
Dachshund: Digging for and Securing Against
(Non-)Blinded Constants in JIT Code

Giorgi Maisuradze
CISPA, Saarland University

Saarland Informatics Campus
giorgi.maisuradze@cispa.saarland

Michael Backes
CISPA, Saarland University

Saarland Informatics Campus
backes@cs.uni-saarland.de

Christian Rossow
CISPA, Saarland University

Saarland Informatics Campus
rossow@cispa.saarland

Abstract—Modern browsers such as Chrome and Edge deploy
constant blinding to remove attacker-controlled constants from
the JIT-compiled code. Without such a defense, attackers can
encode arbitrary shellcode in constants that get compiled to
executable code. In this paper, we review the security and
completeness of current constant blinding implementations. We
develop DACHSHUND, a fuzzing-driven framework to find user-
specified constants in JIT-compiled code. DACHSHUND reveals
several cases in which JIT compilers of modern browsers fail
to blind constants, ranging from constants passed as function
parameters to blinded constants that second-stage code optimizers
revert to a non-protected form. To tackle this problem, we
then propose a JavaScript rewriting mechanism that removes
all constants from JavaScript code. We prototype this cross-
browser methodology as part of a Web proxy and show that
it can successfully remove all constants from JavaScript code.

I. INTRODUCTION

Web browsers continue to be one of the main targets
for software exploitation, as demonstrated by the rise of
browser-targeting exploit kits [26] and the sheer number of
software vulnerabilities discovered in browsers. It is not just
the popularity and complexity of browsers that make them
an attractive target. Modern browsers also support various
scripting languages such as JavaScript and ActionScript. On
the one hand, scripting environments have become indis-
pensable to dynamically generate highly-interactive content
on the modern Web. On the other, scripting support also
allows adversaries to perform prolific attacks. Most notably,
in Just-in-Time Return-Oriented Programming (JIT-ROP), an
attacker uses the scripting environment to dynamically search
for gadgets in existing code (e.g., of the browser or imported
libraries) [49]. A viable defense against JIT-ROP attacks is
to compile programs in a way that they do not have usable
gadgets, e.g., using gadget-free compilation [41] or Control
Flow Integrity [55], [56], [14], [37], [55].

However, such protections are typically limited to static
code. Consequently, these defenses are ineffective against code
spraying attacks [6], in which an adversary leverages scripting

environments to dynamically generate gadgets (instead of
searching for them, like in JIT-ROP). For example, an attacker
can embed short gadgets in integer constants of JavaScript
code, which the JIT compiler translates to executable shell-
code. To protect against dynamically-injected attack code, JIT
engine developers and researchers started to rely on constant
blinding. The goal of constant blinding is to generate code
that does not contain user-specified constants. Technically, the
JIT compilation process does not emit any constant that may
be part of JavaScript statements (such as variable assignments
like a=0x9090). For example, a simple implementation could
remove the constants by XORing two non-predictable values
whose XOR result equals to the constant. This way, an adver-
sary can no longer embed shellcode in predictable constants
in the JIT-generated code. Consequently, constant blinding has
become an important foundation to protect against JIT spraying
attacks and is the basis for many other defenses [52], [29].
Most modern browsers such as Chrome or Microsoft Edge (and
its predecessor Internet Explorer) deploy constant blinding.

In this paper, we analyze the completeness of constant
blinding implementations in JIT engines of modern browsers.
We find that a correct and complete constant blinding imple-
mentation is not as trivial as it may sound. In fact, browsers
typically strive for high efficiency and have to intertwine
security defenses with multi-layer optimization schemes. Fur-
thermore, there are dozens of ways to embed constants in
JavaScript code, including global and local variable, function
parameters, array indexes, bit operations, return statements and
many more. As we will show, it is easy to miss some cases, and
it becomes a non-trivial challenge to understand the security-
related effects of the various optimization layers in JIT engines.

In this context, we propose DACHSHUND, a fuzzing-driven
framework that tests the completeness of constant blinding im-
plementations in browsers (or other software with JIT engines,
such as PDF readers). The core idea of DACHSHUND is to
feed a JIT compiler with JavaScript code snippets that include
constants and to trigger the JIT compilation phase(s). We
leverage a JavaScript code generator to dynamically generate
a high number of diverse code snippets that contain “magic”
constants. After JIT compilation, we search for these magic
values in the JIT-compiled code in order to test whether the
constants have survived blinding. A prototype implementation
of DACHSHUND for Chrome and Edge revealed many cases in
which the JIT engines of these modern browsers fail to blind
user-specific constants, undermining the security guarantees of
these implementations.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23224

Athanasakis et al. have already demonstrated that single-
byte or two-byte constants survive the blinding process, as
the constant blinding implementations simply do not blind
small constants for efficiency reasons [2]. However, we show
that the problem of incomplete constant blinding implemen-
tations is far more fundamental than JIT compilers skipping
over smaller constants. Even blinding all (including smaller)
constants would not help to remedy this situation. In fact, all of
the surviving constants that we discovered were 32 bits long,
giving an attacker full flexibility to embed four-byte gadgets
(e.g., any system call).

There are multiple ways to overcome these problems. One
approach would be to change the JIT engines of browsers
to remedy the situation. However, as we have demonstrated,
reaching a complete implementation of constant blinding has
proven to be rather difficult and requires modification to each
JIT engine separately. Alternatively, we propose to leverage a
Web proxy in order to rewrite the JavaScript code before it is
delivered to the browser. This way, we can protect any browser
behind the proxy without software modifications. Our core idea
is to rewrite constants such that they do not appear in the JIT-
generated code, regardless of the JIT engine and optimization
layer. To this end, we parse the abstract syntax tree (AST) of
HTML and JavaScript code, locate any JavaScript constants,
and replace them with semantically-equivalent representations
that are either not predictable by an attacker, or ideally are
moved out of the executable code sections. In addition, we
hook critical JavaScript functions (e.g., eval()) to remove
constants from dynamically-generated JavaScript code. While
this approach is clearly less efficient than browser-specific
implementations, the average overhead of 22% in JavaScript
performance benchmarks is barely noticeable in practice. In
addition, rewriting complex JavaScript libraries like jQuery is
relatively fast and takes a one-time effort of less than 60 ms.
The rewriting outcome can be cached by the client and proxy
to eliminate any rewriting overhead in the future, leading to a
viable defense scheme in practice.

With this paper, we provide the following contributions:

• We design DACHSHUND, a fuzzing-based framework to
search for constants that survive the constant blinding pro-
cess of JIT engines. DACHSHUND combines code fuzzing
techniques with memory carving to discover potentially
dangerous blinding leftovers.

• We provide a thorough overview of security deficiencies
of the constant blinding implementations in Chrome and
Edge, demonstrating that constant blinding by the JIT
engines in these browsers is inherently insecure.

• We propose a proxy-based JavaScript rewriting engine
that complements existing constant blinding implemen-
tations by removing constants from the JavaScript code
at an average overhead of 22%.

II. BACKGROUND

We first provide an overview of the history of code-reuse
attacks. We start with Return Oriented Programming (ROP),
which clearly demonstrates the general principle behind code-
reuse attacks. Next we show a special variant of ROP, called
JIT-ROP, which discovers gadgets on-the-fly and evades exist-
ing randomization schemes such as ASLR. Besides the attacks,
we also discuss potential defenses.

A. Return Oriented Programming (ROP)

Although ROP was not the first code-reuse attack, it got
popular after the wide deployment of Data Execution Preven-
tion (DEP). DEP is a defense technique against a generic stack
overflow vulnerability where an adversary writes and executes
her shellcode directly on the stack. DEP tackles this problem
by marking executable pages non-writable.

As a response to DEP, code-reuse attacks reuse existing
code portions of the program instead of injecting new ones.
For example, in ret-to-lib(c) [38] an adversary mounts an
attack by reusing functions from imported libraries such as
libc. This attack was generalized by Shacham [47] with ROP,
who proposed to use so-called gadgets (i.e., small sequences of
instructions ending with a return instruction) and chain them to
get arbitrary program execution. Return instructions are used
to chain multiple gadgets together by writing their addresses
on the stack. Later, Checkoway et al. [9] showed that one
can also use any control-flow-changing instruction (e.g., jmp,
call) to achieve the same result.

B. ASLR vs. JIT-ROP

Address Space Layout Randomization (ASLR) [50] is a
widely deployed defense technique against code-reuse attacks.
ASLR randomizes the base addresses of the program’s memory
segments, thus preventing the attacker from predicting the ad-
dresses of the gadgets. A remaining weaknesses of this coarse-
grained ASLR scheme is that it only randomizes the base
addresses of memory segments. Researchers thus proposed
fine-grained ASLR schemes that add randomness inside the
segment as well [33], [51], [27], [43]. For more details, we
refer the reader to Larsen’s survey [34].

However, Snow et al. proposed a JIT-ROP to overcome
ASLR [49]. JIT-ROP is a just-in-time code reuse scheme that
follows the assumption that an attacker can repeatedly read
arbitrary memory addresses, e.g., via a memory disclosure
vulnerability in a scripting environment such as JavaScript.
The attacker uses this vulnerability to follow code pointers
and collects as many code pages as possible. Next, the attacker
searches for desired gadgets (such as Load, Store, Jump) and
API function calls (such as LoadLibrary, GetProcAddress) in
these code pages. This allows carrying out a just-in-time search
for suitable ROP gadgets and thus defeats fine-grained code
randomization schemes.

