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Abstract—Android graphic user interface (GUI) system plays
an important role in rendering app GUIs on display and
interacting with users. However, the security of this critical sub-
system remains under-investigated. In fact, Android GUI has been
plagued by a variety of GUI attacks in recent years. GUI attack
refers to any harmful behavior that attempts to adversely affect
the integrity or availability of the GUIs belonging to other apps.
These attacks are real threats and can cause severe consequences,
such as sensitive user information leakage, user device denial
of service, etc. Given the seriousness and rapid growth of GUI
attacks, we are in a pressing need for a comprehensive defense
solution. Nevertheless, existing defense methods fall short in
defense coverage, effectiveness and practicality.

To overcome these challenges, we systematically scrutinize the
security implications of Android GUI system design and propose
a new security model, Android Window Integrity (AWI), to com-
prehensively protect the system against GUI attacks. The AWI
model defines the user session to be protected and the legitimacy
of GUI system states in the unique mobile GUI environment. By
doing so, it can protect a normal user session against arbitrary
manipulation by attackers, and still preserve the original user
experience. Our implementation, WindowGuard, enforces the
AWI model and responds to a suspicious behavior by briefing the
user about a security event and asking for the final decision from
the user. This design not only improves the detection accuracy,
but also makes WindowGuard more usable and practical to meet
diverse user needs. WindowGuard is implemented as an Xposed
module, making it practical to be quickly deployed on a large
number of user devices. Our evaluation shows that WindowGuard
can successfully detect all known GUI attacks, while yielding
small impacts on user experience and system performance.

I. INTRODUCTION

Mobile graphic user interface (GUI) system plays an im-
portant role in rendering app GUIs on display and interacting
with the user, which has major impacts on the user experience
of a mobile device. In particular, Android’s GUI has greatly
promoted user experience and gained massive popularity to the
Android system. Despite the merits, Android has been plagued
by a variety of GUI attacks in recent years.

Android GUI attack refers to any harmful behavior that
attempts to adversely affect the integrity and availability of
GUIs belonging to other apps in order to achieve malicious
purposes, such as launching a phishing or spoofing window
to lure the user into taking undesirable actions, or forcefully
pushing unwanted GUI content to the screen. There have been
extensive recent studies on Android GUI attacks. In an attack
demonstrated in [7], an attacker launches a phishing GUI
immediately after an interesting event in a banking app is
detected, resulting in bank account information stolen. In [2],
[19], [25], the authors show that apps with certain permissions
can launch different types of powerful phishing or tapjacking
attacks. Notably, a more dreadful attack method, called task
hijacking [28], can be done even without any permission.
Specifically, by manipulating the activity browsing history
saved in Android tasks, an attacker can launch a broad range
of attacks, including GUI confusion, denial-of-service, and
user activity monitoring attacks. Surprisingly, these attacks
can affect all Android versions and all apps installed on the
vulnerable devices, including the most privileged system apps
and system UI.

More concerningly, the GUI attack vectors are increasingly
employed by real-world malware at an alarming rate. For
instance, several malware families use GUI confusion attacks
to steal credit card information [35]. Ransomware, a type
of malware that renders a user device useless by forcefully
locking the screen until a certain amount of ransom money is
paid, has migrated from PC to the Android world [4], [26],
infecting more than 900 thousand Android devices within two
years [9]. In addition, adware, which repeatedly presents un-
wanted (and sometimes “unclosable”) advertisement windows
to the user, is not only irritating, but also makes the user prone
to further malware infection [27], [33]. Given the severity and
rapid growth of GUI attacks, we have a pressing need for
a comprehensive defense solution to effectively mitigate the
emerging threat.

Challenges: A recent defense solution has been proposed
in [2], which involves a two-layer defense: an app vetting
process based on static analysis, and an on-device defense
mechanism. The static analysis scans for the suspicious use
of GUI-related APIs/permissions and flags the apps who use
them as malicious. A fundamental challenge (also mentioned
by the authors) is that it is difficult for code analysis to
determine the real purpose of using these APIs/permissions.
For instance, although a legitimate screen locker app may use
the same set of APIs and exhibits similar behavior (launching
a lock screen) as a malicious ransomware, the purposes of
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the two apps are totally different. In this case, it is up to
the user to decide if a screen lock is desirable or not based
on the runtime context. User involvement is adopted by the
second on-device defense in [2], which inherits the idea of
Extended Validation Certificate (EV) green address bar in
browsers. By putting a reliable app origin indicator in the
navigation bar, an app can constantly inform the user of its
identity as long as the origin indicator is visible. By this
means, it prevents user from providing sensitive information
to the wrong entity in a GUI confusion attack. Despite the
novelty of this solution, the passive defense solely relies on
the correct judgment of savvy users and thus requires users’
continuous attention to the indicator on the navigation bar. This
not only largely affects user experience, but also undermines
its effectiveness, e.g., reportedly only 76% detection rate at
best in a user study. Moreover, this defense strategy is only
helpful in GUI confusion attacks, but cannot defeat other types
of GUI attacks, e.g., denial-of-service attack. In addition, the
requirements of modifying both existing apps (implementing
HTTPS EV certification) and the system make it impractical
to be adopted by any significant portion of apps or systems in
the Android ecosystem.

Our approach: It is exactly these challenges that this paper
seeks to address by proposing a viable new solution. We take
the first steps to systematically scrutinize the security impli-
cations of Android GUI system, one of the most sophisticated
subsystem in Android. At the heart of the problem, a GUI
attack occurs when an attacker interferes with the normal user
session such that the attacker’s GUI finally takes over part or
all of the device’s display (regardless of if the user realizes it
or not). Although the Android security model renders different
apps sandboxed and isolated from one another, the user session
- a series of GUIs that a user has visited when doing a
particular job - is typically a joint “effort” from different
apps, and is beyond the protection scope of the existing
security mechanisms. The problem is further exaggerated by
the uniqueness of mobile GUI environment. That is, given
the lack of app identifier and user control on the screen,
plus a plethora of APIs that can be abused to affect the GUI
system states, the normal user session is extremely vulnerable
to arbitrary interruption or manipulation by the attacker, e.g.,
popping up a phishing window on top of the current app,
modifying an app’s window history, etc.

To fill this important security gap, we propose a new secu-
rity model - Android window integrity (AWI) - to comprehen-
sively protect the system against GUI attacks. AWI is a generic
security model that clearly designates a user session, specifies
the capabilities of various other principals in the system, and
defines the legitimacy that the GUI system should keep from
one state to another. AWI is carefully designed to conform to
the Android app model and the norm of app navigation. By
doing so, it protects the normal user session against abrupt
interference by other apps while still preserving the original
user experience. Our implementation of the model, namely
WindowGuard, can systematically protect the GUI system and
aims to defeat all GUI attacks, a much broader range of attacks
than previous work. When WindowGuard is deployed on user
devices, the user is not bothered at all until a suspicious
behavior is detected, caused by the violation of a set of
integrity criteria defined in the AWI model. WindowGuard then

briefs the user about the security event and asks for the final
decision from user, who is inherently more capable of making
the best decision for him/herself based on the context. More
importantly, this design makes WindowGuard more usable and
practical to meet diverse needs from users and app developers
in the current Android ecosystem. Our evaluation shows that
WindowGuard can immediately detect all known GUI attacks
with minimal performance overhead. We also evaluate the
usability of WindowGuard over 12,060 most popular Google
Play apps. We find that the WindowGuard has no usability
impact on most apps. Among the 1.03% of apps that trigger
the security alert, most of them are only involved in one type
of security enforcement, which can be promptly turned off
for that app based on user decision and will not distract the
user any longer after that. In summary, we make the following
contributions:

• New understanding of the Android GUI security. To
the best of our knowledge, we are the first to sys-
tematically overhaul the security implications of the
Android GUI system design, a complex subsystem
that is composed of a variety of system services
and components. This new understanding can further
inspire follow-up research on mobile GUI system
security.

