Using Fully Homomorphic Encryption for Statistical Analysis of Categorical, Ordinal and Numerical Data

Wen-jie Lu¹, Shohei Kawasaki¹, Jun Sakuma^{1,2,3}

University of Tsukuba, Japan
 JST CREST
 RIKEN Center for AIP

Statistical Analysis on the Cloud

Multiple data providers

Analyst

Cloud computing is useful for statistical analysis

- Gather distributed data, and reduce hardware cost.
- Minimal interactions between data providers and the cloud.
- The cloud does most of the work for the analyst.

Cloud Computing with Sensitive Data

- Using outside cloud servers raises privacy concerns. • E.g, medical records, federal data.
- We want to calculate statistics on the cloud while keeping the data secret.

Secure Multiparty Computation (SMC)

x, y: private input F: public function

• Off-the-shelf tools for SMC protocols

• Yao's garbled circuit (GC).

○ Fully homomorphic encryption (FHE).

• But development cost and efficiency hinder applications of GC and FHE in the cloud.

GC on the Cloud Environment

GC requires a large development cost

• Multiple servers are needed.

 \odot Assume no collusion between servers.

Fast network is necessary for computation.
 o E.g., 10Gbps bandwidth.

FHE on the Cloud Environment

- Less development cost
 - Single server is enough.
 - Rapid network is not necessary.
- But might be inefficient in practice
 - \circ Encrypt bits one by one.
 - \circ 1~10 ms per evaluation.
 - 1~10 megabytes per ciphertext.

Gentry et al. Homomorphic Evaluation of the AES Circuit. 2012.

Observation

- Purpose of encrypting bits separately • To evaluate any Boolean function.
- But to do statistical analysis, we can use

 matrix arithmetic operation.
 comparison operation.

Our Result

• Two new FHE-based primitives:

Matrix Operations
 Batch Greater-than

- Secure statistical protocols:
 - histogram (count),
 - o order of counts,
 - <u>contingency table</u> (with cell-suppression),

o percentile,

o principal component analysis (PCA),

linear regression.

• Source codes: https://github.com/fionser/CODA

Preliminaries: Fully Homomorphic Encryption

• Public-private key scheme.

 \odot Data providers & cloud share the public key.

- \circ The analyst holds the private key.
- Allow addition (subtraction) and multiplication on encrypted integers.

 \odot Analogy: black box with gloves

Brakerski et al. Fully Homomorphic Encryption without Bootstrapping. 2012.

Preliminaries: Packing (Batching)

• Enable to encrypt and process **vectors** at no extra cost.

- Fewer ciphertexts
- Faster computation

N.P. Smart et al. Fully homomorphic SIMD operations. 2011.

Preliminaries: Slot Manipulation

Rotate slots of the encrypted vector.

Replicate a specific slot.

Part II Technical Details

- Data preprocessing.
- Efficient matrix multiplication on ciphertexts.
- Comparing two encrypted integers.
- Example of two protocols:
 - Contingency table with cell-suppression
 - Linear regression
 - (for other protocols, refer to our paper).

Data Preprocessing

- Numerical data: fixed-point representation
 3.14159 → [3.14159 ×1000] = 3142
 - Precision (e.g., 1000) determined in advance
- Categorical data: 1-of-k representation
 Gender (i.e., k = 2). Female → [1, 0] and Male → [0, 1]
- Ordinal data: stair-case encoding

Proposed Matrix Primitive

- Used for adding & multiplying encrypted matrices
- Encrypt each row separately by packing.
 - \odot Row-wise encryption.
 - \odot Horizontally partitioned data
- Efficient and layout consistent.
 - $\circ O(N^2)$ homomorphic operations.

Matrix Multiplication[1/2]

• Encrypt the matrix row by row with packing.

Matrix Multiplication[1/2]

• Encrypt the matrix row by row with packing.

- N^2 replications, multiplications and additions $\circ O(N^2)$ complexity compared to $O(N^3)$ (no packing).
- Also row-wisely encrypted resulting matrix.

Matrix Multiplication[2/2]

• Layout consistency is important for developing efficient statistical protocols.

 \odot Statistical algorithms need iterative matrix multiplications

Experimental Settings of Matrix Primitive

- Implementations:
 - FHE: HElib (C++ based)
 - GC : ObliVM (java based)
- Evaluated on 32-bit integers
- Networks:
 - LAN (about 88 Mbps)
 - WAN (about 48 Mbps)

HElib. https://github.com/shaih/HElib.

Liu et al. *ObliVM: A programming framework for secure computation*. 2015.

Evaluation of Matrix Primitive

- When do iterative multiplications, FHE-based primitive can offer better performance.
 - Save communication cost between each iteration

Greater-than (GT) Primitive

$$GT(e(x), e(y)) \rightarrow e(x \ge y) \text{ s.t. } 0 \le x, y \le D$$

- [Golle06] based on Paillier cryptosystem: $if \ x > y \ then \ \exists k \in [1, D] \rightarrow x - y - k = 0$
- Combination with packing gives great improvements:

$$e([x, ..., x]) - e([y, ..., y]) - [1, 2, ..., D] \rightarrow e(\eta)$$
Replicated D times

 \circ 0 ∈ $\eta \Leftrightarrow x > y$ (i.e., decryption is needed) \circ Complexity from *D* to [D/ ℓ].

