
Pushing the Communication Barrier in Secure
Computation using Lookup Tables

Ghada Dessouky∗, Farinaz Koushanfar†, Ahmad-Reza Sadeghi∗, Thomas Schneider‡,
Shaza Zeitouni∗, Michael Zohner‡

∗TU Darmstadt, System Security Lab, Email: name.surname@trust.tu-darmstadt.de
†University of California, Adaptive Computing and Embedded Systems Lab, Email: fkoushanfar@ucsd.edu

‡TU Darmstadt, Engineering Cryptographic Protocols Group, Email: name.surname@crisp-da.de

Abstract—Secure two-party computation has witnessed sig-
nificant efficiency improvements in the recent years. Current
implementations of protocols with security against passive ad-
versaries generate and process data much faster than it can be
sent over the network, even with a single thread. This paper
introduces novel methods to further reduce the communication
bottleneck and round complexity of semi-honest secure two-party
computation. Our new methodology creates a trade-off between
communication and computation, and we show that the added
computing cost for each party is still feasible and practicable in
light of the new communication savings. We first improve com-
munication for Boolean circuits with 2-input gates by factor 1.9x
when evaluated with the protocol of Goldreich-Micali-Wigderson
(GMW). As a further step, we change the conventional Boolean
circuit representation from 2-input gates to multi-input/multi-
output lookup tables (LUTs) which can be programmed to realize
arbitrary functions. We construct two protocols for evaluating
LUTs offering a trade-off between online communication and
total communication. Our most efficient LUT-based protocol
reduces the communication and round complexity by a factor
2-4x for several basic and complex operations. Our proposed
scheme results in a significant overall runtime decrease of up to
a factor of 3x on several benchmark functions.

I. INTRODUCTION

Secure computation allows two or more parties to evaluate
a public function on their private inputs without revealing any
information except what can be inferred from the output. In the
context of secure two-party computation with security against
passive (semi-honest, honest but curious) adversaries, the most
prominent protocols are Yao’s garbled circuits [Yao86] and the
protocol by Goldreich-Micali-Wigderson (GMW) [GMW87].
Yao’s garbled circuits protocol securely evaluates a function,
represented as Boolean circuit, in a constant number of rounds.
The Boolean circuit consists of XOR gates, which can be eval-
uated for free [KS08], and AND gates, for which the parties
have to send data. The GMW protocol also works on Boolean
circuits where XOR gates can be evaluated locally without any
communication and is divided in two phases: a setup phase and
an online phase. The setup phase is executed prior to the actual

function evaluation and is independent of the pertinent function
and the parties’ private inputs. It allows to pre-compute all
communication-intensive symmetric cryptographic operations
and oblivious transfers (OTs, cf. §II-C) to generate helper
data. The online phase begins when the parties secret-share
their private inputs and lasts throughout the evaluation of the
function circuit using the pre-computed helper data until the
final output is computed. The main difference of both protocols
is that the round complexity of the online phase is constant for
Yao’s protocol, but linear in the depth of the circuit in GMW.

In recent years, the practical efficiency of secure two-
party computation schemes has been dramatically improved by
orders of magnitudes, making solutions ready for deployment
in practice [BCD+09], [BJSV15], [Sec15], [SHS+15]. One of
the key enablers for these improvements has been the efficient
instantiation of underlying cryptographic primitives, which
decreased the computational cost per cryptographic operation
close to negligible [BHKR13], [GLNP15]. While the com-
putation has been dramatically reduced, the communication
improvements have been smaller, shifting the bottleneck in
current protocol implementations towards communication. In
particular, the work of [BHKR13] computes at the speed of
nearly 2 Gbit/second per thread. It has been shown in [ZRE15]
that today’s best instantiation of Yao’s protocol of [ZRE15] has
hit a lower bound of two κ-bit ciphertexts per AND gate in the
Boolean circuit, where κ is the symmetric security parameter.

In contrast, for the GMW protocol, it has been shown that
it is still possible to achieve communication less than two κ-bit
ciphertexts per AND gate [KK13]. The GMW protocol allows
that all symmetric cryptographic operations are pre-computed
in the setup phase without knowing the function beforehand,
unlike Yao’s protocol, and thus offers the possibility of a very
efficient online phase. Therefore, GMW is the candidate of
choice in our work and the basis of our improved protocols.
However, the multi-round online phase of GMW greatly re-
duces its practicality for many real-world secure computation
applications. In order to speed up this online phase, recent
work of [IKM+13], [DZ16] has introduced protocols that
use multi-input tables rather than traditional 2-input Boolean
gates to reduce the number of communication rounds. To pre-
compute these tables, the communication complexity in the
setup phase was extremely increased, which is a common
approach for improving the online phase. However, the large
communication overhead introduced by these protocols is
particularly intolerable for most practical purposes and real-
world applications and would scale very poorly as the function

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23097

size grows. Furthermore, the protocols are mostly theoretical
with no evaluation of applicability besides AES in [DZ16].

In summary, the main bottlenecks in passively secure two-
party computation today are the setup communication (which
dominates the total communication) and the online round com-
plexity, both of which are often at a trade-off. Existing general
purpose schemes achieve either low setup communication or
low online round complexity, but not both.

A. Our Contributions

In this paper, we present a more holistic end-to-end solution
that significantly reduces the communication complexity in
semi-honest secure two-party computation, while simultane-
ously maintaining a low number of communication rounds.

LUT-based Secure Computation. We replace the function
representation as 2-input Boolean gate circuit by a more
compact multi-input lookup table (LUT)-based representation.
This enables the evaluation of more complex functions by
representing the entire functionality as a compact graph of
interconnected LUTs. We propose protocols to evaluate LUT-
based circuits which reduce the communication overhead sig-
nificantly by a factor 4x compared to state-of-the-art Yao’s
protocol [ZRE15] and the round complexity by factor 4x
compared to the GMW protocol. Using multi-input gates in
secure computation has been investigated before, but previous
works incurred a drastic communication overhead even for
a small number of inputs and only considered this approach
for special functions such as the AES S-box, rendering their
protocols unpractical, non-generic, and unscalable for real-
world applications [HEKM11], [KK12], [IKM+13], [MPS15],
[DZ16]. In contrast, we generalize our protocols to enable
computation of any functionality making them more practical
and scalable for real-world applications.

LUT Protocols. We construct two protocol variants for eval-
uating LUT-based circuits, called OP-LUT and SP-LUT, that
offer a trade-off between improved online communication (OP-
LUT) and improved setup/total communication (SP-LUT).
Our LUT protocols can also be used to evaluate 2-input
Boolean gates using the GMW protocol at no additional cost,
since all use XOR-based secret sharing. This allows that we
can effectively and seamlessly combine the benefits of both
representations with our protocols. Further details on their
construction can be found in §IV.