C. JIT Spraying

While JIT-ROP’s idea was to search for existing code, it
is not guaranteed that the required gadgets actually exist. In
fact, Control Flow Integrity schemes may render any gadgets
unusable [55], [56], [14], [37], [55], or programs might have
been generated by compilers creating gadget-free code [41].
In such a setting, JIT spraying can be used to inject attacker-
controlled code. JIT-compiled languages, such as ActionScript
(Flash) or JavaScript, have become popular in everyday pro-
grams such as browsers. Being able to control the input to
the compiler (i.e., JavaScript code), an attacker indirectly
controls the compilation output. JIT spraying, proposed by
Blazakis [6], uses this property to evade DEP or ASLR.
By repeatedly injecting large amounts of code via attacker-
controlled JavaScript objects, the attacker allocates (“sprays”)

2

many executable pages with shellcode. After spraying, the
attacker then jumps to an address and hopes that she hits any
of the sprayed code pages.

An advanced form of JIT spraying, shown by Athanasakis
et al. [2], combines JIT spraying and JIT-ROP. Similar to
JIT spraying, the authors suggest to craft special JavaScript
statements that compile into an attacker-controlled sequence of
instructions. For example, JavaScript variable assignments with
immediate values (e.g., var v=0x90909090) will be com-
piled into a sequence of assembly instructions containing the
instruction that encodes the attacker-supplied immediate (e.g.,
mov eax,0x90909090). Assuming an arbitrary memory read
vulnerability, an adversary does not even have to spray many
code pages, nor search for existing code (like in JIT-ROP).
Instead, she can emit arbitrary gadgets just by controlling
constants in JavaScript code.

D. Constant Blinding

To counter JIT spraying, most browsers have deployed
constant blinding. This defense technique changes the emitted
immediate value by XORing it with a randomly-generated
key. For example, instead of compiling the aforementioned
JavaScript code into mov eax,0x90909090, constant blind-
ing will convert it to the following sequence of instructions:

mov eax, (RAND_KEY⊕0x90909090)
xor eax, RAND_KEY

The constant RAND_KEY is a randomly generated key, and
(RAND_KEY⊕0x90909090) is a single integer generated at
compile time. Constant blinding thus protects all immediate
values with constant-specific keys, and makes the process of
JIT spraying highly non-predictable.

A perfect implementation of constant blinding would blind
all immediate values in JavaScript code with per-constant keys.
In practice (e.g., in MSIE and Chrome), due to performance
reasons, only constants larger than two bytes (> 216) are
blinded. Although such blinding might seem effective against
code spraying, Athanasakis et al. demonstrate that two-byte
gadgets are sufficient to mount an attack if they are followed by
aligned return instructions (i.e., in the epilogue of the function
containing the gadget).

III. ASSUMPTIONS

Having discussed the foundation of existing attacks and
defenses, we now introduce the threat model and our assump-
tions on defense techniques that will be considered throughout
the paper. These assumptions are in accordance with the
environment of other proposed attack techniques [2], [49].

A. Defense Techniques

We first list the defense techniques that we assume to be
deployed in the operating system or the target application:

Non Writable Code: We assume that Data Execution Pre-
vention (DEP) is in place, ensuring that the code pages are
not writable and thus defending against direct shellcode
injections.

Code Randomization: We assume that ASLR is enabled in
the host operating system, which randomizes the base
addresses of the executable and other memory segments
every time they are loaded into the memory. Additionally,
we assume that fine-grained ASLR is applied to already
randomized (by ASLR) memory pages, further compli-
cating the process to guess the address of a gadget.

Gadget-Free Code: We assume that static code (i.e., code
that is not JIT-compiled) does not contain usable gadgets.
For example, this would be the case for gadget-free com-
pilation [41]. Note that JIT-ROP attacks are not possible
in such a setting, given the lack of gadgets.

JIT Defenses: We assume any defense techniques against JIT
spraying that is already present in modern browsers, such
as constant blinding (Chrome, Edge) or NOP insertion
(Edge). As the main goal of our technique is to emit
arbitrary gadgets in the executable code, we assume that
sandboxing in the browsers can either be bypassed (e.g.,
via a vulnerability) or is disabled. For the same reason,
we do not consider CFI defenses to be applied to JIT-
compiled code.

B. Threat Model

With these defenses in mind, we now introduce the at-
tacker model. Note that the assumptions listed below are in
accordance with existing attack techniques [2], [49].

Arbitrary Memory Read: We assume that an adversary is
able to read arbitrary readable memory of the program.
This could be done, for example, by repeatedly exploiting
a memory disclosure vulnerability.

Hijacking Control Flow: We assume that the target program
has a control flow vulnerability that the attacker can
exploit to divert the control flow to an arbitrary memory
location.

JIT Compilation: We assume that the target program incor-
porates a scripting environment. More specifically, we
require that the program has a JavaScript JIT compiler
that accepts arbitrary (valid) JavaScript code as input and
compiles it to native code. This requirement is met by
all modern Web browsers. In principle, our attack is not
limited to browsers, as JavaScript is also actively used in
other applications (e.g., PDF readers).

IV. DACHSHUND: FINDING CONSTANTS

We now take a closer look at the completeness of the
defense technique implementations in JIT compilers of mod-
ern browsers. More specifically, we will search for ways,
in which the attacker can emit arbitrary gadgets into the
executable pages of the browser’s memory. To this end, we
present DACHSHUND, a fuzzing-based framework that reveals
attacker-controllable constants in JIT-compiled code. The basic
design of DACHSHUND is shown in Figure 1. The framework
consists of a fuzzing component (Section IV-A) that creates
diverse JavaScript code snippets to feed them to a JIT com-
piler for further processing. After JIT compilation, the JIT
inspector (Section IV-B) then searches for constants induced
by the fuzzer in the executable code pages. The interaction
between these two components is steered by the DACHSHUND
controller (Section IV-C). In the following, we describe this
interplay in more detail.

3

Edge
Fuzzer JIT Inspector

Chrome

Controller

eval("

var a=0^0x9090;

");

...

xor rax,rax

mov rax,0x9090

...

JIT
var a=0^

0x9090;

FOUND

0x9090 at

0x04072710

C=0x9090 C=0x9090

Optim.

Fig. 1. Overview of the Dachshund architecture and its three components.

A. Fuzzing Component

In the first component of DACHSHUND, we aim to trig-
ger attacker-controllable constants in JIT compiled code. We
follow a similar goal to Athanasakis et al. [2] and leverage im-
mediate values in JavaScript statements to emit gadgets in the
JIT-compiled code. In their paper, the authors exploit the fact
that browsers only blind large constants (e.g., Chrome and IE
blind values larger than two bytes). We do not limit ourselves
to two-byte gadgets and instead challenge the completeness of
the constant blinding implementation. That is, we aim to find
edge cases in which constant blinding is not applied, or cases
where this blinding is reverted by various browser components
(such as optimizers).

To search for these edge cases, we leverage code fuzzing.
Code fuzzing has a long history as a dynamic testing approach
to identify software vulnerabilities [45], [28] (including in
browsers). Instead of searching for bugs, we leverage code
fuzzing to generate a large diversity of JavaScript code snippets
to trigger cases in which constants might not be blinded.
Our main idea is to encode “magic” constants in the fuzzed
JavaScript code that DACHSHUND’s JIT inspector (cf. Sec-
tion IV-B) can identify.

We implemented our fuzzer based on jsfunfuzz [45], a
JavaScript fuzzer that is heavily used in testing the Firefox’s
JavaScript engine. Technically, jsfunfuzz generates random
JavaScript function bodies (including invalid ones) to test
JavaScript engines for vulnerabilities, also covering newly
introduced features such as in ECMAScript 6. We extended
jsfunfuzz to adjust it to our needs: (i) we modified the code
generator to reduce the likelihood that code generates syntax
errors, and (ii) we increased the chance of large integer
immediate values appearing in the generated code. The reason
for modification (ii) is straightforward, as we want to test if
allegedly-blinded immediate values (i.e., larger ones in the
range [217, 232)) are emitted by the compiler. Thus, we want
to maximize their incidence in the generated JavaScript code.
Modification (i) is required to reach the compilation stage,
which will not be the case if the generated JavaScript code
contains a syntax error. This again highlights the difference
between our motivation for code fuzzing and the typical
motivation for triggering software vulnerabilities.

We feed the JavaScript code snippets that are generated
by the fuzzing component to two popular browsers: Microsoft
Edge and Google Chrome (and their corresponding JavaScript
engines: Chakra and V8, respectively). We exclude Mozilla
Firefox from our experiments, as its JavaScript engine does
not implement constant blinding.

B. JIT Inspector Component

The JIT inspector component relates integer constants in
randomly generated JavaScript code to the sequence of bytes
representing the same number in the JIT-compiled machine
code. Technically, we attach to the renderer process of the
browser and inspect its code pages created at runtime. Once
the magic value encoded by the fuzzing component is found,
the JIT inspector has likely found a constant that has survived
the blinding phase.

However, to fully understand when to inspect the code
pages, it is important to note that JavaScript engines implement
multiple levels of compilation. Typically, the first-level JIT
compiler is fast but produces low-performance code, which
is then optimized by a second-level JIT compiler if it has
been executed frequently. We refer to the first level compiler
as a baseline compiler and the second level as an optimizing
compiler. In our experiments, we consider the code generated
by both compilers, as the attacker has full control of triggering
either of the two compilers by carefully choosing how often
she executes a piece of code.