• Novel GUI security model in mobile environment. We
propose a novel security model - Android window
integrity - for the GUI subsystem in a unique mobile
environment like Android. By clearly specifying the
capabilities of various principals in a user session and
defining the legitimacy of GUI system states, AWI is
able to comprehensively and automatically protect a
normal user session against a wide spectrum of GUI
attacks. More importantly, the new security model also
considerably raises the bar for future attacks. New
attacks can now be put under the test of our defense
before they cause real threats.

• Implementation and evaluation. WindowGuard is de-
veloped as an Xposed module that can be quickly
deployed and protect a large number of user devices.
WindowGuard implements the AWI model and en-
gages the user when suspicious behaviors are de-
tected. This design involves user input in context-
aware “block it or not” decision-making and also
preserves desired user experience based on user’s
choices. Our evaluation shows that WindowGuard can
detect all known GUI attacks while yielding small
impact on device usability and system performance.

II. ANDROID GUI SYSTEM

Android GUI subsystem is composed of various system
services and components and requires a close collaboration of
them. Activity Manager Service (AMS) and Window Manager
Service (WMS) are among the most important ones. In this
section, we introduce how Android GUI system works and
identify the security risks of this complex system.

A. Activity and Window

Activity: Activity is a type of app component that provides
one or more windows to the user. Activity and window are
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Fig. 1. Overview of Android GUI System Architecture

closely related: each activity must have a window instance,
which contains the GUI contents to be displayed. The GUI
contents are specified by the app developer. If not explicitly
specified, a default GUI will be populated to the activity’s
window. In Android, activity is designed to be the building
block of app navigation. For example, when an user opens an
email app, the first activity may show a login screen; after that
the second activity displays the inbox; and then the user opens
the third one to compose a new message.

Window: Conceptually, window is a visual area on screen
that shows the GUI of the program it belongs to. In an app
activity, a window instance is a container that holds hierarchi-
cal GUI elements (view hierarchy) to be displayed on screen.
In Window Manager Service, each window is represented by a
WindowState instance, which contains all the parameters about
the window such as size, location, transparency, and z-order
etc. There are usually multiple windows at the same time and
the system composes them into one frame to be displayed on
screen. Android system defines three classes of windows: (1)
App window: the top-level window that is associated with an
activity; (2) System window: a set of windows that are used for
special purposes, e.g., status bar, navigation bar, and key guard
etc. (3) Sub-window: the window that is attached to the other
two classes of windows. It is noteworthy that although system
windows are mainly used by the system, third-party app can
also launch system windows as long as it is granted certain
permission (as we will see in Section II-B). For example,
method input or wall paper windows could come from third-
party packages.

B. GUI Architecture Overview

Figure 1 shows the architecture of Android GUI system and
illustrates how an app’s activity manages to display its window
on screen. The process involves the following steps from a high
level: (1) AMS launches a new activity of an app. (2) The new
activity then creates a window for itself during initialization
and registers the window to the WMS. WMS creates a new
WindowState instance that represents the new window and add
it to a window stack, which contains all available WindowState
instances in the system. (3) On behalf of the app, WMS then
asks the SurfaceFlinger to create a drawing surface for the
window, i.e. a buffer containing graphical data. The drawing
surface, also known as layer, is in turn shared with the app
by passing a handler back to the app. Meanwhile, WMS also
provides the window parameters to SurfaceFlinger such that
the latter can later use this information to compose the final

frame. (4) Once the app receives the shared surface, it can start
drawing the window’s entire view hierarchy on the surface
and signals SurfaceFlinger when the drawing is completed.
This drawing process is synchronized with SurfaceFlinger and
can happen as fast as 60 frames/second. (5) SurfaceFlinger
keeps multiple layers of different windows in a layer stack.
When all the visible layers are ready, SurfaceFlinger composes
them and displays the final frame on the screen, with the help
from Hardware Composer (HWC), a device-specific Hardware
Abstract Layer (HAL) library.

In this architecture, although SurfaceFlinger has direct
control to the display hardware, it strictly carries out the
commands from its “supervisors”. The “supervisors”, i.e. AMS
and WMS, not only control how the windows should be
displayed, e.g. window size, location, transparency, z-order,
but also determine what windows should be made visible. In
other words, these two system services are the heart of Android
GUI system. We now introduce them by looking at an example
shown in Figure 2.

1) Activity Management: Activity management is per-
formed by AMS. Activities are started by AMS upon client
requests through intents, an abstract description of the activity
to be started. As shown in the left part of Figure 2, every
app activity has one-to-one mapping to its corresponding
ActivityRecord instance in AMS. For convenience, we refer
to an ActivityRecord instance in AMS simply as activity for
the rest of this paper.

AMS organizes all activities in tasks [1]. Each task includes
a stack of activities, namely back stack. Activities in a back
stack are ordered by the time that they are visited, such that
the user can go back to the most recent activity. There is only
one activity running in the system at a time, called focused
activity. The task that contains the focused activity is focused
task; all other tasks are in the background. Figure 2 (in AMS)
shows multiple tasks: two for app A and B, respectively, and
another task for the launcher. When the user clicks an app
icon in the launcher, a new task is typically created and the
main activity of the app becomes the root activity in the task.
When another activity is later started, it is by default pushed
on top of the task that launched it. For instance, activity A2
is started by A1 and is thus put on top of task A. Activity A1
is stopped but remains in the task, whereas A2 gets the focus
and is shown on display. When the user later presses the back
button, the top activity is popped from the task and destroyed,
and the next activity A1 on stack is then resumed and become
the focused activity again. Since activity is the building block
of the application model in Android, AMS essentially controls
the app navigation, and the overall user experience in Android.

2) Window Management: WMS is responsible for a variety
of jobs. One of the most important one is to manage all
windows in the system, update their parameters and pass them
to SurfaceFlinger when needed. Specifically, each window is
represented as a WindowState instance in WMS. For conve-
nience, we refer to a WindowState instance simply as a window
for the rest of this paper.

All windows in a display (usually only one for mobile
device) are kept in one stack, namely window stack. Once
changes happen to any window or the window stack, e.g.,
window re-sizing, activity launch, etc., WMS would walk
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through the window stack, calculate the new parameters for
all windows, and pass the new information to SurfaceFlinger,
which would compose all updated layers and finally reflect the
changes on screen.