More Efficient
(
N
1

)
OT Extension. A key building block for

our LUT protocols is the 1-out-of-N oblivious transfer exten-
sion protocol, denoted as

(
N
1

)
OT extension. We use the most

communication-efficient OT of [KK13] as a starting point and
introduce further optimizations to reduce both its computation
and communication overhead. We propose a protocol called
N -MT (multiplication-triple generation based on

(
N
1

)
OT),

which leverages our optimizations to achieve a communication
reduction per AND gate by a factor of 1.9x from 256 bits to
134 bits in the GMW protocol, for security parameter κ = 128,
in comparison to the traditional 2-MT (multiplication-triple
generation based on

(
2
1

)
OT) of [ALSZ13] and a reduction

by a factor of 1.2x compared to the protocol of [KK13]. We
describe our optimization techniques in detail in §III.

Compiler for LUT-based Secure Computation. Since we
move away from 2-input Boolean gates, we require new op-
timized LUT-based circuit representations of functions. How-
ever, building such circuits by hand is tedious, challenging,
and error-prone. Instead, we construct an automated toolchain
that transforms high level function descriptions into a LUT
representation. More specifically, we re-purpose hardware syn-
thesis tools for secure computation as first shown in [SHS+15],
[DDK+15], but for LUT-based synthesis tools, which we
customize and manipulate to automatically and efficiently
generate multi-input multi-output LUT representations. An in-
depth description of the hardware synthesis tool leveraged and
how we re-purpose it can be found in §V.

Evaluation on Basic Operations and Applications. We
demonstrate the improved efficiency and practicality of our
LUT protocols by evaluating a wide range of functionalities.
Our protocols are shown to improve on the communication
of floating point operations by factor 2-4x and the round
complexity by factor 3-4x. We report and discuss our ex-
tensive evaluation results for basic operations in §VI and
more complex applications in §VII. For some operations, our
most efficient LUT protocol achieves as little as half a κ-bit
ciphertext communication per AND gate. In terms of actual
runtime, our protocols achieve up to 3x faster runtime for AES
and private set intersection.

B. High-Level Idea of Our Scheme

We construct a toolchain, presented in Fig. 1, that com-
piles functions described in a high-level hardware descrip-
tion language into a mixed representation of LUTs and 2-
input Boolean gates using a hardware synthesis tool that
we customize and re-purpose for our setting. These circuit
representations can then be evaluated in a communication-
efficient manner using our OP-LUT or SP-LUT protocols for
LUT gates and using GMW with our N -MT pre-computation
method for 2-input Boolean gates. Note that the LUT pro-
tocols can be freely combined with GMW at no additional
cost, since all schemes are based on XOR secret sharing.
Our protocols are based on the

(
N
1

)
OT extension protocol

of [KK13] which runs in the setup phase that we further
optimize in terms of both communication and computation.
We evaluate our protocols on various basic operations and
applications in secure computation and show that our LUT
protocols often achieve significantly better communication and
round complexity than traditional 2-input Boolean gate repre-
sentations. Our synthesized LUT representations and imple-
mentations are available within the ABY framework [DSZ15]
at http://github.com/encryptogroup/ABY.

C. Outline

We provide preliminaries and background in §II. Next,
we describe in more detail our improved

(
N
1

)
OT extension

protocol in §III, followed by a description of our LUT-
based representation and protocols in §IV. Our customized
hardware synthesis approach is given in §V. Finally, we show
an extensive evaluation of our toolchain for basic operations
in §VI and applications in §VII. We give related works in §VIII
before we conclude and give future works in §IX.

2

http://github.com/encryptogroup/ABY

Functionality
in HDL

HW Synthesis Representation

LUT

LUT

(N
1

)
OT Extension

SP-LUT OP-LUT N -MT

Input P0 Input P1

Output

Fig. 1. Our toolchain for compiling a high-level hardware description language into a network of 2-input Boolean gates and LUTs and evaluating them using
our communication-efficient SP-LUT, OP-LUT, and N -MT protocols, which build on our improved

(N
1

)
OT extension protocol.

II. PRELIMINARIES

A. Notation

We denote the two parties as P0 and P1 or sender PS and
receiver PR and the symmetric security parameter as κ, which
we fix to κ = 128 throughout this paper.

B. LUT-based Boolean Circuits

In our context, a Lookup Table (LUT) is the set of all func-
tions that map δ ≥ 2 input bits to σ output bits (cf. Fig. 2 for
an example). Using this representation, complex functionalities
can be built as a compact graph of interconnected LUTs.

Boolean Circuit Lookup Table

a b c

d

∧ ⊕

∧

a b c

d

LUT

a b c d
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Fig. 2. A function with δ = 3 input and σ = 1 output bits represented as
Boolean circuit with 2-input gates (left) and lookup table (right).

C. Oblivious Transfer

In 1-out-of-N oblivious transfer, denoted
(
N
1

)
OT, a

sender PS inputs N messages (x1, ..., xN) from which a re-
ceiver PR with selection input r ∈ [1...N] obtains message xr
obliviously such that PS does not learn PR’s choice r and PR
does not learn any information about xi with i 6= r. By(
N
1

)
OTmn we denote m invocations of

(
N
1

)
OT, where each

of the N messages has length n bits. OT is a fundamental
primitive in cryptography and heavily used in secure compu-
tation. In [IR89] it was shown that OTs cannot be based on
one-way functions, i.e., OT requires at least some public-key
cryptography. Today’s fastest public-key based OT protocol of
[CO15] is able to compute 10,000 OTs per second.

OT Extension. In [IKNP03] it was shown that it is pos-
sible to “extend” a few (around κ) public-key base-OTs to
an arbitrary number of OTs using symmetric cryptography

only. Due to their nature, these protocols are called OT
extension protocols. The communication cost of today’s most
efficient 1-out-of-2 OT extension protocol is C(

(
2
1

)
OTmn)=

mκ + 2mn bits [ALSZ13], [KK13]. The implementation
of [ALSZ13] is able to compute one million OTs per second.

Random OT. Random OT is a special-purpose OT functional-
ity, tailored for more efficient secure computation. In contrast
to the standard OT functionality, in a 1-out-of-N random OT,
denoted

(
N
1

)
R-OT, the sender inputs no messages to the OT

protocol, but receives the messages as a random output of
the protocol itself, while the receiver still inputs its selection
string to choose one. This allows to remove the last message
in the OT which decreases the communication to C(

(
2
1

)
R-

OTmn)= mκ bits [ALSZ13], [KK13].

D. Yao’s Garbled Circuits

Yao’s garbled circuits protocol [Yao86] allows two parties
to securely evaluate any function, represented as a Boolean
circuit. One party, the circuit garbler, assigns symmetric keys
corresponding to 0 and 1 to the wires of the Boolean circuit.
The garbler then garbles the circuit by encrypting the keys
of the output wires of each gate using the keys of the gate’s
input wires. These encryptions form the garbled tables of the
circuit and are transferred to the evaluator, together with the
keys that correspond to both parties’ input wires to the circuit.
The evaluator then iteratively decrypts the correct output keys
of the gates using the corresponding input keys and obtains the
output of the circuit using a mapping, provided by the garbler.
Several optimizations for Yao’s garbled circuits have been
proposed, most notably: point-and-permute [MNPS04], free-
XOR [KS08], fixed-key AES garbling [BHKR13], and half-
gates [ZRE15]. Overall, the garbler has to send 2κ bits to the
evaluator per AND gate, which can be done in the setup phase
if the function is known. In the online phase, the evaluator
locally decrypts the garbled table and computes the output in
a constant number of communication rounds.