A distinction between Chrome and Edge has to be made
when the compilers kick in. Edge has an interpreter that
interprets the JavaScript code until it becomes warm (i.e., when
it is executed around 50 times). Only after that, a JavaScript
function is compiled by the baseline compiler. In contrast,
Chrome skips the interpreting step and directly compiles the
JavaScript function upon first execution. Consequently, to
trigger a baseline compilation of a JavaScript function, one has
to call the function once for Chrome and 50 times for Edge—
again, a parameter that is under full control of the attacker.
In both browsers, a baseline-compiled JavaScript function is
recompiled by the optimizing compiler after it becomes hot
(i.e., after it is executed over 1000 times). The optimizing
compiler leverages code analysis techniques to produce highly

4

efficient code (e.g., by incorporating inferred type information
or function inlining). To trigger an optimization of a JavaScript
function, one has to call it more than 1000 times. However,
given the runtime of short JavaScript functions, this is not a
practical burden to attackers, i.e., it can be optimized in a
matter of milliseconds.

Putting all this together, the basic algorithm of the JIT
inspector is the following:

(J1) The JIT inspector receives a set of integers (the magic
values) as an input that has to be found in the JIT-
compiled code.

(J2) It attaches itself to the required renderer process of the
tested browser (i.e., the correct browser tab containing the
tested JavaScript code).

(J3) By looking at the permissions of the memory pages, the
JIT inspector retrieves a set of pages that were generated
by the JIT compiler. It does so by scanning for pages with
RWX protection in Chrome and RX protection in Edge.

(J4) Functions in these code pages are separated by 0x00
bytes in Chrome and 0xcc (int3) bytes in Edge. There-
fore, starting from a page boundary, the JIT inspector can
easily identify all functions, and extracts the correspond-
ing machine code.

(J5) As a final step, the JIT inspector searches for the input
integers (J1) in the machine code. In case of a match, the
JIT inspector returns the disassembly of the function that
contains the constant(s).

Note that in the last step (J5), where we search for the
integer values in the machine code, we may encounter false
positives. That is, machine code may accidentally contain the
value that we searched for, which was however not a conse-
quence of the JavaScript code. We can deal with false positives
in two ways: (i) We can manually inspect the disassembled
output of the machine code to verify that it indeed corresponds
to a JavaScript statement, or (ii) we can reuse the same
JavaScript function with a different set of immediate values,
and check if we get the match again. For the sake of simplicity,
we used the first approach and manually inspected all constants
found by DACHSHUND, while the latter solution is a fully-
automated way to exclude any chance of false positives.

C. Controller Component

As a third and last component, we add a controller that
steers the interplay between the fuzzer and inspector compo-
nents. The goal of the controller is to steer synchronization
between fuzzer and inspector. The controller does so in the
following repeating steps:

(CC1) The controller instruments the fuzzing component to
generate a textual representation of a new JavaScript
function (jsfunStr).

(CC2) Using eval, the controller generates a JavaScript func-
tion from jsfunStr (jsfun=eval(jsfunStr)).

(CC3) If eval fails (i.e., jsfunStr has a syntax error), return
to step (CC1). Otherwise, the controller compiles jsfun
by calling it either once (Chrome) or fifty times (Edge),
triggering the respective baseline compilers.

(CC4) The controller then triggers the JIT inspector to find
constants that survived blinding. It passes all constants
that are in the JavaScript code generated in (CC1) to
the JIT inspector. If the JIT inspector returns positive
matches, these are logged accordingly.

(CC5) The controller then triggers the optimization compiler
on jsfun by calling the function 2000 times and repeats
step (CC4) on the optimized code.

D. Experimental Results

After implementing DACHSHUND for Edge and Chrome,
we experimented to test the constant blinding efficacy of these
two browsers. We ran DACHSHUND in a VirtualBox virtual
machine, running Windows 10 on an Intel i5-4690 CPU having
3.50 GHz and 8 GB RAM. We ran each experiment for two
hours per browser. In this time, DACHSHUND detected 124
constants in Chrome and 58 in Edge. Some of these results
contained similar JavaScript statements involving emitted con-
stants; therefore, we manually filtered them to get unique cases
only, which resulted in 22 different cases in Chrome and 21
in Edge. We manually verified these cases and in all instances
found a true positive, i.e., we successfully found a non-blinded
constant. In Chrome, constants were only emitted by the
optimizing compiler, while in Edge constants were found in
both baseline and optimizing stages. The summarized outcome
of the experiments is that many JavaScript constants are
directly emitted into machine code—despite constant blinding.
In the following, we will categorize these cases into classes of
constants that bypassed the blinding process.

Experiment results from both of the browsers showed that
a major source of constants were arguments to Math functions.
Math is a built-in JavaScript object, containing basic mathe-
matical functions and constants. Immediate values passed as
an argument to Math functions (like Math.round(0x1234))
end up in the JIT-compiled code. Manual verification showed
that the optimizing compiler of Chrome also emits constants
when calling any other functions, such as built-in functions
of JavaScript (e.g., Array.push(...)) or even user-defined
ones. In assembly, these constants are emitted when argument
registers are set or when arguments are pushed on the stack.
Consequently, calling a function with more parameters (e.g.,
Math.max(X, Y)) or calling them multiple times emits more
constants.

In Edge, however, the situation is different. Manual veri-
fication showed that all the emitted constants (not only from
function calling) are coming from the same assembly instruc-
tion, namely storing the constant into a register. Moreover,
this instruction is always located at the beginning of the
function, after the prologue, and not where the actual statement
(involving the constant) is compiled. This is likely caused by a
caching mechanism of Edge, which stores an immediate value
in an unused register to use it later in a function.

For example, consider the following JavaScript code:

function jsfun() {
return Math.trunc(0x12345678);

}

5

Chakra, Edge’s JIT engine, will compile this statement into
the following sequence of assembly instructions:

... ; prologue
mov rsi,0x1000012345678 ; Emitted constant
... ; Other function code
mov r9, rsi ; Setting Math.trunc parameter
... ; Setting other parameters
call r12 ; Call Math.trunc
... ; Other code + epilogue

As it can be seen, the constant 0x12345678 is emitted as
part of a 64-bit constant. Note that Edge uses 48-bit values for
constants. Thus, the least significant bit of the first two bytes
denotes the tag bit and indicates type of the encoded value,
that is an integer constant in our example. The instruction
mov rsi,XXX is the integer constant caching behavior of
Edge, which we mentioned earlier. Interestingly, Edge uses
the cached integer value not only when the constant value
itself is used, but also when other (similar) integers are used.
For example, to set an integer constant 0x12340000 in an rax
register, Edge utilizes the cached value and emits the following
code:

lea rax,[rsi-0x5678] ;set rax to 0x12340000

The difference between the cached and target value is
encoded in lea. If needed, this can be further exercised by
an attacker to emit more than one constant per function.

Summing up, Edge emits constants in both phases of
compilation (baseline and optimizing), but emits only one
constant per function, located at the beginning of the compiled
function. This does not limit the attacker, as she is able to
compile many small functions to emit multiple gadgets. In
contrast, Chrome’s JavaScript optimizer emits integer constants
as part of the compiled statement involving the constant, and
thus can be used multiple times to emit many constants in the
same function

In general, DACHSHUND found many more ways
to embed integers that survive blinding. Other non-
blinded JavaScript statements include: ternary operators
(c?0x12345678:0x9abcdef), return statements (return
0x12345678), cases of a switch statement (case
0x12345678:), a bit-wise operations (i=jˆ0x12345678),
writing an integer to a global variable (glob=0x12345678), or
to an array element (arr[0]=0x12345678). Figure 2 shows
the aforementioned gadget emitting statements in Chrome
and their corresponding x86 code after compilation. This
demonstrates that popular constant blinding implementations
are far from complete, as many typical code constructs are not
touched by the compiler—not even the textbook JIT spraying
example of variable assignments.

E. Proof-of-Concept Gadget Generation

As a final step of our evaluation, we leverage the
previously-observed shortcomings in constant blinding imple-
mentations in order to create JavaScript functions that emit
meaningful gadgets into the executable memory.

m = i ? 0x12345678 :

0x23456789

0 test rax,rax

1 je 4

2 mov ebx,23456789h

3 jmp 5

4 mov ebx,12345678h

switch(j){
case 0x23232323: m++;

}

0 mov rdx,[rbp+20h]

1 cmp edx,23232323h

2 jne XXX

0x34343434[j] 0 mov rdx,3434343400000000h

1 ;set other parameters

2 call GetProperty

m = j ˆ 0x45454545 0 mov rax,[rbp+20h]

1 xor eax,45454545h

globvar = 0x56565656 0 mov rax,1AF729D6001h

1 mov r10,5656565600000000h

2 mov [rax+0Fh],r10

globarr[i] = 0x67676767 0 mov [rdx+XXX],67676767h

return 0x12121212 0 mov rax,1212121200000000h

Fig. 2. Gadget emitting JavaScript statements in Chrome and their corre-
sponding disassembly after rewriting.