As shown in Figure 2, the window stack ranks windows
by a numeric value called z-order. A window with higher z-
order resides higher in the stack, which means that the window
will appear on top of others if window overlap occurs. A
preliminary z-order is first assigned to a window based on
its type. For example, app windows have lower z-order values
while system windows (such as status and navigation bar) have
higher values and hence are shown on top of screen. The final
z-order is further determined based on a variety of factors,
such as window function, order of creation, etc. For instance,
the z-order of an input method window is always set to be
a bit higher than the app window (B1 window) that requests
the input keyboard, but not higher than the window that is
originally above the app window.

A window can either be visible or hidden, and there are
usually multiple visible windows simultaneously. Figure 2 ex-
hibits the visible windows in WMS and their window areas on
screen. Here, visibility does not refer to whether being visible
by naked eye. Instead, visibility is a window state. if “visible”,
it indicates that the window is ready for display. Nevertheless,
whether the window will finally be shown on screen depends
on the location, transparency and z-order of other “visible”
windows. That is, if the window area is completely overlaid
by other windows higher in the window stack, the window is
in fact hidden “behind” the foreground windows even if the
state is “visible”. For example, although the visibility of the
launcher’s wallpaper window in Figure 2 is always set to be
“visible”, it is completely overlayed by other visible windows
(because it resides at the bottom of the window stack) and is
in fact invisible on display. On the other hand, if visibility is
set to “hidden”, a window will not be displayed at all.

Given the windows in window stack, WMS is able to
quickly and reliably identify the owner of each window
by using WindowToken and AppWindowToken. As its name
implies, a WindowToken is a type of binder token (will be
discussed in Section II-C) that is used to uniquely identify a
group of related windows in the system. AppWindowToken
is similar to WindowToken, except that all windows in the
group are associated with the same activity. In other words,
an AppWindowToken is a representation of its corresponding
activity instance in AMS. Given these two types of tokens, we

classify all windows in the system into two categories. As we
will see, it is important to make such distinction for the design
of GUI security scheme.

1) Activity window: the window that is associated with
an activity. It may be a top level app window or a sub
window attached to the app window. An activity may
have multiple windows. These windows are grouped
into a list under the corresponding AppWindowTo-
ken, which uniquely identify the activity in AMS.

2) Free window: a window that is not associated with
any activity. A free window is either a system window
or a sub-window attached to the system window.

Figure 2 shows all available WindowTokens, and App-
WindowTokens including their one-to-one mappings to Activ-
ityRecord instances in AMS. Notably, two activity windows
are visible and both belong to token A2: one sub window in
the foreground (a progress dialog “A2 Sub”), and another app
window (”A2 Win”) beneath it. They are emplaced above all
other activity windows by WMS when activity A2 becomes
the focused activity. In addition, an activity window is always
started by an activity. On the other hand, both the system and
third-party apps can directly launch free windows by making
an addView() API call to WMS, e.g., app A is free to start
a toast window (one type of system window) on top of other
windows in Figure 2.

C. Security Mechanisms

There are three security mechanisms that play critical roles
for GUI security in Android: app sandboxing, binder token,
and permission scheme.

In Android, every app is given a unique Linux UID and
runs in a separate process by default, which effectively isolates
one app from the others. From GUI’s perspective, sandboxing
guarantees the isolation of the graphic information in each app
window, e.g., preventing an app from modifying the drawing
surface of another app, given that the system itself is not
compromised.

In reality, an app crosses process boundaries and communi-
cate with system services to enable its proper functionality by
using an important IPC mechanism called binder. In this client-
service communication, it is crucial for the system services
to securely identify who the client is. It turns out that a
binder object has a unique property that is supported by
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the binder driver: each binder object maintains a globally
unique identifier across all processes. This property makes
a binder object ideal for app authentication purpose, i.e., a
binder object is used as a security token shared between
client and system service. Specifically, AMS and WMS create
app/window tokens (e.g. AppWindowToken and WindowTo-
ken) and share them with a client app. When a client app
(or its enclosed activity) asks for service, the system services
require the client to identify itself by including the given token
in its request. This authentication scheme is a cornerstone of
Android security architecture. It prevents system services from
being spoofed by the attacker, e.g., mistakenly modifying the
window states of another app, or delivering user inputs given
on a window to the wrong app.

Moreover, Android provides finer-grained security enforce-
ment based on its permission mechanism. Apps must explicitly
declare the permission they need for additional capabilities. For
example, an app can launch certain system windows only if it
has obtained the SYSTEM_ALERT_WINDOW permission. Per-
mission can also be declared to protect activity. During activity
launch, AMS enforces access control by consulting Package
Manager Service, which checks the permission requirement of
the callee activity (if there is any) and returns the check result
to AMS.

D. Security Risks

Although the current security model works especially well
in many aspects, it performs poorly in protecting the GUI
system against existing attacks. The fundamental problem is,
in the GUI context, it is the user session - a list of GUIs that
an user has visited in a time series when doing a particular
job - that requires security guarantees and protection. The
security of app sandboxing is only enforced on process/app
boundaries, leaving the user sessions vulnerable to being
arbitrarily interrupted or manipulated by attacker, e.g. popping
up a phishing window, or redirecting the user to a different
task during app navigation.

Unfortunately, this problem is further exaggerated by the
uniqueness of GUI in mobile environment. First, unlike the
desktop machines, the screen of a mobile device is relatively
small and usually only shows one app at a time. To save space,
there is generally no app identifier on screen, e.g. a task bar
or a window title bar like in desktop OSes. Because of this
limitation, it is cumbersome for a user to constantly verify
the real identity of the current GUI. Although a user can
resort to the recent button for the name of the current task,
the displayed information is untrustworthy as the recent task
list is subject to manipulation by attackers [28]. Therefore, for
a normal user reliably identifying the current GUI becomes
infeasible. Secondly, the GUI design and the norm of app
navigation makes GUI attacks more likely to succeed. For
example, because the user has been accustomed to the default
app navigation behaviors, one might be easily spoofed if these
default behaviors are maliciously tampered. Due to the lack
of user control to the screen, it is troublesome for the user to
escape a lock screen (e.g., a non-escapable system window)
in a denial-of-service attack. Thirdly, Android provides app
developers with great flexibility to control the window states
in the system without being strictly disciplined. For example,

Category Attack Vector Conseq-uences
UI interception attack [13] A

Tapjacking attack [19], [25], [29] B
Window Toast message [19], [25] A, B
Overlay Phishing attack [2], [7], [13], [29] A, C

Immersive full screen attack [2] A, C
Denial of Service D

Adware D, E
Back button hijacking [2], [28] A, C

Task App launch spoofing [28] A, C
Hijacking Denial of Service [28] D

User monitoring attack [28] F
moveTaskTo APIs [2] A, C

TABLE I. EXISTING KNOWN GUI ATTACK VECTORS IN PRIOR WORK.
THE CONSEQUENCES ARE: A - SENSITIVE DATA STOLEN; B - USER INPUT

EAVESDROPPING; C - USER SPOOFING; D - LOSS OF AVAILABILITY; E -
MALWARE INFECTION; F - USER PRIVACY INFRINGEMENT

a normal app can freely launch new activities, add high z-
order system windows on screen, or modify other apps’ back
stacks. Originally intending to promote the platform features
for app developers, these features inadvertently enrich the GUI
attack vectors and facilitate the mal-behaviors. In fact, Google
has long realized the security issues of the over-flexible GUI
features, and has taken steps to remedy the problems in newer
Android releases, e.g. adding security attributes to GUI com-
ponents, requiring explicit user consent to certain permissions,
enforcing runtime permission, etc. However, many security
features are barely used by unwitting developers (even Google
apps themselves). Even if they are fully employed, the ad-
hoc protection cannot systematically mitigate all attacks. On
the other hand, removing or modifying the longstanding GUI
features will break a bulk of existing apps.