E. Goldreich-Micali-Wigderson

The GMW protocol [GMW87] for secure computation also
represents a function as a Boolean circuit and secret shares
the values on the wires between the parties using an XOR-
based secret-sharing scheme. XOR gates can be evaluated for
free locally by XORing the shares while AND gates require

3

one interaction step between the parties using a multiplication
triple. A multiplication triple (MT) is a set of shares of the
form (c0 ⊕ c1) = (a0 ⊕ a1) ∧ (b0 ⊕ b1), where Pi holds
the shares labeled with i, for i ∈ {0, 1}. MTs can be pre-
computed using

(
2
1

)
R-OT2

1 at the cost of 2κ bits of communi-
cation [ALSZ13] and are used in the online phase to evaluate
AND gates at the cost of 4 bits communication. In §III-E
we show how to pre-compute MTs with less communication
overhead using the

(
N
1

)
OT extension of [KK13]. For details

on the GMW protocol please refer to [DSZ15].

F. Size and Depth of Boolean Circuits

For our later evaluation in §VI-A, we bound the multiplica-
tive size (the number of AND gates) and depth (the highest
number of ANDs from any input to any output) of a Boolean
circuit. For many functionalities, a low multiplicative size
and a low multiplicative depth are two mutually exclusive
goals. Hence, we first outline the case for Boolean circuits
with δ input bits and σ = 1 output bit, since this allows us to
set tighter upper bounds, and then examine the case for σ > 1.

Boolean Circuits with One Output Bit. It was shown
in [TP14] that any functionality with δ ≤ 5 input bits can be
realized by a Boolean circuit with at most δ−1 AND gates. For
functions with δ > 5 inputs, a bound on the maximum number
of AND gates is still unknown but, according to [TP14],
“no specific δ-variable function has yet been proven to have
multiplicative complexity larger than δ − 1 for any δ”. We
bound the number of AND gates in a Boolean circuit C
with δ inputs by S(C) ≤ δ − 1. In [BB94] it was shown
that every Boolean circuit of multiplicative size n has an
equivalent Boolean circuit of multiplicative depth O(log n) and
size O(nα) for arbitrary α > 1. We bound the multiplicative
depth of a circuit C with δ inputs by D(C) ≤ log2(δ).

Boolean Circuits with Multiple Output Bits. Finding a
size- or depth-optimal Boolean circuit for functionalities with
σ > 1 outputs is a hard problem for a larger number of
inputs δ [BP12] and determining a minimal upper bound is
a complex task out of scope of this paper. A more tractable
approach to find a possible upper bound is to build optimal
Boolean circuits for each output bit separately. In this paper,
we take this approach and assume that a Boolean circuit C with
δ input and σ output bits has at most size S(C) ≤ σ(δ− 1) if
optimized for size and D(C) ≤ log2 δ if optimized for depth.

III. MORE EFFICIENT
(
N
1

)
OT EXTENSION

In order to evaluate a function using our LUT protocols,
we pre-compute the LUTs using OT. However, using the
standard

(
2
1

)
OT extension protocol of [IKNP03], [ALSZ13]

to pre-compute the LUTs would result in a higher commu-
nication overhead than evaluating traditional Boolean circuits.
Therefore, for improved communication efficiency, we make
use of the

(
N
1

)
OT extension protocol of [KK13]. Although

the [KK13] OT extension protocol is very communication-
efficient, it incurs a significant computation overhead: N sym-
metric operations compared to 2 log2N symmetric operations
by the

(
2
1

)
OT extension protocol of [IKNP03], [ALSZ13]. In

this paper, we take the OT extension protocol of [KK13] as
a starting point for improving communication and introduce

optimization mechanisms to effectively reduce both, its com-
putation and communication overhead.
In this section, we give an overview of the

(
N
1

)
OT proto-

col (§III-A), outline how to more efficiently instantiate the
underlying error correcting code (§III-B) and sample random
choice bits of the receiver to reduce the communication
overhead (§III-C). Next, we present our optimizations of
the underlying symmetric cryptographic primitives to reduce
the computation overhead (§III-D). Finally, we show how
to optimize the evaluation of AND gates and reduce the
communication overhead in the setup phase of the GMW
protocol (§III-E). We call our resulting protocol that combines
our proposed optimizations for more efficient evaluation of
AND gates N -MT. We give a full description of the

(
N
1

)
OT

extension protocol of [KK13] in Prot. 1.

A. Protocol Description

In the
(
2
1

)
OT extension protocol of [IKNP03], the parties

use multiple base-OTs to obliviously transfer shares of the
receiver’s selection bits. The main observation of the

(
N
1

)
OT

protocol of [KK13] was that this approach can be generalized
to have both parties share a ρ-bit codeword from a code Γρ

with codewords of Hamming distance κ. These codewords
encode the receiver’s selection strings and constitute the main
component of the communication workload of the OT exten-
sion protocol.
For N = 2, a repetition code can be used, which has 2
codewords of size ρ = κ. In this case, the

(
N
1

)
OT protocol

of [KK13] is identical to the
(
2
1

)
OT protocol of [IKNP03].

For 2 < N ≤ 2κ, the authors of [KK13] propose to use a
Walsh-Hadamard code which has codewords of size ρ = 2κ to
achieve a relative Hamming distance of κ. They show that, for
appropriate choice of parameters (κ = 128, ρ = 256, N = 16),
generating

(
2
1

)
OTlog2N

1 from their
(
N
1

)
OT protocol requires

only 320 bits of communication while the
(
2
1

)
OT of [IKNP03],

[ALSZ13] requires 520 bits.
For N > 2κ, a linear error-correcting code achieves the
best performance. In particular, when N = poly(κ), the
communication cost for the OT extension part of

(
N
1

)
OT

invocations decreases asymptotically from O(κ logN) to O(κ)
compared to a

(
2
1

)
OT instantiation.

B. Our Size-Optimized Codes

The efficiency gains from the
(
N
1

)
OT extension protocol

of [KK13] for N > 2 are due to efficient instantiations of the
underlying codes. For 2 < N ≤ 2κ, [KK13] uses a Walsh-
Hadamard code, which has codewords of size ρ = 2κ = 256
bits to achieve a Hamming distance of κ = 128 between
codewords. However, for N = 2i, with 2 ≤ i ≤ 8, the Walsh-
Hadamard code is not size-optimal with regard to the codeword
size ρ. Hence, we propose to use more size-efficient codes
in order to further decrease the communication. We base our
code choices on the list of efficient codes in [SS06] and give
the codeword sizes for N = 2i for 1 ≤ i ≤ 12 in Tab. I.
In particular, for N = 4 we use a parity check code, for
N ∈ {8, 16, 32, 64, 128, 256}, we use a Simplex code, for N =
512, we use a Reed-Muller code, for N ∈ {1,024, 2,048},
we use a narrow-sense BCH-code, and for N = 4,096, we
use the concatenation of a Denniston code and a Simplex
code (see [SS06] for more details). The OT communication

4

PROTOCOL 1 (
(N
1

)
OT extension protocol [KK13]):

• Common Input: Symmetric security parameter κ; code Γρ =
(γ1, ..., γN) with ρ-bit codewords.