For demonstration purposes, we inject the same set of
gadgets that was used by Athanasakis et al. [2] to set the
argument registers for the VirtualProtect function:

pop r8, ret ; 4158 c3
pop r9, ret ; 4159 c3
pop rcx, ret ; 59 c3
pop rdx, ret ; 5a c3
pop rax, ret ; 58 c3

1) Chrome: In Chrome, we created the following single
JavaScript function containing the immediate constants that
correspond to the required gadgets:

function chromeGadgets() {
globar[0] = 0xc35841;
globar[1] = 0xc35941;
globar[2] =-0x3ca7a5a7;

}

As we have seen, writing an immediate constant to an array
element emits it to the JIT code after compilation. Therefore,
in chromeGadgets, we write the required constants into
globar, which is a global array declared outside the function.
Note that the order of the bytes are swapped in integer con-
stants because of the little-endian format of the underlying x86
machine. Furthermore, to also use the most significant bit in
the last gadget, we use a negative number -0x3ca7a5a7 that
will be represented in binary as 0xc3585a59. After executing
this function multiple times, i.e., triggering the optization,
the optimizing compiler of Chrome generates the following
sequence of instructions:

mov [rbx+0x1B], 0x00C35841 ; c7431b4158c300
mov [rbx+0x23], 0x00C35941 ; c743234159c300
mov [rbx+0x2B], 0xC3585A59 ; c7432b595a58c3

6

2) Edge: In Edge, given constant caching, we had to create
three separate functions to generate the required set of gadgets
(note that this is not a limitation as we are not constrained by
the maximum number of created functions):

function r8(){ Math.trunc(0xc35841); }
function r9(){ Math.trunc(0xc35941); }
function racdx(){
Math.trunc(-0x3CA7A5A7);

}

Triggering the compilation of each of these functions, i.e.,
calling them 50 times, resulted the required gadgets at the
beginning of the corresponding functions. The following is the
disassembly of the instructions emitting the gadgets:

mov rsi,0x1000000C35841; 48be4158c30000000100
mov rsi,0x1000000C35941; 48be4159c30000000100
mov rsi,0x10000C3585A59; 48be595a58c300000100

V. DEFENDING AGAINST CONSTANTS

DACHSHUND has revealed that major browsers are suscep-
tible to emitting attacker-controlled four-byte values into exe-
cutable code. Even though Chrome and Edge deploy constant
blinding to defend against gadget emission, their implemen-
tation is still not complete. While it was already known that
constant blinding implementations emit two-byte gadgets [2],
our automated DACHSHUND framework discovered that even
four-byte integer constants are emitted in certain scenarios.

There are several options to solve the aforementioned
problems. The naı̈ve and likely the most efficient solution
would be to modify the JavaScript engines in the browsers to
incorporate constant blinding in all missing cases (e.g., inlining
integer constants in Chrome’s optimizing compiler or preload-
ing registers in Edge). This would remove the problem of
arbitrary four-byte gadget generation, presumably without too
much overhead. However, to also get rid of two-byte gadgets,
constant blinding schemes in the browsers must be extended
to cover integer constants of all sizes, significantly degrading
the performance [2]. In addition, changing the JIT compiler is
not always possible, especially in closed-source browsers; at
the very least, it requires compiler-specific engineering effort
to cover all browsers.

Alternatively, we propose to randomize the JavaScript code
before the code is delivered to the browser. As DACHSHUND
identified, the main source of gadgets in JIT-compiled code
is inlined or cached integer constants. Consequently, the main
idea of our defense is to remove these constants by rewriting
the JavaScript code. We prototype our technique as part of
a Web proxy that mediates Web traffic between clients and
servers. Once implemented, our solution protects any client
behind the Web proxy. One could also implement the same
approach as a browser extension to target specific browsers
separately. Browser-aware implementation can be optimized
to only rewrite the parts of the JavaScript that are attacker-
controllable in the specific browser, thus reducing the per-
formance overhead caused by the rewriting. However, as our
main goal was to prove the efficacy (and not efficiency) of a
solution based on JavaScript rewriting, we opted for a proxy-
based rewriting that is agnostic to the specific browsers.

The possible downside of a proxy-based solution is that
we rely on all clients in a network to use a Web proxy for
browsing. This also means that the proxy has to intermediate
HTTPS traffic and thus provides custom certificates for HTTPS
communication between the browser and the proxy. While
this might sound cumbersome, most corporate proxy vendors
offer such capability. HTTPS traffic inspection is de facto
standard in many organizations that leverage next-generation
firewalls, such as Baracuda Networks [4], Forcepoint [21],
Palo Alto Networks [42], MS Forefront [22], Blue Coat [7],
Fortigate [23], Zscaler [57]. We will discuss this in more detail
in Section VI. Note, however, that the design choice of where
to deploy JavaScript-based rewriting can be changed depending
on the needs.

A. Basic Idea

The core of our idea is to rewrite JavaScript code into
semantically equivalent code that does not contain any integer
constants. There are several alternatives for how integer con-
stants can be replaced. A simple example of such replacement
would be to split an integer constant into parts (similar to
constant blinding), changing the constant X into Y◦Z, where
◦ is any JavaScript operation such that Y◦Z=X. However,
as we modify the JavaScript code, this operation would be
easily folded by the compiler and X would still be emitted.
Another solution is to generate a new Number object every
time a constant is used, e.g., via parseInt, which takes a
string representation of a number as an input and outputs
its corresponding Number object. This replacement would
transform a constant X into a statement: parseInt(’X’).
A drawback of this method is that it executes a parseInt
function call every time an integer constant is used, thus greatly
decreasing performance. In the following, we show how this
can be optimized.

In our prototype, we hide integer constants by replacing
them with global objects. For example, a JavaScript statement
var i=1234 will be replaced by the following pair of state-
ments:

window.__c1234=parseInt(’1’);
window.__c1234=parseInt(’1234’);

These statements will be prepended at the beginning of the
script. During the initialization of these global variables, we
use parseInt such that the assignment does not emit the
constant. In the case of a call to parseInt, the argument is
a string and therefore only the reference to that string (and
not its value) will be emitted to the executable compiled code.
Additionally, as it is seen in the example, we initialize the
same object twice: first with some random number, and second
with the original value. This is necessary to trick the optimizer
into thinking that the value of the global object is changing,
otherwise the global integer will be inlined into the compiled
code. This modification shows the intuition behind our defense:
First, by replacing integer constants with global objects, we
get rid of integer literals from JavaScript code, which is the
main reason of gadget-emission in Edge; And second, we mark
these global objects as volatile (i.e., they can be modified by
other parties at any point) by setting their values multiple
times. This will force the optimizer to resolve their values
at runtime instead of inlining them into the code, successfully

7

removing the sources of gadgets in Chrome. We have manually
verified that compilers replace neither window.__c1234 nor
parseInt(’1234’) with the integer 1234 in none of the
browsers.

However, removing constants from JavaScript code is a
little more complex than that. Because JavaScript has implicit
conversion between types, which can also be inlined, e.g., by
the optimizing compiler of Chrome. Therefore, we have to
additionally protect against possible implicit type conversions.
For example, a JavaScript statement var i=’1234’&5678
will also emit 1234 as an integer constant. We handle these
cases by finding all strings that can be implicitly converted
to integers and call the toString method on them (var
i=(’1234’).toString()&5678). This returns a new string
object every time it is called and therefore is not optimized.
Other string methods (such as substr) can also be used as
an alternative. There are other possibilities in JavaScript of
implicit type conversions to integers, e.g., from Boolean to
integer (true→1, false→0), from Array to integer ([]→0). To
trigger the conversion, these objects must be used as a part of
arithmetic operations, which will then try to convert them to
the most reasonable integers. We will discuss these cases in
Section VI.

To eradicate all integer constants, we rewrite all possible
places where JavaScript code can be written. We distinguish
between the following five cases:

(C1) An external JavaScript file referenced using a src at-
tribute of an HTML script tag, such as:
<script src="jsfile.js"></script>

(C2) JavaScript inside an HTML script tag, such as:
<script>/*JS code*/</script>

(C3) Inline event handlers, defined inside HTML tags, e.g.:

(C4) Dynamically created JavaScript code, e.g., by using one
of the following methods:
eval("/*JS code*/")
Function("/*JS code*/")
setTimeout("/*JS code*/", 0)
setInterval("/*JS code*/", 0)

(C5) Dynamically created HTML nodes, which an attacker
might use to inject new JavaScript code, such as:
head.appendChild(/*DOM node*/)
el.innerHTML="<script>/*JS code*/</script>"

In the following, we will describe the implementation
details of how we actually handled these cases.

B. Implementation Details

We implemented our prototype in Node.js [39], using the
http-mitm-proxy package [30] as a basis for an HTTP proxy. To
identify all constants in JavaScript code, we use Esprima [19],
a JavaScript parser with full support for ECMAScript 6. We
leverage the abstract syntax tree (AST) to identify integer
constants or string constants representing numbers. We lever-
age Estraverse [20] to traverse the AST and replace AST
nodes (e.g., replacing number literals with global objects).
Finally, we use Escodegen [18] to generate JavaScript code
that corresponds to the updated AST.

The general workflow of the rewriter can be summarized
in the following steps:

(RW1) The rewriter takes JavaScript code as input and derives
its AST.

(RW2) The rewriter traverses the generated AST. For each
literal node (i.e., integer or string immediate values), the
rewriter distinguishes the following cases:
• Integer constants (e.g., 123) are replaced

with a node corresponding to the statement
(e.g., window.__c123). Then, the rewriter
adds initialization code for this node (e.g.,
init+=’window.__c’+
123+’=parseInt("’+123+’");’)

• String constants representing numbers (e.g., ’1234’)
are replaced with an AST node of the statement:
(’1234’).toString() to avoid implicit casts to
(possibly constant) numbers.

(RW3) Finally, the rewriter generates JavaScript code that
corresponds to the updated AST, notably including the
global variables’ initialization scripts.

The JavaScript rewriter becomes an integral part of the
Web proxy. That is, we modify responses from server to
client (i.e., browser). If the response is a JavaScript file (C1),
we directly return the rewritten result to the client. In case
of an HTML file, we extract and rewrite inline JavaScript
between script tags (C2) and inline event handlers (C3). For
dynamic code (C4), we inject new JavaScript code as the
first element of the head tag, which hooks the dynamic code
generator functions (e.g., eval, Function, setTimeout,
setInterval) and dynamically rewrites the code (i.e., the
first argument of these functions) before calling the original
function. For dynamic HTML elements (C5), we attach a
mutation observer to the document object. This allows us to
react to DOM tree modifications by the attacker. For each node
that is modified in the DOM tree, we check if it is a script tag
or if it contains a script tag in its child nodes, and if so, we
extract and rewrite its JavaScript content.