As a result, the Android GUI system becomes particularly
vulnerable to a variety of GUI attacks that can be easily
launched without confinement. This is proven by both the prior
research findings and the rapidly growing real-world threats.
To the best of our knowledge, Table I shows a full list of
known GUI attacks. Depending on attack vectors, all attacks
are classified into two categories:

• Window overlay attack: attacks that render a window
on top of screen, partially or completely overlaying
other windows.

• Task hijacking attack: a class of malicious behaviors
that trick the system to modify the app navigation
behavior or the tasks (back stacks) in the system.

Both categories of attacks can cause serious consequences
as shown in the last column of Table I. In summary, we
consider a threat model as follows:

Threat Model: We consider a harmful app has been installed
on the user’s Android device. Like most real-world malware,
the harmful app does not have system privilege, e.g., running
with a system UID. Instead, it may seem harmless, requiring a
minimal set of permissions needed for the malicious purpose.
We assume that the system itself is un-compromised and
trustworthy. We also assume that one window involves one
principal. In the cases when a window is composed of elements
from different principals, e.g., the app itself and an embedded
third-party ad library, we consider the principal to be the owner
of the window. In order to achieve its malicious purpose,
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the attacker’s goal is clear: affect a normal user session to
the attacker’s advantage using windows or activities under
attacker’s control.

III. ANDROID WINDOW INTEGRITY

As discussed, the existing security model is not designed
to cope with GUI attacks. The fundamental limitation is, GUI
attack targets a normal user session, a series of windows that
user has visited, which is beyond the scope of app sandboxing
protection. Motivated by the challenges and serious threats,
we propose a new security model - Android Window Integrity
(AWI) - to fill in this important security gap. AWI is a generic
model for Android GUI security. It redefines a user session as
a chain of activities starting from the launcher, specifies the
capabilities of various principals in the system, and describes
the criteria of how the GUI system should be kept valid from
one state to the next.

A. Display Owner and Activity Session

The key principle of AWI is that, no application, by default,
has permission to perform any operations that would adversely
affect the user session of other apps or the system UI. At the
center of the model are display owner and activity session,
which are the basic entities to be protected in AWI, just like
an app process in the app sandboxing.

As discussed in Section II-D, mobile display is an unique
time sharing resource that is shared by different apps at
different time. We introduce display owner, the one and only
one principal that is more privileged than other apps and
“owns” the mobile display at a time. In AWI, we specify the
display owner to be the app of the currently focused activity.
It means that the app of the focused activity is more privileged
than others in terms of GUI-related operations, and its windows
and user session is protected under the AWI model (although
the display owner is still disciplined by the existing security
mechanism).

In Android, app navigation always starts from the launcher
activity, the first focused activity after system boot-up and the
primary app navigation “hub”. A user starts a job by opening
an app activity from the launcher and later proceeds to other
activities as the job goes on. The states of previous activities
in a job are saved and can later be resumed by tapping the
back button. Once the current job is finished, one can go back
to the launcher via the home button, or switch to another job
by going to the recent task list (pressing the recent button),
another navigation “hub”.

AWI complies with this norm of app navigation by in-
troducing activity session. An activity session is a sequence
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of activities that guide the user from the launcher activity to
the currently focused activity. It intends to capture the user’s
visual experience of previous activities, the basic building
blocks of an app, when doing a particular job. Specifically,
as shown in Figure 3, each node indicates an activity. An
activity session always starts from the launcher activity. When
a new activity is displayed on screen, it is chained to the end
of the current activity session. There can be multiple activity
sessions at the same time. All the activity sessions form a
tree: the launcher activity is the root and the only joining
point of all activity session branches. The focused activity
(belonging to the display owner) is always at the tail of an
activity session, which is called focused activity session (e.g.
launcher → B1→ B2 in Figure 3).

The user can switch to another activity session anytime,
called activity session transition. For instance, as illustrated in
the diagram of Figure 3, focused activity B2 may transit to A2
following three routes (the dashed line). In 1 and 2, the user
can either go to the launcher or the recent task activity, and
then resumes A2. In particular, the recent task activity belongs
to system UI and is only started upon user pressing the recent
button. Since its function is to be a “hub” that facilities task
switch in the system, we regard the recent task activity itself as
a separate activity session that does not overlap with any other
activity sessions. In this sense, the transition from B2 to the
recent task activity is an activity session transition by itself.
In route 3, a focused activity transition can also occur directly
from B2 to A2. This can happen in many circumstances, e.g.,
launching an existing activity with special intent flag, etc.

Although an activity session looks similar to a task in AMS,
the two are independent and have major differences as we
will see in Section III-C. Note that the sequence of activities
retained in an activity session may be saved in multiple
tasks/back stacks by AMS. Figure 4(a) shows such an example,
in which both the activity session and corresponding system
state are depicted. Activity A2 was launched by A1 but placed
into a new task in AMS (e.g. by specifying singleTask activity
attribute). Since A1 and A2 are displayed in a sequence, they
are regarded to be in the same activity session. If the focused
activity then transits from activity B2 to A1 as a result of
any of the above reasons, the original activity session will be
divided into two sessions (still rooted at the launcher activity),
as shown in Figure 4(b).

Given these two important notions, we next introduce the
three aspects of legitimacy that AWI attempts enforce on the
system states. But before we proceed, to better understand
these principles, we first simplify the complex GUI system
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and formalize it in a state transition model.

B. System State Transition

The state transition of the GUI system is described by
(S,Λ,→), where S = {SAMS ,WS}. S denotes the set
of system states; SAMS indicates the set of system states
in AMS; WS stands for the set of window stack states in
WMS. Λ indicates a set of events and conditions that invoke
a set of viable transition →. Specifically, given a system state
s ∈ SAMS and a window stack state ws ∈WS, they have the
following states:

• s = {afocus, β}, where β = {bs1, bs2, ..., bsn},
and bs = (a1, a2, ..., am). afocus denotes the current
focused activity. β is a set of all n back stacks in
the system. bs denotes a back stack, each in turn
includes an ordered list of activities, indicated by
(a1, a2, ..., am).

• ws = (w1, w2, ..., wn). ws represents the window
stack containing a total of n windows. w1 and wn

represent the bottom and the top windows in the stack
respectively. Each window wi (1 ≤ i ≤ n), includes
a few parameters such as visibility, size, transparency,
etc.