• Input of PS: m tuples (x1j , ..., x
N
j) of n-bit strings.

• Input of PR: m selection integers r = (r1, . . . , rm) with rj ∈
[N].

• Oracles and cryptographic primitives: An ideal
(2
1

)
OTρκ prim-

itive, a pseudo-random generator G : {0, 1}κ → {0, 1}m and a
correlation-robust function H : [m]× {0, 1}ρ → {0, 1}n.

1) PS initializes a random vector s = (s1, . . . , sρ) ∈R {0, 1}κ and
PR chooses ρ pairs of seeds (k0i , k

1
i) ∈R {0, 1}κ.

2) The parties invoke
(2
1

)
OTρκ, where PS acts as the receiver with

input s and PR acts as the sender with inputs (k0i , k
1
i) for every

1 ≤ i ≤ ρ.
PR forms two m × ρ bit matrices T = [t1| . . . |tρ] with ti =
G(k0i) (where its i-th column is ti and its j-th row is tj) and
C = [c1| . . . |cm], (where its i-th column is ci and its j-th row is
cj) with cj = γrj for 1 ≤ i ≤ ρ and 1 ≤ j ≤ m.

3) PR computes and sends ui = ti ⊕ G(k1i) ⊕ ci to PS for every
1 ≤ i ≤ ρ.

4) For every 1 ≤ i ≤ ρ, PS defines qi = (si · ui)⊕G(k
si
i). (Note

that qi = (si · ci)⊕ ti.)
Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its i-th
column is qi. Let qj denote the j-th row of the matrix Q. (Note
that qi = (si · ci)⊕ ti and qj = (cj ∧ s)⊕ tj .)

5) For p ∈ [N], PS computes ypj = xpj ⊕H(j, qj ⊕ γp) and sends
(y1j , . . . , y

N
j) for every 1 ≤ p ≤ N and 1 ≤ j ≤ m.

6) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

7) Output: PR outputs (x1, . . . , xm); PS has no output.

improvements achieved by adopting our reduced codeword
sizes are the largest for N = 4 (reduced by 64 bits) and
decrease with N growing towards 256 (reduced by 1 bit). Note
that using size-optimized codes does not increase computation
or reduce security over using the Walsh-Hadamard codes.

N 2 4 8 16 32 64
Our Size-Efficient Codes [bits] 128 192 224 240 248 252
[KK13] Codes [bits] 128 256 256 256 256 256

N 128 256 512 1024 2048 4096
Our Size-Efficient Codes [bits] 254 255 256 264 268 270
[KK13] Codes [bits] 256 256 - - - -

TABLE I. COMMUNICATION FOR
(N
1

)
OT WITH SIZE-OPTIMAL

CODES [SS06] COMPARED TO THOSE USED IN [KK13].

C. Random Choice Bits

In all
(
N
1

)
OT protocol invocations throughout this work,

the receiver samples and inputs a random selection string
r ∈R [1...N]. However, we observe that the communication
from receiver to sender can be reduced by having the

(
N
1

)
OT

protocol sample r randomly during the execution and output
it to the receiver. In order to randomly sample r, we transform
the code Γρ into a systematic form, similar to [FJJBT16].
In the systematic form, the input data is embedded into the
codeword, i.e., the integer s ∈ {0, 1}log2N is a sub-string of
codeword cs. Assume that s is embedded in the first log2N
positions of each cs. We can now let the receiver compute the
choice bits rj in the j-th OT as rj = rj,1||...||rj,log2N with
ri = G(k0i)j ⊕G(k1i)j in Step 2 in Prot. 1. Consequently, we
can change Step 3 and Step 4 to avoid sending the uj values
for these positions. In particular, we have PR perform Step 3
only for log2N < i ≤ ρ and PS compute in Step 4:

qi =

{
G(ksii), if 1 ≤ i ≤ log2N

(si · ui)⊕G(ksii), else.

Overall, this enables us to further reduce the communication
for

(
N
1

)
OT by log2N bits. Furthermore, this can be combined

with
(
N
1

)
R-OT to further reduce the communication overhead.

D. Pipelined AES-256

In OT extension [IKNP03], [KK13], both parties process
several value tuples that are correlated by a constant XOR off-
set using a correlation-robust function (CRF) (cf. H in Step 5
and Step 6 in Prot. 1). While the CRF has traditionally
been instantiated with a hash function, more efficient AES-
based constructions have been used to replace it [KSS12],
[BHKR13], [GLNP15]. When using the most efficient, fixed-
key AES instantiation [BHKR13], the input is restricted to
the block-length of AES, i.e., 128-bit, which suffices for the(
2
1

)
OT extension protocol of [IKNP03] when κ = 128-

bit. However, in the
(
N
1

)
OT extension of [KK13], we need

to process codewords of size ρ > 128 bits for N > 2,
which prevents the use of fixed-key AES. Falling back to a
hash function or AES-256 with key schedule [KSS12] greatly
decreases performance by about an order of magnitude, as
depicted in Tab. II. Furthermore, the

(
N
1

)
OT protocol requires

N invocations of an expensive CRF (instantiated via AES-
256 with key schedule or SHA-256) as opposed to 2 logN
invocations of a cheaper CRF (instantiated via AES-128)
when using

(
2
1

)
OT. In particular, for our protocols in §IV

we use N = 256, which requires 256 CRF invocations when
using

(
N
1

)
OT compared to 16 invocations when using

(
2
1

)
OT. Using AES-256 with key schedule instantiation for

(
N
1

)
OT and the pipelined AES-128 instantiation of [GLNP15] for(
2
1

)
OT, this results in a computational overhead of 480x.
Primitive Width Time [ms] Pipe-Time [ms]
AES-128 [BHKR13] 128 158 54
AES-128+KS [GLNP15] 128 1,460 358
AES-256+KS [KSS12] 256 1,625 476
SHA-256 arbitrary 2,487 -

TABLE II. INSTANTIATIONS OF A CORRELATION-ROBUST FUNCTION
WITH INPUT WIDTH IN BITS AND (PIPELINED) RUN-TIME FOR 107

INVOCATIONS.
We improve the performance of the CRF instantiation

based on AES-256 with key schedule by pipelining the AES-
256 key expansion and encryption routines as well as pipelin-
ing multiple invocations of AES, similar to the approach of
[GLNP15] for AES-128. Thereby, we manage to decrease the
computation time for AES-256 by factor 4, which reduces
the computational overhead compared to

(
2
1

)
OT to 140x.

When evaluating a
(
256
1

)
OT107

1 using the [KK13] protocol,
this reduces the evaluation time from 79 s to 22 s. For ρ > 256,
we instantiate the CRF with SHA-256.
A promising line of research is given in [GM16], which
outlines how to obtain cryptographic permutations with larger
block sizes based on fixed-key AES-128. Due to security
concerns, however, we refrain from using their instantiations
but point it out as a future alternative to explore.