Note that in order to rewrite dynamically generated
code (e.g., for (C4) and (C5)), we use synchronous
XMLHttpRequest requests from our hooked JavaScript func-
tions and mutation observer to the proxy. The JavaScript code
that needs to be modified is added to the request. The response
from the proxy contains the rewritten JavaScript code.

C. Evaluation

In the following, we evaluate our implemented defense
technique. First and foremost, we test the efficacy of the
solution and apply DACHSHUND to reveal if there are re-
maining attacker-controlled constants in the JIT-emitted code.
Second, we evaluate the performance overhead of the proposed
solution. As we rewrite the JavaScript code that is executed in a
browser, we consider two sources of overhead: (i) the overhead
caused by rewriting JavaScript code, and (ii) the performance
overhead of the rewritten JavaScript code, running inside a
browser. We evaluate the latter in Google Chrome 50 and
Microsoft Edge 25. The underlying system is Windows 10
running on an Intel Core i7-2670QM machine with 2.20GHz
frequency and 6GB RAM.

8

m = i ? __c12345678 :

__c23456789

0 test rax,rax

1 je 5

2 mov rbx,&__c12345678

3 mov ebx,[rbx+13h]

4 jmp 7

5 mov rbx,&__c23456789

6 mov ebx,[rbx+13h]

switch(j){
case __c23232323: m++;

}

0 mov rbx,&__c23232323

1 mov ebx,[rbx+13h]

2 cmp edx,ebx

3 jne XXX

__c34343434[j] 0 mov rax,&__c34343434

1 mov eax,[rax+13h]

2 ;set other parameters

3 call GetProperty

m = j ˆ __c45454545 0 mov rbx,&__c45454545

1 mov ebx,[rbx+13h]

2 mov rdx,[rbp+20h]

3 xor ebx,edx

globvar = __c56565656 0 mov rax,&__c56565656

1 mov edx,[rax+13h]

2 mov rax,&globvar

3 mov [rax+0Fh],rdx

globarr[i] = __c67676767 0 mov rax,&__c67676767

1 mov eax,[rax+13h]

2 mov [rbx+XXX],eax

return __c12121212 0 mov rax,&__c12121212

1 mov eax,[rax+13h]

Fig. 3. Gadget emitting JavaScript statements in Chrome and their corre-
sponding disassembly after rewriting. &__cXXXXXXXX denotes the address of
the corresponding JavaScript global variable.

1) Rewriting Efficacy: First, we evaluate the correctness of
the rewriter to see if all integer constants are indeed eradicated
from the JIT-compiled code. Therefore, we tested the rewriter
against all JavaScript functions found by DACHSHUND. Ini-
tially, we verified that all these functions actually emitted
integer constants, i.e., we did not get any false positives from
DACHSHUND. We found that all 22 different functions in
Chrome and 21 in Edge did emit integer constants into the
code. We then modified these functions with our JavaScript
rewriter and ran the experiment again. After rewriting, none
of the JavaScript functions emitted any integer constants in
the JIT code, neither for Chrome nor Edge, proving the
completeness of the rewriter. Figure 2 shows the disassembly
of the native code of the gadget-emitting statements in Chrome,
whereas Figure 3 shows the same statements and their disas-
sembly after applying our rewriter.

The code examples, found by DACHSHUND, cover only di-
rectly used JavaScript integer constants. While this is sufficient
for Edge, where the source for emitted gadgets are integer
caching, optimizing compiler of Chrome can still inline the
values after implicit conversion. To test the rewriting efficacy
of implicit constants (i.e., from string objects to integers in
our case), we did manual verification. More specifically, we
created JavaScript functions containing string literals that are
implicitly converted to integer types. After rewriting, all these
string literals were converted to string objects (via invoking
toString on them), and thus did not emit any integer values.
However, strings are not the only JavaScript objects that are

m+=0x12000000|

0x00340000|

0x00005600|

0x00000078;

0 mov ebx, [rbx+13h]

1 add ebx,12345678h

m+=__c12000000|

__c00340000|

__c00005600|

__c00000078;

0 mov rax,&__c12000000

1 mov eax,[rax+13h]

2 mov rbx,&__c00340000

3 mov ebx,[rbx+13h]

4 or ebx,eax

5 mov rax,&__c00005600

6 mov eax,[rax+13h]

7 or eax,ebx

8 mov rbx,&__c00000078

9 mov ebx,[rbx+13h]

10 or ebx,eax

Fig. 4. Constant splitting in JavaScript (Chrome) before and after rewriting.

implicitly converted to integers. For example, Hieroglyphy [32]
uses conversion between arrays ([...]) and objects ({...})
to integers. Using these conversions inside the function does
not emit attacker-controlled values. However, they can be used
by the attacker to initialize a global variable and then use
the global variable inside the function to inject the required
value. Because the global variable will be initialized once, by
the attacker, it will be inlined into the code (by Chrome),
emitting the gadgets. This problem can be solved using a
similar technique that we used before. That is, we can replace
global variable initializations in the code by initializing the
global variable with a random number first, and then setting it
to the original value. This way, optimizer will have to resolve
the value of the global variable at runtime and will not be able
to inline it into the code. Although we manually verified that
this modification indeed removes the attacker-controlled values
from the code, it is not included in the current implementation
of our defense scheme.

Other obfuscation techniques of JavaScript code also con-
tain integer splitting to hide their values. For example, in-
stead of having a single constant var i=0x12345678, the
attacker might try to split it (e.g., into separate bytes):
var i=0x12000000|0x340000|0x5600|0x78. After opti-
mization, these constants will be folded by the compiler
into a single integer and will be emitted into the JIT-code.
However, our rewriter will turn each of these constants into
global objects, forbidding both constant folding and inlining
(Figure 4).

2) Rewriting Overhead: To evaluate the overhead of the
JavaScript rewriter, we chose to measure the rewriting over-
head of two popular and large JavaScript libraries, jQuery
(version 2.2.3) and AngularJS (version 1.5.5). These libraries
are commonly embedded in typical Web applications and
are relatively large compared to other custom JavaScript
implementations (jQuery has 259 kB, AngularJS 1.1 MB).
Moreover, both of these libraries also provide the compressed
(i.e., “minified”) versions to reduce the download size (jQuery
86 kB, AngularJS 158 kB). For the evaluation, we rewrote
these libraries (both compressed and uncompressed) 200 times.
We measured the time required to rewrite these libraries,
including all steps (RW1) up to (RW3). The results of the
evaluation are presented in the following.

9

AngularJS JQuery
0

50

100

150

1
4
5

6
3

1
0
1

5
1R

ew
ri

te
Ti

m
e

(m
s)

Uncompressed

Minified

Fig. 5. Averaged times for rewriting JavaScript libraries

Chrome Edge
0

1

2

·104

2
6
,4
9
5

2
4
,2
4
5

2
0
,8
2
0

1
8
,5
2
8

A
ve

ra
ge

O
ct

an
e

Sc
or

e

Orig Proxy

Fig. 6. Averaged Octane scores in Chrome and Edge

The minified versions of the libraries took less time to be
rewritten. On average, rewriting AngularJS took 145 ms and
101 ms for the uncompressed and minified versions, respec-
tively. Rewriting jQuery took 63 ms and 51 ms, respectively
(see Figure 5). We argue that this overhead of a mere 100 ms
is acceptable to typical Web users, as network latencies and
bandwidth constraints are more significant when loading these
libraries. In addition, note that rewriting is a one-time effort
and the rewritten JavaScript library can be cached by the proxy
as well as on the client side. Such caching mechanisms are part
of COTS browsers and require no further client software mod-
ifications. Finally, rewriting multiple scripts simultaneously is
an effort that can be trivially parallelized to further improve
performance.

3) Runtime Overhead: Next, we evaluate the runtime over-
head that is incurred on the client side due to the modified
JavaScript code. To this end, we leverage Octane, a commonly-
used benchmark framework for JavaScript engines [40]. For
the evaluation, we took the averaged scores from 5 runs of
Octane benchmarks. JavaScript runtime showed the follow-
ing results: Figure 6 illustrates the performance comparisons
between the original and the rewritten engine. The unit is
the score measured by the Octane benchmarks, and higher is
better. On average, we measure 21% performance decrease in
Chrome and 24% in Edge. The average overhead is significant,
but performance is mainly degraded by a few outliers in the
benchmark suite, such as:

zlib In order to test the performance of the compiler, zlib uses
eval. This causes the rewrite time of our rewriter to be
added to the runtime of the script, as the code passed
to eval needs to be rewritten dynamically. Additionally,
the compiled zlib script extensively uses integer constants
that further degrade the performance.

CodeLoad This benchmark measures how quickly a Java-
Script engine can execute a script after loading it. Code-
Load uses eval to compile JQuery and Closure libraries
and therefore again includes the rewriting time.

While the use of dynamic code (like in eval) degrades
performance, we cannot exclude such code from our rewriter,
as it would give a possibility to the attacker to enter con-
stants using dynamic code. However, the experiments have
shown that it is mainly dynamic code rewriting that causes
performance impacts, and libraries that do not leverage such
dynamic code have an acceptable overhead. Without the two
poorly-performing benchmarks, the overhead decreases to 12%
in Chrome and 13% in Edge. Note that the overhead of
popular libraries could be eliminated by whitelisting (and
thus not rewriting) trusted scripts, as our threat model is
only relevant to non-trusted and attacker-controlled JavaScript
inputs. Alternatively, our rewriter could cache popular libraries
after they have been already rewritten to provide them to the
client without any rewriting overhead.