C. System State Legitimacy

Android window integrity is composed of three types of
legitimacy: the legitimacy of the past activity session, the
legitimacy of the current visible windows, and the legitimacy
of the future windows to be displayed. Instead of being a rigid
security model, AWI adapts to the diversity of user needs by
incorporating user’s choice in the model. Once an integrity
violation is detected, it is up to the user to make the final
decision. This makes AWI both usable and practical to be
employed in reality.

Legitimacy of activity session. An activity session looks
similarly to a task’s back stack at the first glance, e.g. both keep
a record of previous activities. However, activity session is not
a simple duplication of task. A task is a container that keeps
existing activity instances. Although the order of activities in
a back stack is typically reserved and follows the order of
activity launch most of the time, it is not always true. In fact,
Ren et. al. [28] demonstrated that the back stacks could be
manipulated outrageously by abusing the task features, e.g.,
an activity could be relocated to other tasks; app navigation
behavior could be changed; a full back stack of activities could
be created without user’s awareness. This flexibility however
contradicts with user’s common sense, e.g., it is commonly
believed that back button pressing should resume activities
that the user has previously seen; clicking an app icon from
the launcher ought to start the app window (which may not
be the case), and so on. By taking advantage of these pitfalls,
the most dreadful task hijacking attacks could be launched, as
listed in Table I.

On the other hand, activity session is designed to simulate
and preserve user’s visual experience by saving the sequence
of visible activities when the user is doing a job. Every time
the focused activity changes, the foreground activity session is
used to check the integrity of the back stacks by comparing

the difference between the two. Any disparity between the
two indicates a mismatch of user’s visual experience and
system state, and is considered suspicious. More specifically,
the model considers the following statement as a proper system
state:

∃{bs∗1, bs∗2, ..., bs∗n} ⊆ β : sfg = (bs∗1 ‖ bs∗2 ‖, ..., ‖ bs∗n)

where β indicates the set of all back stacks, in which bs∗i
is one of them. sfg denotes the foreground activity session,
composed of an ordered list of activities. In other words, it
checks if there exists a subset of back stacks, such that the
concatenation of their ordered activity lists is the same as the
ordered activities in the foreground activity session.

The failure of activity session integrity check may indicate
possible attack, but it may also come from the use of task
features for legitimate purposes. The distinction lies in an
important premise of task hijacking: a task hijacking attack
happens only if the malicious activities manage to reside in
the same task together with the legitimate activities. Given
this premise, AWI iterates the back stacks that are part of the
focused activity session. If the activities in the back stacks are
all from the same app, AWI regards it to be valid. Otherwise,
a notification is created to alert the user about the event and
possible security hazard.

Legitimacy of current visible windows After an activity
gets focus and becomes the display owner, other than its own
activity window(s), there are usually other visible windows
in the window stack. To prevent the display owner’s activity
window from being disturbed by unauthorized windows from
other apps, an overhaul of the window stack is necessary.
Specifically, the model specifies that no other visible windows,
except the windows belonging to the display owner app and
a set of white-listed windows, should overlay on top of
the focused activity window in the window stack. To put it
formally, the model have the following guarantees:

¬∃wi ∈ ws : wi.visible = true, i > k,
wi /∈ FocusedApp,wi /∈ L

where wi is the ith window from the bottom of window stack;
k represents the index of the top focused activity window in
the window stack; and L denotes a white list of windows.
The white list typically includes system windows and other
windows explicitly specified by the user, as we will discuss in
the implementation in Section IV.

Legitimacy of future windows. There is a plethora of ap-
proaches to launch a window in Android, but all windows
are in two categories: free window and activity window. The
legitimacy of future window is defined as: given the current
display owner, the principal (identified by UID) that initiates
the launch of a new window must be either the display owner
app itself or from a white list specified by the user. This criteria
holds for both free window and activity window. We now
explain the two cases respectively.

Although third-party app or package can launch free win-
dows, such as toast window (without any permission), or
other system windows (requires SYSTEM_ALERT_WINDOW
permission), many free windows are typically launched by
the system or system apps. The model considers a white list
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of UIDs of the system processes (e.g. system server) and
system packages (e.g. system UI) trustworthy, and allow their
windows being displayed freely. Moreover, there are two types
of windows that the system treats differently: input window
(including input method or dialog windows), and wallpaper
window. An input window is registered in the Input Manager
Service. When a window requests input method, the Input
Manager Service launches the input window on top of the
client window in the window stack. Wallpaper window is
similar, except that it is started by a wallpaper service and
is placed under the client window. Since the type and the
client window of an input or wallpaper window are securely
specified by the system, they are considered trustworthy (as
long as the input method or wallpaper packages themselves
are legitimate). The model allows input or wallpaper windows
being started as long as their client window is one of the
currently visible windows.

When an activity window is started, either (1) the focused
activity remains the same (e.g. launching another top-level
app window or a sub-window) or (2) the focused activity
changes, and the activity window belongs to the newly focused
activity. The first case is always valid because the display
owner is unchanged and the activity window must be started
by the display owner app (assured by the security guarantee
of app window tokens). In the second case, the change of
focused activity implies a possible change of display owner.
Given the flexibility of Android APIs and task features, there
are numerous possibilities that would result in the change of
display owner, which we will characterize in Section IV-A.
Despite the complexity, the same principle still holds, i.e., the
change of focused app must be initiated by the display owner
app or white-listed principals.

Among the many possibilities of focused activity change,
back button pressing is special. Back button is one of the most
popular user navigation control always available on screen. By
default, one can navigate backward to the previous screens by
pressing the back button. In this case, the system destroys
the current focused activity and resumes the next activity
on back stack. However, the back button behavior can be
changed by overriding the onBackPressed callback function
of the focused activity. Although this flexibility is useful in
many cases, e.g., fragment or webview navigation within the
same activity, it is sometimes confusing to the user if being
mis-used, e.g., instead of “going back”, it re-directs the user to
some other activity. The model does not regard the customized
back behavior malicious as it is defined and initiated by the
focused activity. That being said, the model keeps an eye on
the program behaviors after a back button pressing, and raises
a toast message when user confusion is possible.

IV. WINDOWGUARD

We implement the AWI as a module for the Xposed
framework, a popular code-injection framework for rooted
Android devices. The implementation, namely WindowGuard,
is tested on Google Nexus 5 phone and can be used in Android
4.4, Android 5.x and Android 6.0 with minor changes. An
Xposed module can hook arbitrary functions of the system or
apps at runtime and change their behaviors without modifying
the system or apps themselves. WindowGuard can be used on
all Android device brands that the Xposed framework supports.

These features makes WindowGuard practical to be distributed
to a large number of Android devices and provide immediate
protection.

A. AWI Model Implementation

WindowGuard implements AWI by hooking 26 functions
of AMS, WMS, Package Manger Service (WMS), and system
UI in a total of 2300 lines of code.

Activity session integrity. As previously depicted in Figure 3,
activity sessions are implemented as a tree data structure
maintained in the system server process (a privileged process
hosting all system services implemented in Java). Each node
represents an activity, which links to its predecessor and
successor activities. Activity sessions share the same root, the
launcher activity. A new activity node will be added to the
current foreground activity session only if a new activity ob-
tains the focus (its windows become visible), and is destroyed
together with its corresponding activity. WindowGuard hooks
functions in AMS to perform back stack integrity check upon
the change of focused activity, as discussed in Section III-C.