Experimental Settings for GT Primitive

- Implementations:
 - FHE: HElib (C++ based)
 - GC : ObliVM (java based)
- Domain *D* = 2⁴ ~ 2²⁴
- Number of slots $\ell \approx 1700$.
- Networks:
 - LAN (about 88 Mbps)
 - WAN (about 48 Mbps)

HElib. https://github.com/shaih/HElib.

Liu et al. *ObliVM: A programming framework for secure computation*. 2015.

Evaluation of Greater-than Primitive

Execution Time

Communication Cost

Works for small domains, which is enough for ordinal statistics.

Secure Statistical Protocols

- Contingency table with cell-suppression protocol:

 Use the greater-than primitive.
 One round protocol between cloud and analyst.
- Linear regression protocol:
 - Use the matrix primitive.
 - Two rounds protocol.
 - Use a Plaintext Precision Expansion technique (discuss it latter).

Contingency Table

Gender	Smoke			K ₂ = 2		
Male	Smoker			Smoker	Non-smoker	
Female	Non-smoker	K. = 2	Male	1	1	
Male	Non-Smoker	N ₁ – 2	Female	0	1	
Catego	orical data		Contingency Table			

Contingency Table

Indicator encoding:

Male \rightarrow [1, 0], Female \rightarrow [0, 1] Smoker \rightarrow [1, 0], Non-smoker \rightarrow [0, 1]

Basic Idea: multiply & rotate

[a₁, a₂] x [b₁, b₂] counts Male-Smoker, and Female-Nonsmoker

 $[a_1, a_2] \times ([b_1, b_2] >> 1) = [a_1, a_2] \times [b_2, b_1]$ gives other two counts.

Improvement with no extra preprocessing

• $O(max(k_1,k_2)) => O(log k_1k_2).$

Contingency Table: Cell Suppression

if < 10									
	Smoker	Non-smoker	zero out		Smoker	Non-smoker			
Male	20	11		Male	20	11			
Female	3	12		Female	0	12			

Origin Table

Suppressed Table

- Protect the privacy of rare individuals.
- Given a ciphertext e(x), to compute e(y) where if x > threshold then y = x else y = some random value
- $GT(e(x), \text{threshold}) = e(\eta)$. iff x > threshold, then $0 \in \eta$.
- To compute $\{e(x + r), e(\eta + r), e(\eta \times r')\}$
 - Non-zero random vectors *r*, *r*'
 - If $0 \in \eta$, we have $0 \in \eta \times r'$, then we can get r and know x.

Contingency Table Performance Evaluation

- Complexity increases logarithmically with the table sizes.
- Most of the work (>90%) done by the cloud.

Linear Regression (LR)

- From data $\{(x_i, y_i)\}_i$, computes a model w s.t. $w = (X^T X)^{-1} X^T y$
- The inversion of an encrypted matrix.

Division-free Matrix Inversion (Q, λ): set $A^{(1)} = Q, R^{(1)} = I, a^{(1)} = \lambda$, and iterate Layout consistency leads to efficient iterative protocols. $R^{(t+1)} = 2a^{(t)}R^{(t)} - R^{(t)}A^{(t)}$ $A^{(t+1)} = 2a^{(t)}A^{(t)} - A^{(t)}A^{(t)}$ $a^{(t+1)} = a^{(t)}a^{(t)}$

[Guo06] $\mathbf{R}^{(t)}$ gives a good *approximation* to $\lambda^{2^t} \mathbf{Q}^{-1}$ if λ is close to largest eigenvalue of \mathbf{Q} (use PCA to compute λ).

Guo et al. A Schur-Newton method for the matrix pth root and its inverse. 2006. 27

Plaintext Precision Expansion (PPE)

- Division-free algorithms introduce large integers. $(\lambda^{2^{\iota}})$ \circ But the current FHE library allows at most 60-bit integers.
- Allows division-free algorithms without changing the FHE library.
- Uses K different FHE parameters (each b-bit < 60)

 Achieves an equivalent Kb-bit parameter.
 Increases the time by K times, but naturally parallelizable.
- Direct application of the Chinese Remainder Theorem.

Experiments: Linear Regression

- Negligible decryption time (less than 2 s).
- 20x faster than previous FHE solution [Wu et al. 12]
 5 dimensions (400+ mins).
- Good scalability (reduced execution using more cores). 29

Summary

- Secure statistical analysis in the cloud with multiple data providers.
- Two primitives

 \odot Matrix operation and greater-than

• Two protocols.

Contingency table and linear regression.

• Encoding and packing can improve FHE's balance between generality and efficiency.