E. Multiplication Triples from
(
N
1

)
OT

To improve the communication in secure computation,
the work of [KK13] proposed to use their

(
N
1

)
OT protocol

to reduce
(
N
1

)
OT1

log2N
to

(
2
1

)
OTlog2N

1 . They achieved a
communication saving of up to 1.6x per

(
2
1

)
OT2

1, from 256
bits to 160 bits, when setting κ = 128 and N = 16. In this

5

work, we further improve on their communication savings by
using our optimized

(
N
1

)
OT protocol to directly compute a

multiplication triple (MT), which corresponds to a
(
4
1

)
OT1

1.
For this reduction, we evaluate

(
N
1

)
OT1

log4(N) which we can

directly transform to
(
4
1

)
OTlog4(N)

1 . We vary possible choices
for N in Tab. III and observe that the highest improvement
of 1.9x is obtained for N = 16, where one MT can be
computed at the cost of 134 bits in the setup phase, and 2
MTs at the cost of 268 bits as shown in Tab. III. Compared
to the protocol in [KK13], our N -MT protocol reduces the
communication by factor 1.2x from 160 bits to 134 bits.
Adding the 4 bits for the evaluation in the online phase, the
total communication is now as low as 138 bits per AND gate.

N 4 8 16 32 64 128 256
#Triples 1 1.5 2 2.5 3 3.5 4
2-MT 256 384 512 640 768 896 1,024
N -MT 194 223 268 339 438 759 1,271
Improvem. 1.32 1.72 1.91 1.89 1.75 1.18 0.81

TABLE III. COMMUNICATION FOR GENERATING MULTIPLICATION
TRIPLES USING

(2
1

)
R-OT [ALSZ13] (2-MT) AND

(N
1

)
OT [KK13] WITH

OUR OPTIMIZATIONS (N -MT). BEST RESULTS MARKED IN bold.

IV. LUT-BASED SECURE COMPUTATION

In this section, we discuss how to model the functionality
as network of interconnected LUTs with multiple input bits
that can be evaluated in a constant number of rounds per
layer of LUTs (§IV-A). We first summarize the one-time truth
table (OTTT) approach of [IKM+13] with pre-computation of
[DZ16] (§IV-B). We then present our Online-LUT (OP-LUT)
scheme, which is optimized for an efficient online phase but
has high communication in the setup phase (§IV-C). Next,
we give the Setup-LUT (SP-LUT) protocol that dramatically
reduces the communication in the setup phase but slightly
increases the communication in the online phase (§IV-D).
Finally, we show how to optimize the online phase of the
SP-LUT protocol to achieve better round and communication
complexity and how to compute LUTs with overlapping inputs
more efficiently (§IV-E). We give a summary of the commu-
nication costs for these protocols in Tab. IV.

A. Lookup-Tables

For our protocols in this section, we assume that the parties
have XOR secret-shared their private inputs and represent
the functionality as network of LUTs and XOR gates. In
our context, a δ-input bit LUT with σ output bits is a table
that maps an δ-bit secret-shared input to σ-bit secret-shared
output and can thereby be used to represent any function
f : {0, 1}δ 7→ {0, 1}σ . In contrast to Boolean circuits based
on 2-input gates, LUT-based circuits do not use internal logic
operations to map inputs to outputs and their evaluation costs
depend only on the number of inputs and outputs. We show
how to pre-compute and evaluate a δ-bit input LUT in the next
sections. As in GMW, XOR gates can be evaluated locally
by both parties XORing their respective shares. Moreover, we
can reduce the number of output bits if one output bit can be
computed as a linear combination of other outputs.

B. One-Time Truth Tables (OTTT)

In this section we describe the OTTT protocol of [IKM+13]
with circuit-based pre-computation from [DZ16], which is
given in Prot. 2. The high-level idea behind the OTTT protocol

is that two parties hold secret shares T 0 and T 1 of a lookup
table T , whose entries were randomly rotated across both
dimensions using r, s such that T 0[i]⊕ T 1[i] = T [r ⊕ s⊕ i],
for all 0 ≤ i < 2δ . Each of the parties knows a secret share
of the truth-table as well as the rotation value, i.e., P0 knows
(T 0, r) and P1 knows (T 1, s).

Pre-Computation. During the setup phase, the truth-table T
needs to be shared such that P0 holds (T 0, r) and P1 holds
(T 1, s). A possible method for pre-computing the table was
outlined in [DZ16]: Both parties evaluate a Boolean circuit
representing the table once for every possible input, resulting
in an overhead of factor 2δ compared to a Boolean circuit
evaluation.1 In more detail, the parties represent the table T
as Boolean circuit C : {0, 1}δ 7→ {0, 1}σ . Then, P0 and P1

choose their random rotations values r, s ∈R {0, 1}δ , securely
evaluate C(r⊕s⊕i) = z0i ⊕z1i and set T 0[i] = z0i and T 1[i] =
z1i for all i ∈ [0...2δ − 1]. Assuming the upper bound of δ− 1
AND gates for a Boolean circuit with δ inputs from §II-F and
the optimized multiplication triple generation at 138 bits per
AND gate from §III-E, this results in an overall communication
of at most 138(δ − 1)2δ bits.

Online Evaluation. In the online phase, the OTTT protocol
of [IKM+13] takes as input two δ-bit share values x0 and x1
such that x = x0⊕x1 and evaluates a function f , represented
as a lookup table T . The parties hold shares (T 0, r) and (T 1, s)
of a permuted lookup table T such that T 0[i]⊕T 1[i] = T [r⊕
s ⊕ i], where r, s ∈R {0, 1}δ and for all 0 ≤ i < 2δ . To
evaluate T , the parties exchange u = x0⊕r and v = x1⊕s and
compute the shared result z0 = T 0[u⊕v] and z1 = T 1[u⊕v].
To see that z = T [x] = z0 ⊕ z1, observe that z0 ⊕ z1 =
T 0[u⊕v]⊕T 1[u⊕v] = T 0[r⊕s⊕x]⊕T 1[r⊕s⊕x] = T [x].

PROTOCOL 2 (OTTT Evaluation [IKM+13], [DZ16]):
• Common Input: Input bit-size δ; Output bit-size σ; N = 2δ ;

Truth-table T : {0, 1}δ 7→ {0, 1}σ .
• Input of P0: x0 ∈ {0, 1}δ .
• Input of P1: x1 ∈ {0, 1}δ .

Pre-Computation [DZ16]:
1) The parties represent T as circuit C : {0, 1}δ 7→ {0, 1}σ .
2) P0 chooses r ∈R {0, 1}δ and P1 chooses s ∈R {0, 1}δ .
3) P0 and P1 compute z0i ⊕ z1i = C(s⊕ r⊕ i) and set T 0[i] = z0i

and T 1[i] = z1i for all 0 ≤ i < N .
4) Output: P0 outputs (T 0, r); P1 outputs (T 1, s).

Note: ∀i with 0 ≤ i < N it holds that T 0[i]⊕T 1[i] = T [r⊕s⊕i].
Online Evaluation [IKM+13]:

1) P0 sends u = x0 ⊕ r to P1; P1 sends v = x1 ⊕ s to P0.
2) P0 sets z0 = T 0[u⊕ v]; P1 sets z1 = T 1[u⊕ v].
3) Output: P0 outputs z0; P1 outputs z1, s.t. z0⊕z1 = T [x0⊕x1].