Access control of free windows Given a display owner, access
control is enforced on the free windows that are about to be
displayed or resumed based on the discussion in the legitimacy
of future windows. For those existing visible windows that
violate the window legitimacy criteria, free windows are made
invisible, and activity windows (if there is any) are reordered
under the focused activity windows in the window stack.
To achieve this, WindowGuard hooks a handful of WMS
functions performing functions such as adding windows to the
window stack, window stack reordering, and window visibility
control. Access control of free window helps prevent window
overlay attacks such as user spoofing or a ransomware denial-
of-service attack. In a denial-of-service attack, even if the
ransomware manages to “lock” the screen using a free window,
the use can always click home or recent activity button to
escape the lockscreen.

Safeguarding focused activity transition Focused activity
transition happens frequently during the use of device in
practice. It happens either during activity launch or resumption
and may result in a new display owner. In principle, the
focused activity transition must be initiated by the display
owner app in either cases, as previously discussed. Due to
the complex app navigation behaviors, the focused activity
transition requires close monitoring of a variety of system
functions or APIs.

A new activity gets focus when it is launched by one of
the startActivity function calls from an app. The origin of
the caller app is examined. If the caller app UID is not the
current display owner or one of the white-listed principals,
an alert notification with detailed information is prompted to
the user for confirmation to proceed. This effectively prevents
attacker from overlaying an malicious activity window on top
of a victim app. Similarly, resumption of existing activity can
also trigger focused activity transition. Activity resumption
could occur either passively or actively. For example, the
next activity on the back stack is passively resumed when
the current focused activity quits and is destroyed by the
system. It is perfectly valid in this case for the display owner
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to yield its own privilege. Activity resumption can also be
actively initiated by invoking a set of APIs such as startAc-
tivity, moveTaskToFront/Back, or moveTaskForward/Backward.
Specifically, startActivity can resume an existing activity under
certain conditions, e.g., the activity’s launch mode is singleIn-
stance. The latter two APIs can move a task to the foreground
or background, which essentially changes the display owner at
will by any app as long as REORDER TASKS permission is
granted. WindowGuard hooks the internal functions in AMS
for each of these app APIs to check the caller origin. A user
confirmation is further requested if the caller origin is not from
the display owner.

B. Security of App Navigation “Hubs”

The launcher and recent task list play crucial roles and act
as app navigation “hubs”. Due to the vendor customization or
availability of third-party alternatives, the security implication
of these components is unknown. In addition to the security
provided by the generic AWI model, WindowGuard provides
extra protection on these critical components.

Launcher: Launcher is the first app activity to be started.
Other than the default launcher that comes with the stock
system, third-party launchers are also available. Our first goal
is to securely start the launcher activity of user’s choice. After
system boot-up, AMS queries PMS about the information of
packages that can serve as the launcher. If multiple launcher
activities are returned, a dialog is prompted for user to make
a choice. At this stage, WindowGuard is able to prevent an
attacker from affecting user’s choice by manipulating windows
on screen, as the display owner is system UI (who owns the
dialog activity). WindowGuard trusts the user’s choice and
regards the chosen launcher activity as the only root of all
activity sessions in this system launch.

The second goal is to assure that an app is reliably started
when the user clicks its icon in the launcher. Here we discover
a security issue in the app launch process, which affects
all Android and launcher versions. When an app icon is
clicked in the launcher, an intent with NEW TASK and ACTIV-
ITY BROUGHT TO FRONT is sent to start the corresponding
app. The combined use of these intent flags creates a new task
to host the app’s new activity. If the app’s task already exists,
the task will simply be brought to the foreground. However, in
this operation, AMS considers the task owner to be the package
name described in the taskAffinity attribute of the root activity
(the bottom activity in the back stack), instead of the app of the
root activity itself. Although the two are by default the same,
the taskAffinity attribute can be configured arbitrarily to some
other app’s package names without restriction. Therefore, a
malicious activity can spoof the system by specifying a victim
app’s package name as its taskAffinity, and start the activity
in a new task. The task is then believed by the system to be
the victim app, but in fact, is controlled by the attacker. The
problem occurs when the user clicks on the victim app, yet
the malware task is started instead of the victim app itself.
To remedy this problem, WindowGuard monitors the requests
of activity launch in AMS. If it comes from the launcher,
WindowGuard saves the app to be started, and later verifies
that if the focused task indeed belongs to the app by checking
the origin of the task’s root activity.

Recent Task List: The recent tasks screen contains a list of
all recently accessed tasks, and for each task it shows the task
owner’s name/icon and the task’s last screenshot. The user can
browse through the list and choose a task to resume. However,
the recent task list suffers from the similar problem of task
ownership confusion, because it regards the owner of a task to
be the app described in the taskAffinity attribute of the task’s
root activity. As a result, the user could be easily spoofed by
a malicious task which camouflages as the victim app in the
recent task list. To impede such an attack, the system UI is
hooked such that it shows the name/icon of the root activity
app of a task, instead of what is described in the taskAffinity
attribute. By this means, it faithfully reflects the real identities
of tasks in the system.

C. Preserving User Experience

WindowGuard implements the AWI model, which is de-
signed to adapt to the Android use and navigation pattern,
such that the user experience is not affected at all in normal
use until a security violation is detected. The security violation
may indicate a potential GUI attack or a legitimate use of GUI
features that do not strictly follow the norm of Android app
model. WindowGuard takes a light-weight response by briefing
the user and asking for the user’s final decision upon a security
event, such as block, allow for once, or add to white list, etc.
The alert messages, depending on the emergency and severity
of attacks, are delivered via a confirmation dialog, a system
notification or a toast message right after the violation occurs.
WindowGuard maintains a handful of white lists; one for
each security feature. Those on a particular white list are not
confined by the corresponding security feature. WindowGuard
always respects the user’s decision and the diversity of user
needs; the white lists are promptly updated based on user input.
Moreover, all GUI security protection features can be lifted and
re-enforced in a centralized control panel, making it convenient
for the user to tune the security features based on preference.

V. EVALUATION

We now proceed to the empirical evaluation of the effi-
cacy of WindowGuard in the following facets: effectiveness,
usability and performance impact.

A. Effectiveness

To evaluate the effectiveness of our solution, we install
the WindowGuard prototype on a Google Nexus 5 phone and
experiment with 15 attack samples from all 12 attack vectors
listed in Table I. The attack samples are either real-world
malware/adware, or are proof-of-concept apps we developed
based on previous research [2], [7], [13], [19], [25], [28].
The evaluation shows that WindowGuard is able to effectively
detect and defeat all attacks. We now show a few case studies
to demonstrate how the attack behaviors violate AWI and how
WindowGuard delivers the potential attack alert to the user.

Back button hijacking: Back button hijacking [28] is one
type of task hijacking attacks. The attack misleads the user to
a phishing activity after the user clicks the back button, instead
of the original activity the user just visited. Figure 5 shows the
task states in AMS. In Figure 5(a), victim activity A2 intends
to start a legitimate utility activity U to serve the user’s request
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Fig. 5. System state and activity session in a back hijacking attack. A: victim
app; M: malware; U: legitimate utility app.