To put things into perspective, we now compare the perfor-
mance of our scheme with the performance of a non-optimized
JIT compiler. The intuition here is that our suggested attack
technique against Chrome relies on abusing output of the
optimizing compiler. Disabling the optimizing compiler thus is
a viable alternative to protect against attacker-induced gadgets.
Therefore, we performed another experiment and also included
Chrome with a disabled optimizing compiler (by running
Chrome with the V8 flags noopt and nocrankshaft).
Figure 7 shows the complete list of all Octane benchmarks,
running in three modifications of Chrome: (i) original, (ii)
original with proxy (i.e., rewritten JavaScript), and (iii) with
the optimizing compiler disabled. As can be seen, with the
exception of the two libraries that require rewriting of dynamic
code, our proposed solution outperforms the disabled optimizer
by around a factor of eight and thus seems to be the preferable
option.

Although the overhead for dynamic scripts seems
significant, our JavaScript rewriter usually completes in a
matter of milliseconds. Rewriting a JavaScript library as big
as jQuery takes, on average, less than 60 ms (see Figure 5).
This can be further improved by incorporating caching in
our proxy, using hashes of the dynamic script as a key. This
way, for example, when compiling a jQuery library 100
times using eval (e.g., as done in CodeLoad), the rewriter
spends 60 ms on the initial request and serves the subsequent
requests without any delay caused by the rewriting process.

10

Rich
ard

s

Delt
aB

lue

Cryp
to

Ray
Trac

e

Earl
ey

Boy
er

Reg
Exp

Spla
y

Nav
ier

Stok
es

PdfJ
S

M
an

dre
el

Gam
eb

oy

Cod
eL

oa
d

Box
2D zli

b

Typ
esc

rip
t

0

2

4

6

·104

2
3
,9
2
8

3
6
,9
5
5

2
0
,2
8
0

5
0
,9
3
1

2
8
,8
3
5

3
,1
0
5

1
6
,2
9
2

2
3
,2
5
9

1
1
,9
6
0

1
7
,7
5
4

4
4
,2
8
7

9
,5
5
0

3
9
,5
5
8

4
7
,1
4
7

2
3
,5
8
8

2
4
,2
9
5

3
8
,1
1
8

1
5
,1
5
2

5
0
,6
8
9

2
8
,7
9
0

3
,1
0
0

3
,9
6
4

2
3
,2
8
7

1
0
,5
5
3

1
2
,7
5
7

3
5
,2
8
1

1
,3
3
7

3
8
,6
2
2

2
,7
0
2

2
3
,6
6
7

1
,1
8
8

1
,3
8
8

2
,7
0
4

2
,9
8
8

8
,2
9
6

2
,0
5
2

1
,9
4
9

2
,3
4
3

7
,0
9
1

1
,3
1
0 9
,0
0
3

9
,2
2
0

3
,3
0
3

4
,1
9
7 1
1
,3
6
6O

ct
an

e
Sc

or
e

Orig Proxy NoOpt

Fig. 7. Octane results in Chrome (Original vs Proxy vs Not-Optimized)

VI. DISCUSSION

In this section, we revisit the two proposed frameworks,
and discuss their implications and possible limitations.

A. Implications of Dachshund

DACHSHUND has revealed several ways attackers can inject
arbitrary long gadgets into JIT-compiled code. We will now
discuss how this is relevant from a security perspective.

How bad is attacker-induced shellcode, really?
One could argue that additional defense schemes in browsers
will protect against control-flow diversion attacks, regardless
of whether an attacker can inject shellcode or not. While
this argument is not wrong per se, we believe that our
findings have important implications anyway. First, constant
blinding is part of the two most popular browsers, and—as we
find—a security feature that can be easily circumvented by
attackers. Relying on such schemes is only helpful if they are
also implemented correctly. Otherwise, as we find, they give
security guarantees that do not hold in practice. Second, attacks
in the past have demonstrated that even additional security
mechanisms such as CFI or sandboxing cannot protect against
successful browser exploitation. We thus argue that it is not
an “either-or” question which security mechanisms to use; we
see the need for complementary techniques to defend against
browser threats. Finally, predictable gadgets may also have
severe security implications on even stronger threat models.
For example, assuming that the location of gadgets can be
identified, schemes that propose non-readable code (such as
Execute-no-Read proposals [3], [12], [13]) can potentially be
evaded. We will perform such an evaluation in future work.

Does it matter that you found four-byte constants?
DACHSHUND is not the first work to target constant blinding
schemes. Athanasakis et al. [2] had already proven that two-
byte constants are sufficient to assemble suitable ROP chains.
However, we looked at the problem from a different angle.
Instead of using constants that are excluded from the blinding
process (because they are too short), we inspected whether
constants actually survive constant blinding. Indeed, four-byte
gadgets give an adversary more flexibility in the types of
gadgets to use and make building a ROP chain significantly

easier. But the more fundamental observation is the fact that
we found that constants that should have been blinded were,
in fact, not successfully blinded.

B. Limitations of Dachshund

DACHSHUND uses code fuzzing, which is known to be
incomplete in terms of code coverage and cases that it explores.
We have shown that our technique is quite successful for
discovering leftover constants in JIT-compiled code. However,
similar to other fuzzing techniques, DACHSHUND cannot be
used to prove that JIT engines do not emit attacker-controlled
constants. DACHSHUND could be combined with static code
analysis to fulfill this higher goal.

Furthermore, DACHSHUND leverages immediate constants
in JavaScript code to evade constant blinding. It may also be
possible to find other types of attacker-controllable constants,
such as values embedded in control-flow statements (e.g.,
constants encoded in relative offsets). However, our findings
show that an attacker does not even need to search for other
types of constants, given plenty of immediate ones.

C. Limitations of the Defense

Our proposal to defend against constants has certain lim-
itations, which we address next. As already mentioned, our
proxy-based solution requires that HTTPS-secured content can
also be rewritten. This means that certificate validation will be
done by the proxy and the client needs to trust certificates
handed out by the proxy. However, in corporate settings, such
HTTPS-enabled proxies are quite common and serve to inspect
client communication for multiple purposes (e.g., caching,
protecting against information leakage, identifying HTTPS-
based malware communication, etc.) Our rewriting logic can
easily be integrated into existing proxies.

An alternative to a proxy implementation would be to
embed our method as a browser extension. This way users
will have more control over the rewriter, e.g., they can request
on-demand rewriting of certain pages or whitelist trusted
pages. Also, HTTPS-based content will be no problem for
an extension-based rewriter, as rewriting happens after a page
is already loaded. However, the extension will face a race

11

condition with the running JavaScript, i.e., JavaScript on the
page may be executed before the extension finishes rewriting.
This problem can be solved by disabling JavaScript execution
for all pages until the rewriter terminates.

A technical challenge for our solution is potential defi-
ciencies in the HTML/JavaScript parser. We might face cases
in which the parser fails to parse the code. There are two
possibilities for dealing with unparsable scripts: (i) we block
the script, or (ii) we allow the script without modification.
Solution (ii) lowers the security, because an adversary may
find out a way to create a script that is unparsable but is still
tolerated (and executed) in browsers. However, using (i) may
block scripts that come from legitimate sources, thus modify-
ing the semantics of the page. A solution to the aforementioned
problem could be to extract all immediate constants by alter-
native means (e.g., using regular expressions) from unparsable
scripts and replace them with the safe alternatives. However, in
summary, non-parseable scripts are not a fundamental problem
of our approach, but more a technical challenge for parser
implementations.

One weakness of our defense technique is that future JIT
compilers might convert global objects into integers as part
of the JIT code optimization. The basic idea why we replace
integer constants with global objects is that the global variables
in JavaScript are volatile and can be modified by every function
running in the same context, e.g., by a JavaScript function
running at some time intervals. Therefore, these global vari-
ables, even though they encode integer values, will not be
inlined. However, if a global variable is first moved into a local
variable, then the local variable can be inlined if necessary. We
manually tested multiple such cases in Chrome and found out
that the JIT compiler of Chrome does not inline such variables.
However, in the future, if the compiler is extended to also inline
these variables, our rewriter has to be adapted accordingly.

Furthermore, we unfortunately have no way to prove the
completeness of the rewriter. For example, our current proto-
type implementation does not cover all border cases of implicit
conversions. In our JavaScript rewriter, we account for implicit
conversions between a string and a number, e.g., from the
string ’123’ to the number 123. JavaScript, however, allows
more cases of allowed implicit conversions. For example, using
Boolean constants true and false as numbers 1 and 0
respectively (true+true is 2, true*100 is 100). Similarly,
unary operators can be applied to various types of JavaScript
objects to convert them to integers. For example, +[] equals
to 0, and +!![] equals to 1. These types of conversions are
used by JavaScript obfuscators to hide the source code [32]. As
Edge only caches (i.e., emits in JIT-code) integer constants that
are directly encoded as immediate values in JavaScript, these
implicit conversions will not be a problem for it. However, they
can still be emitted by the optimizing compiler of Chrome.
By manual verification, we found out that these cases are not
optimized by Chrome’s current JIT compiler and therefore can
be ignored by our defense altogether. In the future, if these
values get inlined into the executable code, our defense can
be easily extended to also cover them.

Apart from immediate constants, an attacker might encode
implicit constants in JITted code. She can do so by abusing
other parts of the JavaScript code that indirectly influence
values encoded in JIT-compiled code. For example, parameters

on the stack are referenced by adding their offset to rbp. The
offset is encoded as a part of the instruction, and thus is emitted
to the code. By varying the number of function parameters,
the attacker might generate useful gadgets. However, this
attack is limited by the number of possible arguments that
a function can have, limiting the attacker to incomplete two
bytes. Alternatively, Maisuradze et al. [36] demonstrated that
an adversary can use relative offsets encoded in control flow
instructions (e.g., conditional jumps or calls). By carefully
choosing certain code sizes, attackers can change the values en-
coded in these instructions, such as relative offsets of branches
(e.g., if/else) or calls (e.g., between caller and callee).
Complementary techniques, such as code randomization (e.g.,
NOP insertions) or control-flow-changing code rewriting might
help to defend against such cases as a probabilistic defense.
We leave these ideas open for future work.