C. Online-LUT (OP-LUT)

We propose another method for pre-computing the shared
permuted table, which performs better for small number of in-
puts δ. Instead of evaluating a circuit on all possible inputs, one
can directly transfer all possible choices of the rotated truth-
table via our optimized

(
N
1

)
OT protocol described in §III. We

call this protocol OP-LUT and describe it in Prot. 3.
1Note that the evaluated circuit can be optimized by removing duplicate

gates [KSS12]. Assuming that the last gate in the circuit is an AND gate
(otherwise, one could remove that last gate from the LUT), we expect the
circuit after the duplicate removal to have at least one AND gate per instance,
i.e., 2δ AND gates for the 2δ parallel evaluations.

6

Inputs δ 2 3 4 5 6 7 8 Asymptotic
Setup Communication [bits]
OTTT [IKM+13] ≤ 552σ ≤ 2,208σ ≤ 6,624σ ≤ 17,664σ ≤ 44,160σ ≤≈ 217σ ≤≈ 218σ ≤ 138(δ − 1)2δσ

OP-LUT (§IV-C) 16σ + 190 64σ + 221 256σ + 236 1,024σ + 243 4,096σ + 246 ≈ 214σ ≈ 216σ C(
(N

1

)
OT1
σN)−δ

SP-LUT (§IV-D) 190 221 236 243 246 247 247 C(
(N

1

)
R-OT)−δ

Online Communication [bits]
OTTT / OP-LUT 4 6 8 10 12 14 16 2δ

SP-LUT 4σ + 2 8σ + 3 16σ + 4 32σ + 5 64σ + 6 128σ + 7 256σ + 8 2δσ + δ

Total Communication (Setup + Online) [bits]
OTTT [IKM+13] ≤ 554σ ≤ 2,214σ ≤ 6,632σ ≤ 17,674σ ≤ 44,172σ ≤≈ 217σ ≤≈ 218σ

OP-LUT (§IV-C) 16σ + 194 64σ + 227 256σ + 244 1,024σ + 253 4,096σ + 258 ≈ 214σ ≈ 216σ
SP-LUT (§IV-D) 4σ + 192 8σ + 224 16σ + 240 32σ + 248 64σ + 252 128σ + 244 256σ + 255

TABLE IV. SETUP, ONLINE AND TOTAL COMMUNICATION FOR A δ-INPUT LUT WITH σ OUTPUTS FOR THE OTTT PROTOCOL [IKM+13],
ONLINE-LUT (OP-LUT) AND SETUP-LUT (SP-LUT). BEST RESULTS MARKED IN bold.

Pre-Computation. P0 chooses its share T 0 ∈R ({0, 1}δ 7→
{0, 1}σ) and its rotation value r ∈R {0, 1}δ of the permuted
table and computes the shares of P1 for all possible rotation
values: (X0, ..., XN−1), with Xs′ = T [r ⊕ s′ ⊕ i] ⊕ T 0, for
all i ∈ [0...2δ − 1]. P0 then engages in a

(
N
1

)
OT1

N with P1

who inputs s ∈R {0, 1}δ as choice bits and obliviously obtains
T 1 = Xs = T [r ⊕ s⊕ i]⊕ T 0.

The communication cost for the pre-computation thereby
becomes independent of the circuit representation but it scales
with factor 22δ as opposed to 138(δ−1)2δ for the circuit-based
pre-computation. Overall, the

(
N
1

)
OT-based pre-computation

performs better for δ < 10, while the circuit-based pre-
computation performs better for δ ≥ 10 (cf. Tab. IV). The
security of this pre-computation method is guaranteed by
oblivious transfer: Neither does P0 learn information about the
rotation value or output share of P1, since the rotation value is
used as selection string, nor does P1 learn information about
the rotation value or share of P0, since P1 gains no information
on any other than the selected truth-table.

PROTOCOL 3 (Online-LUT (OP-LUT) - our work):
Inputs and Oracles:
• Common Input: Symmetric security parameter κ; number of

inputs δ; N = 2δ ; Truth-table T : {0, 1}δ 7→ {0, 1}σ .
• Input of P0: x0 ∈ {0, 1}δ .
• Input of P1: x1 ∈ {0, 1}δ .
• Oracles: Both parties have access to a

(N
1

)
OT1

σN functionality.
Pre-Computation:

1) P0 chooses r ∈R {0, 1}δ and T 0 ∈R ({0, 1}δ 7→ {0, 1}σ). P1

chooses s ∈R {0, 1}δ .
2) P0 computes (X0, ..., XN−1), with Xs′ [i] = T [r ⊕ s′ ⊕ i] ⊕

T 0[i], for all 0 ≤ i, s′ < N .
3) P0 and P1 invoke the

(N
1

)
OT1

σN functionality where P0 plays
the sender with inputs (X0, ..., XN−1) and P1 plays the receiver
with input s and output T 1 = Xs s.t. Xs[i] = T [r⊕s⊕i]⊕T 0[i],
for all 0 ≤ i < N .

4) Output: P0 outputs (T 0, r); P1 outputs (T 1, s).
Online Evaluation (same as OTTT in Prot. 2):

1) P0 sends u = x0 ⊕ r to P1; P1 sends v = x1 ⊕ s to P0.
2) P0 sets z0 = T 0[u⊕ v]; P1 sets z1 = T 1[u⊕ v].
3) Output: P0 outputs z0; P1 outputs z1, s.t. z0⊕z1 = T [x0⊕x1].

D. Setup-LUT (SP-LUT)

While the OTTT and OP-LUT approaches achieve a good
online communication, their pre-computation cost scales with
at least 2δ , where δ is the number of input bits of a LUT.
This greatly hinders the applicability of these approaches when
pre-computation is not negligible, i.e., when the parties do
not have a pre-established communication channel or when

they wish to perform secure computation ad-hoc. In order to
enable LUT-based secure computation even in settings with no
pre-computation, we suggest a new protocol for securely pre-
computing and evaluating LUTs. This protocol, called Setup-
LUT (SP-LUT), achieves much better total communication but
increases the online communication compared to the OTTT
and OP-LUT protocols. The general idea of SP-LUT is sim-
ple: Pre-compute

(
N
1

)
OT in the setup phase and obliviously

transfer all possible outcomes of the LUT in the online phase.
We give a full description of the protocol in Prot. 4.