(e.g., playing a video). However, when activity U is created,
it is tricked to be emplaced on top of a phishing malware’s
task, whose enclosing activities M1 and M2 are camouflaged
as the appearance of A1 and A2. This happens due to the use
of NEW TASK intent flag when starting activity U and the
abuse of taskAffinity by the malware. When the user later taps
the back button, the phishing activity M2 is resumed by the
system, while the user still believes he/she has gone back to
the original activity A2. User’s sensitive information (such as
bank login information) is then stolen by the malware.

WindowGuard can readily detect the task hijacking be-
havior when activity U is launched on the malware task.
As shown in Figure 5(b), the activity session keeps track
of the visible activity windows from the launcher activity
all the way to activity U. When activity U is started, the
legitimacy of back stacks is checked by comparing related
back stacks (i.e. launcher task, task A and task M) against
the focused activity session. The disparity of the comparison
is obvious due to the relocation of activity U. In this case, a
notification is created in the status bar to notify the user of
the possible security threat. Likewise, all other task hijacking
attacks violating the legitimacy of back stack can be defeated
by WindowGuard as well. On the other hand, this kind of
task manipulation behavior can also be used for legitimate
purpose. WindowGuard provides detailed information about
the security risk to the user, and it is up to the user to make
the final judgment based on the context. For example, a useful
task management app may frequently use various task-related
features and inadvertently trigger the alarm. In this case, the
user can easily cease the surveillance of this particular app
in the WindowGuard control panel. In some other context, the
security alert is particularly alarming when the user is working
in a bank account, e.g., making a money transfer.

Tapjacking: Clickjacking attack is well known in web security.
The similar attack idea is brought to the Android environment,
called tapjacking. Tapjacking overlays windows on top of
screen and spoofs the user to perform undesirable operations.
Bankbot [23] is a family of banking malware discovered in
South Korea Android market in October 2014. It was designed
to steal authentication information from the clients of various
financial institutions. To avoid itself from being uninstalled,
Bankbot disguises itself as Google play store app and attempts

(a)	 (b)	 (c)	

Fig. 6. Screenshot of (a) Admin privilege confirmation window; (b)
tapjacking attack window placed on top of (a) (message: “please update the
app to the latest version”); (c) Security alert dialog created by WindowGuard.

to acquire admin privileges of the device. Granting admin
privilege requires user confirmation, as shown in Figure 6(a).
Bankbot overlays a free window (system alert window) on
top of the admin privilege confirmation activity, claiming that
the software needs update to the latest version. Although the
free window is opaque, it is intentionally configured to not
receive user tap input, such that the tapping of the button at
the bottom of the free window is in turn received by the active
window underneath it, i.e., the system confirmation window.
As a result, the user agrees to the software update request
without realizing that he/she is in fact granting the admin
privilege to the malware. WindowGuard immediately detects
the attempt of free window launch and pauses it before asking
for the user’s decision from a security alert dialog, as shown
in Figure 6(c). The attack is detected because the current
display owner is the system settings, who owns the focused
confirmation activity. Any window operations (including free
and activity window) that affect the focused activity window
are reported to the user and ask for user permission to proceed.

Ransomware: Screen-lock ransomware blackmails victim
users by locking the screen for money in exchange for the
accessibility to the system again. Ransomware has migrated to
Android and has been growing at an alarming rate in the past
few years. A ransomware usually renders a high-z-order free
window to overlay the full screen and hence blocks all user
inputs to the system, leaving the system effectively “locked
up”. The ransomware can even use a combined GUI attack
vectors, e.g., getting admin privilege via tapjacking, to become
more powerful and hard to remove, like a recent ransomware
called Lockerpin [26]. In addition, [28] demonstrates that a
ransomware can also launch activity windows to prohibit user
access to targeted victim apps, e.g., an anti-virus app. In either
experiment, WindowGuard can block the lock screen window
as long as the window’s initiator is not the current display
owner. Even if the user is spoofed and accidentally gets trapped
by a lock screen, the user can always escape by clicking the
home or recent button, which starts the launcher or system UI
activities. Changing the display owner to launcher or system
UI make the foreground malicious lock screen no longer valid
and the lock screen is immediately removed. A notification
message is then created to inform the user about the security
enforcement just occurred.
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Security Feature Alert # of % of
Msg Apps Apps

Activity Session Legitimacy T, N 12 0.10
New Window Access Control D 39 0.32
Existing Window Legitimacy T, N 14 0.12

New Activity Control D 69 0.57
Activity Resume Legitimacy D 11 0.09

Any Feature(s) 124 1.03

TABLE II. NUMBER AND PERCENTAGE OF LEGITIMATE APPS THAT
TRIGGER DIFFERENT SECURITY FEATURES OF WINDOWGUARD. TOTALLY
12,060 MOST POPULAR APPS FROM GOOGLE PLAY. ALERT MESSAGES ARE

IN FORMS OF - T: TOAST MESSAGE, N: SYSTEM NOTIFICATION, D:
CONFIRMATION DIALOG.

# of security 1 2 3 4 5features triggered
# of Apps 107 15 0 2 0

TABLE III. THE NUMBER OF APPS THAT TRIGGER DIFFERENT
NUMBERS OF SECURITY FEATURES.

B. Usability and Performance Impact

While providing comprehensive protection of the GUI
system, WindowGuard is designed to maximally preserve user
experience. In this section, we seek to understand the usability
impact of WindowGuard on the legitimate apps. To this end,
we collect 12,060 most popular apps from Google play, each
app with over 1 million installs. The experiment is conducted
on Nexus 5 devices with Android 4.4, the most distributed
Android version. To emulate user input, we employ Monkey,
a stress testing tool, to generate pseudo-random streams of
user events to exercise each app continuously for 5 minutes.
In order to take into account of app interactions, at least 30
other apps are installed at the same time when an app is
under test. The protection of WindowGuard is classified into 5
security features and each feature maintains a white list. Once
an app is white-listed by the user, it is exempt from the security
check of the corresponding feature. For example, if app A is
added to the white list of “Free Window Control”, app A can
launch free windows anytime without alerting the user or being
blocked by WindowGuard. Once a false alarm is raised, we
assume the app is immediately added to the white list of the
corresponding security feature by the user (either manually or
automatically after user consent). To measure how “annoying”
the security features affect the normal function, Table II reports
the percentage of apps that trigger each type of security alert
in our experiment.

