pointers extended to both heap and stack
objects, the remaining class yet to be covered is globals. In
principle, low-fat global objects could be realized by further
splitting each low-fat region to also include a global sub-
region, in addition to the heap and stack sub-regions. Global
objects are then placed in the appropriate sub-region (based on
allocation size) by the linker. Modifying the static and dynamic
linkers to be “low-fat aware” is left as future work.

REFERENCES

[1] “CVE-2016-1234, CVE-2016-3191, CVE-2016-6297, CVE-2016-
6289.”

[2] M. Abadi, M. Budiu, Z. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” in Computer and Communication Security. ACM, 2005.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy Bounds
Checking: An Efficient and Backwards-Compatible Defense Against
Out-of-Bounds Errors,” in USENIX Security Symposium. USENIX,
2009.

[4] T. Austin, S. Breach, and G. Sohi, “Efficient Detection of All Pointer
and Array Access Errors,” in Programming Language Design and
Implementation. ACM, 1994.

[5] M. Castro, M. Costa, and T. Harris, “Securing Software by Enforcing
Data-flow Integrity,” in USENIX Symposium on Operating Systems
Design and Implementation. USENIX, 2006.

[6] S. Chen, J. Xu, E. Sezer, P. Gauriar, and R. Iyer, “Non-control-
data Attacks are Realistic Threats,” in USENIX Security Symposium.
USENIX, 2005.

[7] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida,
“StackArmor: Comprehensive Protection From Stack-based Memory
Error Vulnerabilities for Binaries,” in Network and Distributed System
Security Symposium. The Internet Society, 2015.

[8] T. Dang, P. Maniatis, and D. Wagner, “The Performance Cost of Shadow
Stacks and Stack Canaries,” in ACM Symposium on Information,
Computer and Communications Security. ACM, 2015.

[9] B. Ding, Y. He, Y. Wu, A. Miller, and J. Criswell, “Baggy Bounds
with Accurate Checking,” in International Symposium on Software
Reliability Engineering Workshops. IEEE Computer Society, 2012.

[10] G. Duck and R. Yap, “Heap Bounds Protection with Low Fat Pointers,”
in Compiler Construction. ACM, 2016.

[11] F. Eigler, “Mudflap: Pointer Use Checking for C/C++,” in GCC Devel-
oper’s Summit, 2003.

[12] Heartbleed bug, http://heartbleed.com, 2016.

[13] H. Hu, S. Shinde, S. Adrian, Z. Chua, P. Saxena, and Z. Liang, “Data-
Oriented Programming: On the Expressiveness of Non-Control Data
Attacks,” in IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2016.

[14] Intel Corporation, “Intel 64 and IA-32 Architectures Software Devel-
opers Manual,” 2016.

[15] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A Safe Dialect of C,” in USENIX Annual Technical Confer-
ence. USENIX, 2002.

[16] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer Integrity,” in USENIX Symposium on Operating Systems
Design and Implementation. USENIX, 2014.

[17] A. Kwon, U. Dhawan, J. Smith, T. Knight, and A. DeHon, “Low-fat
Pointers: Compact Encoding and Efficient Gate-level Implementation
of Fat Pointers for Spatial Safety and Capability-based Security,” in
Computer and Communications Security. ACM, 2013.

[18] LLVM, http://llvm.org, 2016.
[19] S. Nagarakatte, Z. Santosh, M. Jianzhou, M. Milo, and S. Zdancewic,

“SoftBound: Highly Compatible and Complete Spatial Memory Safety
for C,” in Programming Language Design and Implementation. ACM,
2009.

[20] G. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer, “CCured:
Type-safe Retrofitting of Legacy Software,” Transactions on Program-
ming Languages and Systems, 2005.

[21] PaX, “Address Space Layout Randomization,” http://pax.grsecurity.net/
docs/aslr.txt.

[22] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A Fast Address Sanity Checker,” in USENIX Annual
Technical Conference. USENIX, 2012.

[23] SPEC, https://www.spec.org/cpu2006/, 2016.
[24] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War

in Memory,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2013.

[25] Tor, “The Tor Project,” https://www.torproject.org/.
[26] V. van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos, “Memory

Errors: The Past, the Present, and the Future,” in Research in Attacks,
Intrusions, and Defenses. Springer, 2012.

[27] A. Ven, “New Security Enhancements in Red Hat Enterprise Linux,”
http://www.redhat.com/f/pdf/rhel/WHP0006US Execshield.pdf.

[28] J. Wilander and M. Kamkar, “A Comparison of Publicly Available Tools
for Dynamic Buffer Overflow Prevention,” in Network and Distributed
System Security Symposium. The Internet Society, 2003.

[29] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime Intrusion Prevention Evaluator,” in Annual Computer
Security Applications Conference. ACM, 2011.

[30] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
W. Joosen, “PAriCheck: An Efficient Pointer Arithmetic Checker for
C Programs,” in Information, Computer and Communications Security.
ACM, 2010.

[31] Y. Younan, D. Pozza, F. Piessens, and W. Joosen, “Extended Protection
Against Stack Smashing Attacks Without Performance Loss,” in Annual
Computer Security Applications Conference. IEEE Computer Society,
2006.

APPENDIX

A. Parameters

This paper uses the following low-fat allocation parameters:

REGION SIZE = 32GB

M = |Sizes| = 61

Sizes =

〈16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 192, 224, 256,
272, 320, 384, 448, 512, 528, 640, 768, 896, 1024, 1040,
1280, 1536, 1792, 2048, 2064, 2560, 3072, 3584, 4096,
4112, 5120, 6144, 7168, 8192, 8208, 10240, 12288,
16KB , 32KB , 64KB , 128KB , 256KB , 512KB , 1MB ,
2MB , 4MB , 8MB , 16MB , 32MB , 64MB , 128MB ,
256MB , 512MB , 1GB , 2GB , 4GB , 8GB〉

StkSizes =

〈16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16KB , 32KB , 64KB , 128KB , 256KB , 512KB ,
1MB , 2MB , 4MB , 8MB , 16MB ,
32MB , 64MB , 128MB , 256MB , 512MB
1GB , 2GB , 4GB , 8GB〉

15