Compared to the OP-LUT approach, the SP-LUT protocol
only requires correlated randomness in the form of a pre-
computed

(
N
1

)
OT, which requires only little communication

in the setup phase at the cost of 2δ bits of communication
during the online phase. However, the total communication
of SP-LUT is much lower than that of OP-LUT, since only
single bits need to be transferred instead of full truth-tables
(cf. Tab. IV). The security of the SP-LUT protocol is similar
to that of the GMW protocol [GMW87]: Both parties operate
on secret-shared data by sacrificing a pre-computed OT on
random data.
PROTOCOL 4 (Setup-LUT (SP-LUT) - our work):
Inputs and Oracles:
• Common Input: Symmetric security parameter κ; number of

inputs δ; N = 2δ ; Truth-table T : {0, 1}δ 7→ {0, 1}σ .
• Input of P0: x0 ∈ {0, 1}δ .
• Input of P1: x1 ∈ {0, 1}δ .
• Oracles: Both parties have access to a

(N
1

)
R-OT1

σ functionality.
Pre-Computation:

1) P0 and P1 invoke the
(N
1

)
R-OT1

σ functionality where P0 plays
the sender and P1 plays the receiver. From the OT, P0 receives
random bits (m0, ...,mN−1) and P1 receives a random choice
s ∈ {0, 1}δ and message ms.

2) Output: P0 outputs (m0, ...,mN−1); P1 outputs (ms, s).
Online Evaluation:

1) P1 sends u = s⊕ x1 to P0.
2) P0 chooses z0 ∈R {0, 1}σ and computes and sends V =

(v0, ..., vN−1), where vi = T [i⊕ x0]⊕mi⊕u ⊕ z0.
3) P1 computes z1 = vx1 ⊕ms.
4) Output: P0 outputs z0; P1 outputs z1, s.t. z0⊕z1 = T [x0⊕x1].

E. Optimizations

In the following, we discuss two optimizations for our LUT
protocols: Switching roles to reduce the round complexity for
SP-LUT and combining LUTs with overlapping inputs.

7

Reducing the Online Round Complexity. The SP-LUT
protocol in §IV-D pre-computes

(
N
1

)
OT in a setup phase and

then uses these pre-computed values in the online phase to
securely evaluate the function. In its vanilla version, the online
phase consists of two rounds: 1) the receiver sends its updated
choice bits to the sender and 2) the sender rotates its pre-
computed masks and sends the updated correlations to the
receiver. Thereby, we overall require 2D(C) communication
rounds in the online phase, where D(C) is the highest number
of LUTs from any input to any output of the circuit.
In order to reduce the number of communication rounds, we
let both parties switch roles in the online phase after each
communication round, similar to [Hua12]. More specifically,
assume P0 plays the sender and P1 plays the receiver in the
first round. P1 first sends its updated choice bits u1 to P0,
who plays the receiver in the second round and replies with
the updated correlations V1 and the updated choice bits of the
second round u2. P1 then updates its local shares using V1,
switches to the role of the sender and replies with its updated
correlations V2, and then again switches to the role of the
receiver and sends its updated choice bits u3 for the third
communication round, etc. Overall, this reduces the number
of communication rounds from 2D(C) to D(C) + 1.

Multi-Out LUTs. Note that in our LUT-based approach,
we can efficiently combine two or more LUTs that have
the same or even only some common inputs. Consider a
functionality which has σ LUTs with one output bit each and
the same δ input bits. When naively applying our approach,
we would generate σ δ-input LUTs, one for each output bit.
However, since we build on a

(
N
1

)
OT protocol, we can

amortize the cost for computing the OT protocol by sending σ
output bits during the OT protocol. More specifically, instead
of performing

(
N
1

)
OTσ1 , we would perform

(
N
1

)
OT1

σ , thereby
saving σ− 1 executions of the OT protocol. This optimization
naturally extends to an arbitrary number of output bits σ.
Overall, for a functionality with δ input bits and σ output
bits, we can thereby decrease the required communication from
σ(256+2δ) to 256+σ2δ . In §VII-A we use this optimization to
decrease the communication for the 8-input and 8-output AES
S-box by a factor of 1.8 from 4,096 bit to 2,304 bit. Similarly,
we can combine two or more LUTs which share a sub-set of
inputs. For instance, consider the case where one LUT has
δ1 = 3 inputs x0, x1, x2 and a second LUT has δ2 = 4 inputs
x0, x1, x3, x4. In this case, we can combine both LUTs to one
LUT with δ = 5 inputs and thereby replace the

(
23

1

)
OT1

1 and(
24

1

)
OT1

1 by a
(
25

1

)
OT1

2 which reduces communication from
488 bits to 312 bits.

V. LUT-BASED CIRCUIT SYNTHESIS

Hand-optimizing circuit representations for secure compu-
tation is a laborious and time-consuming task which leaves
room for errors in the crafted circuit constructions. This only
becomes more challenging for our LUT protocols where LUT-
based circuit representations are required, instead of Boolean
circuits with 2-input gates. Instead of reinventing the wheel and
recreating compilers from scratch, it is much more intuitive to
use existing hardware synthesis tools. This approach, which we
also follow in our work, allows to automatically generate and
optimize circuits even for complex functionalities that cannot
be easily hand-optimized. As shown in TinyGarble [SHS+15]

and its generalization to GMW [DDK+15], hardware synthe-
sis tools are a key enabler for making secure computation
protocols more practical by automating and speeding the
process of generating compact and correct Boolean circuits
and optimizing them for low size [SHS+15] and/or low depth
[DDK+15] depending on the protocol used. In this work,
we extend this approach further by exploiting LUT-based
synthesis tools to serve the different requirements of our
LUT protocols. However, such tools do not generate the LUT
representations we require by default, and require heavy re-
purposing to adapt them to our protocols. In the following, we
briefly introduce hardware synthesis and afterwards discuss the
particular synthesis tool we use and how we customize it for
our purposes.

A. Hardware Synthesis Tools

Hardware synthesis is the process of transforming an
abstract form of function description into a functionally equiv-
alent logic implementation using different optimization and
technology mapping algorithms, which have been the subject
of research in electronic design automation for decades. The
circuit implementation generated usually depends on the target
hardware platform and manufacturing technology. Common
target hardware platforms include Application Specific Inte-
grated Circuits (ASICs) and Field Programmable Gate Arrays
(FPGAs). While ASIC synthesis tools have been the focus
of previous works [SHS+15], [DDK+15], since the proto-
cols therein required circuits with 2-input gates, our work
focuses on exploiting multi-input LUT-based synthesis tools
which form the core of FPGA-based synthesis software. ASIC
synthesis tools can also map to multi-input gates, given that
the gates are defined in custom libraries. However, this is
tedious, impractical, and would require very large libraries to
accommodate all possible LUTs for each input size. Hence,
we opt to use LUT-based synthesis tools instead.

There exists a spectrum of commercial FPGA synthesis
tools such as Synplify by Synopsys [Syn], Quartus by Al-
tera [Alt], XST [Xil09] and Vivado Synthesis [Xil] tools by
Xilinx. However, these tools synthesize LUT-based circuits that
target their devices’ specifics such as the number of physically
possible inputs to an LUT (a maximum of 6-input LUTs
for most current FPGA devices). For our protocol, we aim
to generate up to 8-input LUTs and this, to the best of our
knowledge, is not available in mainstream commercial tools.
Mapping circuits to variable-input LUTs is, however, being
investigated by the Berkeley Logic Synthesis and Verification
Group who develop ABC [Ber], a growing open-source soft-
ware for synthesis and verification of binary logic circuits.
ABC provides an experimental implementation of different
mapping and optimization algorithms based on optimal-delay
Directed Acyclic Graph (DAG)-based technology mapping for
both standard gates and LUTs. In this work, we leverage the
mapping of ABC, coupled with Yosys [Wol]. We use Yosys
as an open-source framework for front-end processing of our
Verilog circuit descriptions to map them into a network of low-
level logic operations in an intermediate format. Then, ABC
structures this network into a DAG and maps it into LUTs in
a delay-optimized fashion.