The discussion above has shown that we are not aware
of any obfuscation technique that evades our defense. That
said, it might be possible that JIT compilers change, or simply
that attackers may find novel evasion tricks that we have not
discussed. In any case, this is not a fundamental limitation of
our defense, but (as the examples above show) we can likely
further improve code rewriting to gain complete coverage over
any attacker-controlled constant that we might have missed in
the current prototype implementation.

VII. RELATED WORK

In the following, we survey related work, including an evo-
lution of attack techniques and their corresponding defenses.

A. ASLR vs. Code-Reuse Attacks

ASLR continues to be the most-widely deployed defense
against code-reuse attacks [50]. However, apart from being in-
complete [46] (i.e., not being applied to all memory segments)
or having low entropy due to a 32-bit systems [48], ASLR
is also vulnerable to code-reuse attacks utilizing information
leakage [31], [17], [5]. To make up for ASLR’s weaknesses,
fine-grained randomization schemes complement ASLR by
randomizing the code within memory segments reordered by
ASLR. Therefore, leaking a code pointer does not reveal
any information about the remaining code in that page. For
example, Pappas et al. [43] randomize instructions inside basic
blocks by code rewriting. ASLP, by Kil et al. [33], shuffles the
addresses of functions along with important data structures
by statically rewriting an executable. STIR, by Wartell et
al. [51], permutes basic blocks of the program at startup. Lu et
al. advance these schemes by providing a practical runtime re-
randomization solution [35].

However, scripting environments enabled attackers to lever-
age information leak to bypass ASLR. In JIT-ROP [49], Snow
et al. demonstrated that by repeatedly exploiting a memory
disclosure vulnerability, the attacker can read code pages of a
program and generate a gadget chain on the fly.

Closest related to our work, Athanasakis et al. [2] em-
powered JIT-ROP by utilizing the code output from the JIT
compilers to inject their own gadgets. Knowing that JIT
engines do not blind smaller constants, they show that an
attacker may be able to carefully align two-byte gadgets to
mount successful attacks. We follow the same motivation,

12

but show that the deficiencies of constant blinding are far
more fundamental than ignoring small constants. DACHSHUND
has proven that constant blinding implementations in modern
browsers are inherently incomplete, irrespective of the size of
the constants. In addition, we propose and implement a viable
defense against attacker-induced gadgets in JavaScript code.

B. Defenses against Code Reuse

Researchers have proposed various defenses against code-
reuse attacks, as summarized in the following.

Non-Readable Code: Backes et al. [3] and Crane et
al. [12] proposed tackling JIT-ROP attacks by forbidding
the attacker to read executable pages of the program. XnR
(Execute-no-Read) marks executable pages as non-present and
utilizes a page-fault handler to allow only valid accesses (i.e.,
instruction fetches). Similarly, Readactor uses Extended Page
Tables (EPT) to mark all executable pages as non-readable
and applies fine-grained randomization to all executable pages.
Some remaining weaknesses of Readactor (e.g., function point-
ers in import tables and vtables) have been resolved in its
successor Readactor++ [13]. Targeting ARM, also Braden et
al. [8] suggest to leverage execute-only memory to protect
against code-reuse attacks. Finally, Gionta et al. suggest to
hide code via a split TLB [24].

Although the idea of non-readable code is promising,
withdrawing read privileges alone does not suffice to protect
against attacker-induced gadgets, in particular if gadgets are
deterministic and their locations predictable. This is also the
reason why the schemes are typically combined with fine-
grained randomization schemes, and hence, their security
against our attack heavily depends on the randomization.

Control Flow Integrity: CFI schemes restrict the control
flow to valid code paths. CFI implementations range from
coarse-grained to fine-grained schemes [55], [56], [14], [37],
[55], following the typical compromise between efficiency and
security [15], [25]. Shying the complexity of JIT engines, few
CFI schemes have been tested on JIT compilers. One of the
notable exceptions is NaCl SFI [1], which provides a coarse-
grained CFI implementation for JIT engines, but faces an over-
head of 51% on x64 systems. Similarly, RockJIT instruments
JIT-compiled code with coarse-grained checks, verifying the
control flow instruction targets at runtime. Forcing the jump
targets to be aligned instructions, RockJIT thus successfully
defends against our attack. Note that, apart from being fine-
grained, the completeness of CFI schemes is equally important,
i.e., even in the presence of a single unchecked (or wrongly
checked) jump target, the attacker will be able to mount a suc-
cessful attack. In particular, with arbitrary four-byte gadgets,
the attacker only uses unaligned instructions, and therefore
no additional CFI checks will be executed in between. Note
that this may not be the case for Athanasakis’ attack that
requires to align multiple shorter gadgets to obtain a useful
one. Summarizing, complete CFI schemes are a powerful
defense, and may become a viable solution in the long run.
However, special attention must be paid to the completeness
and to the precision of the sandbox. In the past, sandbox
escaping attacks demonstrated that orthogonal defenses, like
ours, present a useful additional layer of security.

C. Protecting JIT Compilers

Next to general code reuse defenses, researchers have also
suggested to specifically protect JIT compilers against ex-
ploitation. In JITDefender, Chen et al. [10] proposed defending
against JIT spraying by removing executable rights from JIT-
compiled code pages, until they are called by the compiler.
Similarly, executable rights will be stripped after the function
returned. This way, diverting the control flow to the sprayed
code will crash the program. Although this defense may work
in some situations, the attacker can extend the time a code
pages is executable, e.g., by using a thread that continuously
calls a JavaScript function.

Chen et al. proposed JITSafe [11]. JITSafe is an extended
version of JITDefender, incorporating a similar technique as
suggested by Wu et al. with RIM [53], to inject invalid
instructions into long chains of NOP sleds. While this defense
is successful to prevent code spraying with long NOP sleds, it
cannot protect against more fine-grained code injections (such
as injecting single gadgets, as in our attack).

Homescu et al. [29] and Wei et al. [52] propose librando
and INSeRT, respectively. These techniques are similar to
techniques deployed in modern browsers. For example, both
of these techniques randomize the JIT-compiled code by
randomly inserting either NOP (librando) or illegal (INSeRT)
instructions into the code. Moreover, both of these techniques
deploy some form of constant blinding, e.g., by using an
XOR (INSeRT) or LEA (librando) instruction to encrypt the
constants. Our evaluation on popular browsers has proven that
such constant blinding schemes are actually hard to get right.
To foster future research in this direction, we thus provide
DACHSHUND as framework to evaluate the completeness of
constant blinding implementations.

D. JavaScript Rewriting

While with totally different goals in mind, other researchers
also used JavaScript rewriting as technique to guarantee vari-
ous other security aspects. For example, Doupe et al. suggest
a Web rewriting framework called deDacota that separates
code (JavaScript) from data (HTML) to defend against cross-
site scripting (XSS) attacks [16]. Reis et al. rewrite Web
documents in such a way that also dynamic contents (e.g.,
script code) is instrumented and can be validated against
security policies [44]. Similarly, Yu et al. provide a prov-
ably correct JavaScript code rewriting methodology to defend
against threats like XSS [54]. These ideas follow similar
concepts to identify JavaScript code in a Web site, however,
do not focus on the security of JIT compilers.

VIII. CONCLUSION

DACHSHUND has uncovered that constant blinding im-
plementations in many popular browsers are incomplete and
inherently insecure. This has severe implications on the se-
curity of browsers, as (i) the guarantees that are assumed to
be given by constant blinding are not met in practice, (ii) we
demonstrate how easy an attacker can inject arbitrary gadgets
(up to four bytes) to form ROP chains, and (iii) as the problems
of constant blinding are far deeper than it was previously
believed. Our JavaScript-based rewriting approach is a first
step to remove the risk of attacker-induced constants and to

13

safe the guarantees of constant blinding, without any need
to rewrite browser software. In the long run, we presume
that more fundamental changes are required to guarantee
browser security, such as enforcing Control Flow Integrity
schemes even on JIT-compiled code, or exploring provably-
secure gadget-free JIT compilers.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments. Moreover, we would like to thank
Michael Brengel for his feedback during the writing process
of the paper.

This work was supported by the German Federal Ministry
of Education and Research (BMBF) through funding for the
Center for IT-Security, Privacy and Accountability (CISPA)
and for the BMBF project 13N13250.

REFERENCES

[1] J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor, B. Chen, D. L. Schuff,
D. Sehr, C. L. Biffle, and B. Yee, “Language-independent sandboxing
of just-in-time compilation and self-modifying code,” ACM SIGPLAN
Notices, vol. 46, no. 6, pp. 355–366, 2011.

[2] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis,
and S. Ioannidis, “The Devil is in the Constants: Bypassing Defenses in
Browser JIT Engines,” in Proceedings of the Network and Distributed
System Security (NDSS) Symposium, February 2015.

[3] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and
J. Pewny, “You Can Run but You Can’T Read: Preventing Disclosure
Exploits in Executable Code,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 1342–1353.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660378

[4] “Baracuda networks.” [Online]. Available: https://campus.barracuda.
com/product/websecuritygateway/article/BWF/UsingSSLInspection/

[5] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking Blind,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, ser. SP ’14, Washington, DC, USA, 2014, pp.
227–242.