As shown in Table II, WindowGuard has no impact on
most popular apps (98.97% apps). It indicates that most of
these popular apps follow the Android app model and the norm
of app navigation. Among these 1.03% of apps that trigger
WindowGuard’s alerts, most apps only trigger one security
feature, as shown in Table III. It means that WindowGuard
only interrupts the user once during the use of most of these
apps. It is noteworthy that the “New Window Access Control”
and “New Activity Control” features affect 0.32% and 0.57%
of all apps respectively. We find that these apps launch free
or activity windows on top of other apps for a variety of

# of security 1 2 3 4 5 6 7 8 9 >= 10alerts
# of Apps 34 28 14 5 6 1 4 0 4 18

TABLE IV. THE NUMBER OF APPS THAT TRIGGER DIFFERENT
NUMBERS OF SECURITY FEATURES.

legit purposes. For example, toast messages are raised by
background app services to display warning messages; A free
window is decorated as a handy and always-visible controller
for a music player app; Certain ad libs create free window
or new activities to display advertisements; and app locker
apps use free window or activity window to “lock” particular
apps before the correct password is provided. Although these
windows are all for legitimate purposes, the windows they
launched have in fact interfered with the GUI of other apps,
even with no bad intention. It is therefore a good time to
let the user make the decision on if they are useful or not,
e.g., a floating music player controller window is useful but
an advertisement window might be annoying for the user. In
our experiment, we also find that a significant portion of apps
re-write the back button behavior. Instead of “going back”,
the back button is either disabled or re-directs the user to
another activity of the same app. As discussed in Section III-C,
WindowGuard considers back behavior modification less risky
and does not raise alarm when the back behavior fails to
meet user expectation. Despite that, changing the behavior
outrageously can be confusing to users and requires careful
consideration in app design. Another finding is that, among the
apps that trigger security alerts, Table IV shows the number
of apps that trigger a particular aggregate number of security
alerts in the given testing period. As shown in the figure, a
majority of apps triggers less than 3 security alerts even if the
app runner is a pseudo-random event generator.

We now proceed to the performance evaluation of Win-
dowGuard. To evaluate the performance overhead, we use
Monkey to generate the same sequence of 5000 user events
to the same app running on the system with and without
WindowGuard module enabled. We collect the complete time
Twith and Tw/o, respectively, and the overhead is calculated as
(Twith − Tw/o)/Tw/o × 100%. We manually select 100 apps
that are in different categories and have complicated activ-
ity/window hierarchies. WindowGuard turns out to perform
very efficiently, yielding only 0.45% of performance overhead
on average.

VI. RELATED WORK

GUI security has been well studied in traditional desktop
environments [3], [8], [14], [32]. On the other hand, the unique
mobile environment has raised unique challenges.

GUI confidentiality attacks and defenses. Previous research
proves that the confidentiality of GUI can be broken through
side channels such as shared-memory side channel [7], peeking
sensor information [21], [36], via system or app flaws [17],
[18], [29], or shoulder surfing [22]. Sensitive GUI information
can also be disclosed by taking screen shots because of adb
flaws [17], or via embedded malicious UIs [18], [29]. One the
other hand, GUI information disclosure can also be put into
good use for forensics analysis [30], [31]. A few approaches
have been proposed to protect GUI confidentiality [6], [24],
[29], which help limit the attack surfaces for confidentiality
breaches. However, comprehensively protecting GUI confi-
dentiality from all aspects of the system remains to be an
open question. Our work instead focuses on the integrity
and availability of Android GUI, properties that are seriously
threatened by emerging GUI attacks.
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GUI integrity and availability attacks and defenses. Previ-
ous research shows the possibility to launch phishing [2], [7],
[13] or tapjacking attacks [19], [25] in Android by overlaying
a window of attacker’s control on top of the victim app’s
window. It is also viable to manipulate the activity browsing
history to launch a variety of task hijacking attack [28]. Denial
of service attacks [5], [28] and adware [11], [27], [33] are also
posing increasing threat to the GUI availability. Roesner et.
al. [29] systematically study the design of secure embedded
user interfaces. Bianchi et. al. [2] propose a novel two-
layer defense towards defending against GUI confusion attack,
an important type of GUI attack. Compared with previous
work, we propose a new security model to systematically
protect the integrity and availability of the GUI system, while
preserving the original user experience. The implementation,
WindowGuard, can defeat broader GUI attacks and is practical
to be distributed to a large number of Android devices.

Integrity of program execution. Control flow integrity [20]
defends against subverted machine-code execution such as
return-oriented programming [10] and return-to-libc [15] at-
tacks. One of the approaches is to save the state of the program
(e.g. the native return address) in a shadow stack [16], [29],
[34]. When the program state is resumed (e.g. function return),
the resumed program state is compared with the saved copy
on the shadow stack. Similar idea is applied to the legitimacy
check of activity session in our work. The previous-visited
GUI states, activities, are saved in a activity session. To defeat
task hijacking attacks, the integrity of the foreground activity
session is scrutinized whenever an activity obtains focus.

VII. DISCUSSION

WindowGuard is not a malware detection system. The
goal of WindowGuard is to accurately detect the attacks that
affect the GUI integrity and availability of other apps, instead
of detecting malicious behavior within an app itself, e.g., a
phishing activity within the malware’s context. WindowGuard
always respects the user’s choice. Therefore, if a malware is
intentionally launched by the user (e.g., the user is spoofed
by the social engineering tricks used by the malware) Win-
dowGuard does not disagree with user’s decision. Defending
against trojan horse malware like this is out of scope of
this defense mechanism. On the other hand, WindowGuard
guarantees to prevent a malware from becoming the display
owner if the user or the current display owner app does
not explicitly launch the malware, as we have seen in our
evaluation. In addition, WindowGuard is not a vulnerability
discovery system. It is not designed to discover or address
the GUI security issues within an app itself, e.g. misleading
app navigation design, or vulnerable access control of an app
component, although WindowGuard does has the capability to
detect a subset of these design flaws and give hints to the user,
such as inconsistency of back button behavior.

There are several limitations of WindowGuard. First, al-
though WindowGuard can successfully detect all known GUI
attacks, it also introduces false positives. As we have seen in
evaluation, legitimate app developers, without understanding
the security implications, may conduct operations that violate
AWI principles. For instance, a phone call recorder app namely
FonTel displays a window (which contains voice recording
control buttons) on top of the system dialer app whenever there

is a phone call. Although the window is useful for the apps
functionality, it has effectively disturbed another app’s GUI
and user experience. Determining the real intention of such
app behavior (e.g. an useful phone recorder control widget
or a phishing window) is fundamentally difficult for automatic
systems. In contrast, users are more capable of making the best
decision based on the runtime context. WindowGuard adopts
the advantage of user to overcome this difficulty while still
retaining the original user experience. Second, user involve-
ment may adversely introduces false negative caused by user
mistakes, e.g., an user explicitly allows a login pop-up window,
which is in fact a phishing window. In this paper, although a
security warning is displayed (e.g., in Figure 6), we specify
WindowGuard to always respect user decision and report the
usibility findings in Section V-B. How to improve security-
and-usability balance and the efficacy of defense requires
comprehensive user study (e.g., the user study of Android
permission system [12]) and is beyond the scope of this
paper. Lastly, the implementation of WindowGuard is based on
Xposed, which can only be used on rooted Android devices.

VIII. CONCLUSION

In conclusion, we propose a new security model - Android
Window Integrity - to systematically protect Android GUI
system from attacks that compromise GUI integrity and avail-
ability. We develop WindowGuard, an Xposed module that
implements AWI model while preserving the original Android
user experience. Our evaluation shows that WindowGuard can
successfully defeat all known GUI attacks and yields small
impact on usability and performance.
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