[6] D. Blazakis, “Interpreter Exploitation,” in Proceedings of the 4th
USENIX Conference on Offensive Technologies, ser. WOOT’10, 2010.

[7] “Blue coat.” [Online]. Available: https:/ /www.bluecoat.com/
products-and-solutions/ssl-visibility-appliance

[8] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen,
and A.-R. Sadeghi, “Leakage-resilient layout randomization for mobile
devices,” in 23rd Annual Network & Distributed System Security
Symposium (NDSS), Feb. 2016.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented Programming Without Returns,”
in Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10. New York, NY, USA: ACM,
2010, pp. 559–572. [Online]. Available: http://doi.acm.org/10.1145/
1866307.1866370

[10] P. Chen, Y. Fang, B. Mao, and L. Xie, “JITDefender: A Defense
against JIT Spraying Attacks,” in Future Challenges in Security and
Privacy for Academia and Industry, ser. IFIP Advances in Information
and Communication Technology, J. Camenisch, S. Fischer-Hbner,
Y. Murayama, A. Portmann, and C. Rieder, Eds. Springer Berlin
Heidelberg, 2011, vol. 354, pp. 142–153. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21424-0\ 12

[11] P. Chen, R. Wu, and B. Mao, “JITSafe: a Framework against
Just-in-time Spraying Attacks,” IET Information Security, vol. 7, no. 4,
pp. 283–292, 2013. [Online]. Available: http://dx.doi.org/10.1049/
iet-ifs.2012.0142

[12] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical Code Randomization
Resilient to Memory Disclosure,” in 36th IEEE Symposium on Security
and Privacy (Oakland), May 2015.

[13] S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-
R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz, “It’s a TRAP: Table
Randomization and Protection against Function Reuse Attacks,” in Pro-
ceedings of 22nd ACM Conference on Computer and Communications
Security (CCS), 2015.

[14] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.-R. Sadeghi, “Mocfi: A framework to mitigate
control-flow attacks on smartphones.” in NDSS, 2012.

[15] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium, 2014.

[16] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and
G. Vigna, “dedacota: toward preventing server-side xss via automatic
code and data separation,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 2013, pp.
1205–1216.

[17] T. Durden, “Bypassing PaX ASLR protection.” [Online]. Available:
http://phrack.org/issues/59/9.html

[18] “Escodegen: Ecmascript code generator from mozilla’s parser api ast.”
[Online]. Available: https://github.com/estools/escodegen

[19] “Esprima: Ecmascript parsing infrastructure for multipurpose analysis.”
[Online]. Available: http://esprima.org/

[20] “Estraverse: Ecmascript traversal functions from esmangle project.”
[Online]. Available: https://github.com/estools/estraverse

[21] “Forcepoint.” [Online]. Available: https://www.websense.com/content/
support/library/web/v81/wcg\ help/ssl\ enable.aspx

[22] “Forefront threat management gateway.” [Online]. Available: https:
//technet.microsoft.com/en-us/library/dd441073.aspx

[23] “Fortigate.” [Online]. Available: http: / /cookbook.fortinet .com/
why-you-should-use-ssl-inspection/

[24] J. Gionta, W. Enck, and P. Ning, “Hidem: Protecting the contents
of userspace memory in the face of disclosure vulnerabilities,” in
Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, ser. CODASPY ’15. New York, NY, USA:
ACM, 2015, pp. 325–336. [Online]. Available: http://doi.acm.org/10.
1145/2699026.2699107

[25] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 575–589.

[26] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis,
N. Provos, M. Z. Rafique, M. A. Rajab, C. Rossow, K. Thomas,
V. Paxson, S. Savage, and G. M. Voelker, “Manufacturing compromise:
The emergence of exploit-as-a-service,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security, ser.
CCS ’12. New York, NY, USA: ACM, 2012, pp. 821–832. [Online].
Available: http://doi.acm.org/10.1145/2382196.2382283

[27] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson,
“ILR: Where’D My Gadgets Go?” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy, ser. SP ’12, Washington, DC,
USA, 2012, pp. 571–585. [Online]. Available: http://dx.doi.org/10.
1109/SP.2012.39

[28] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in
Proceedings of the 21st USENIX Conference on Security Symposium,
Berkeley, CA, USA, 2012.

[29] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Librando: Trans-
parent Code Randomization for Just-in-time Compilers,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, ser. CCS ’13, 2013.

[30] “Http mitm proxy.” [Online]. Available: https://github.com/joeferner/
node-http-mitm-proxy

[31] a. huku, “Exploiting VLC. A Case Study on Jemalloc Heap Overflows.”
[Online]. Available: http://www.phrack.org/issues/68/13.html

[32] “Javascript obfuscation.” [Online]. Available: http://patriciopalladino.
com/blog/2012/08/09/non-alphanumeric-javascript.html

[33] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address Space
Layout Permutation (ASLP): Towards Fine-Grained Randomization of
Commodity Software,” in Proceedings of the 22Nd Annual Computer
Security Applications Conference, ser. ACSAC ’06, Washington, DC,
2006. [Online]. Available: http://dx.doi.org/10.1109/ACSAC.2006.9

14

[34] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
Software Diversity,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, ser. SP ’14, Washington, DC, USA, 2014, pp.
276–291. [Online]. Available: http://dx.doi.org/10.1109/SP.2014.25

[35] K. Lu, S. Nrnberger, M. Backes, and W. Lee, “How to make aslr win
the clone wars: Runtime re-randomization,” in Network and Distributed
System Security Symposium. Symposium on Network and Distributed
System Security (NDSS), K. Lu, S. Nrnberger, M. Backes, and W. Lee,
Eds. Internet Society, 2015.

[36] G. Maisuradze, M. Backes, and C. Rossow, “What cannot be read,
cannot be leveraged? revisiting assumptions of jit-rop defenses,” in
25th USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 139–156. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/maisuradze

[37] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity.” in NDSS, 2015.

[38] Nergal. The Advanced Return-into-lib(c) Exploits. [Online]. Available:
http://phrack.org/issues/58/4.html

[39] “Node.js: A javascript runtime built on chrome’s v8 javascript engine.”
[Online]. Available: https://nodejs.org/

[40] “Octane: The javascript benchmark suite for the modern web.”
[Online]. Available: https://developers.google.com/octane/

[41] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda,
“G-Free: Defeating Return-oriented Programming Through Gadget-
less Binaries,” in Proceedings of the 26th Annual Computer
Security Applications Conference, ser. ACSAC ’10. New York,
NY, USA: ACM, 2010, pp. 49–58. [Online]. Available: http:
//doi.acm.org/10.1145/1920261.1920269

[42] “Palo alto networks.” [Online]. Available: https : / /www.
paloaltonetworks.com/documentation/60/pan-os/pan-os/decryption

[43] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing
the Gadgets: Hindering Return-Oriented Programming Using In-place
Code Randomization,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12, Washington, DC, USA, 2012.
[Online]. Available: http://dx.doi.org/10.1109/SP.2012.41

[44] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: Vulnerability-driven filtering of dynamic html,” ACM
Transactions on the Web (TWEB), vol. 1, no. 3, p. 11, 2007.

[45] J. Ruderman, “Introducing jsfunfuzz.” [Online]. Available: http:
//www.squarefree.com/2007/08/02/introducing-jsfunfuzz/

[46] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit Hardening
Made Easy,” in Proceedings of the 20th USENIX Conference on
Security, ser. SEC’11. Berkeley, CA, USA: USENIX Association,
2011, pp. 25–25. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2028067.2028092

[47] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security,
ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 552–561.
[Online]. Available: http://doi.acm.org/10.1145/1315245.1315313

[48] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the Effectiveness of Address-space Randomization,” in Proceedings
of the 11th ACM Conference on Computer and Communications
Security, ser. CCS ’04. New York, NY, USA: ACM, 2004, pp. 298–
307. [Online]. Available: http://doi.acm.org/10.1145/1030083.1030124

[49] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-In-Time Code Reuse: On the Effectiveness of
Fine-Grained Address Space Layout Randomization,” in Proceedings
of the 2013 IEEE Symposium on Security and Privacy, ser. SP
’13, Washington, DC, USA, 2013, pp. 574–588. [Online]. Available:
http://dx.doi.org/10.1109/SP.2013.45

[50] P. Team, “Address Space Layout Randomization (ASLR).” [Online].
Available: http://pax.grsecurity.net/docs/aslr.txt

[51] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
Stirring: Self-randomizing Instruction Addresses of Legacy x86
Binary Code,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, ser. CCS ’12. New
York, NY, USA: ACM, 2012, pp. 157–168. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382216

[52] T. Wei, T. Wang, L. Duan, and J. Luo, “INSeRT: Protect Dynamic Code
Generation against Spraying,” in Information Science and Technology
(ICIST), 2011 International Conference on, March 2011, pp. 323–328.

[53] R. Wu, P. Chen, B. Mao, and L. Xie, “RIM: A Method to Defend
from JIT Spraying Attack,” in Proceedings of the 2012 Seventh
International Conference on Availability, Reliability and Security, ser.
ARES ’12, Washington, DC, USA, 2012, pp. 143–148. [Online].
Available: http://dx.doi.org/10.1109/ARES.2012.11

[54] D. Yu, A. Chander, N. Islam, and I. Serikov, “Javascript instrumentation
for browser security,” in ACM SIGPLAN Notices, vol. 42, no. 1. ACM,
2007, pp. 237–249.

[55] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomiza-
tion for binary executables,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 559–573.

[56] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in
Usenix Security, vol. 13, 2013.

[57] “Zscaler.” [Online]. Available: https://www.zscaler.com/products/
ssl-inspection

15