However, for generating circuit netlists of more complex
functionalities, such as floating-point operations, we utilize

8

built-in Intellectual Property (IP) libraries in the Synopsys
Design Compiler (DC) [Syn10], a commercial ASIC synthesis
tool. Synopsys DC generates Boolean netlists of these circuits,
which we further process with the Yosys-ABC toolchain to re-
map them to LUT-based representations.
In the following, we focus on the Yosys-ABC toolchain and
our customizations to tailor its output to the requirements of
our LUT protocols.

B. Customizing LUT-based Synthesis

ABC is very fitting for our purposes because it maps
circuits to variable δ-input LUTs in a generic manner and
allows the user to determine the maximum input size δmax
allowed, regardless of any target-specific FPGA architecture
details. The Yosys-ABC toolchain works by structuring the
Boolean circuit network into a specific type of Directed
Acyclic Graph (DAG) consisting of 2-input, 1-output nodes,
and then maps this graph into δ-input LUTs by computing
δ-feasible cuts for each graph node. A cut of a node n is a
set of nodes (called leaves of the respective cut), such that
each path from the circuit primary inputs to node n passes
through at least one of these leaves. A cut is δ-feasible if the
number of leaves in it does not exceed δ. FPGA mapping either
enumerates all or some selected cuts of each node according
to the optimization metric. Then, depth-optimized mapping is
performed to select the optimal cuts, followed by area recovery
heuristics, after which the cuts are mapped to LUTs according
to their sizes. Additional details on the DAG-based delay-
optimized technology mapping using δ-feasible cuts can be
found in [RME+12], [MCCB07], [MCB07].
For the generation of our netlists, we limit the maximum
number of LUT inputs to δmax = 4 for OP-LUT and δmax = 8
for SP-LUT, since it provides a good performance trade-off as
we describe later in §VI-A. We optimize for depth, followed by
area recovery, and ensure that the circuits remain topologically
ordered.

C. Generating Multi-Output LUTs

Extending hardware synthesis tools beyond their original
purposes and tailoring their output to serve the purposes
of secure computation requires radical engineering and cus-
tomizations. As discussed in §IV-E, our LUT protocols are
significantly optimized by combining LUTs with overlapping
inputs and hence multiple output bits. However, ABC does
not support mapping to multi-output LUTs by default (and
neither do commercial hardware synthesis tools except for 2-
output LUTs). This remains largely an open and unsolved
research area, without efficient tools. Some research efforts
such as the work in [MMRR10] propose δσ-feasible cuts
mapping to control both the number of inputs δ and the
number of outputs σ in mapping circuit cuts. However, their
implementation is not available and their approach focuses on
contributing to AIG-based mapping algorithms in general and
is not specifically focused on mapping to multi-output LUTs.
We handle this by post-processing the ABC-generated single-
output LUT circuits to map them to multi-output LUT circuits.
As already mentioned, we map circuit descriptions to variable-
input LUT-based netlists with an allowed maximum of 4 or 8
inputs per LUT using ABC. The generated circuits are then
post-processed and layered from input to output according to

the input-output dependencies. Each LUT is allocated to its
layer according to its topological depth in the circuit. LUTs
within the same circuit layer which share one or more common
inputs are grouped together into a single multi-output LUT
incrementally. Each final multi-output LUT is defined by a set
of a maximum of 4 or 8 inputs, and the number of grouped
LUTs, their truth-table values, and the subset of inputs on
which the output of the included LUT depends. In a second
optimization round, LUTs which have no shared inputs but can
be combined together while still having a union of a maximum
of 4 or 8 inputs are grouped together. It is important to only
group LUTs within the same layer to avoid grouping across
layers that may increase the circuit depth.
Furthermore, ABC maps circuit descriptions into LUTs only,
whereas our protocols allow function representations with both
LUTs and XORs. In the post-processing, we map 2-input
LUTs that represent the XOR function into explicit XOR gates.
Extracting all XORs to reduce the overall number and inputs
sizes to LUTs is an interesting direction for future research.

VI. EVALUATION

In this section we theoretically compare the performance of
our LUT-based approaches to Boolean circuits (§VI-A). Since
it is not possible to give generic statements about the efficiency
comparison between our LUT protocols and Boolean circuits,
we then give an empirical performance comparison on typical
basic operations (§VI-B). All protocols are evaluated for 128-
bit symmetric security, i.e., κ = 128.

A. Comparison to Boolean Circuits

In the following, we theoretically compare our LUT repre-
sentation with a 2-input Boolean circuits representation. We
first discuss the advantages of finding an efficient function
representation as interconnected LUTs compared to a Boolean
circuit. Then, we compare the communication and round
complexity of a single δ-input LUT with σ = 1 output bit
to a Boolean circuit equivalent. Finally, we discuss both rep-
resentations when realizing functionalities with σ > 1 output
bits. We stress that, even though we discuss and compare them
separately, our LUT protocols can be easily combined with
Boolean circuits using GMW at no cost, achieving the best of
both worlds.

Efficient Function Representations. Finding an efficient
Boolean circuit representation with low number of AND gates
and small multiplicative depth has been subject to extensive
research. E.g., [BP05] have shown a lower bound on the
number of AND gates for the Hamming weight functionality
and [ARS+15] have developed a block-cipher with a small
number of AND gates and a small AND depth. Such efficient
Boolean representations, however, are non-trivial to identify
for more complex functions. Representing the function as
a LUT would reduce the complexity of finding an efficient
representation to some extent, since the costs for securely
evaluating a LUT only depend on the number of inputs
and outputs and not on its internal functionality. Hence, the
optimization process can be stopped after the functionality has
been separated into connected LUTs and does not need to
identify an efficient representation of the functionality as it is
the case for Boolean circuits. As an example, consider the AES

9

Inputs δ 2 3 4 5 6 7 8 9 10 11
N -MT [bits] 138 276 414 552 690 828 966 1,104 1,242 1,518

OP-LUT [bits] 210 291 500 1,277 4,354 ≈ 214 ≈ 216 ≈ 218 ≈ 220 ≈ 222

OP-LUT / N -MT 0.66 0.95 0.85 0.43 0.16 0.05 0.01 < 0.01 < 0.01 < 0.01

SP-LUT [bits] 196 232 256 280 326 372 511 768 1,288 2,316
SP-LUT / N -MT 0.70 1.19 1.62 1.97 2.12 2.23 1.89 1.44 0.96 0.66

TABLE V. COMMUNICATION OF OP-LUT (§IV-B) WITH
(N
1

)
OT AND SP-LUT (§IV-D) COMPARED TO A BOOLEAN CIRCUIT EVALUATED WITH

N -MT FOR A δ-INPUT TO σ = 1 OUTPUT BIT FUNCTION WITH δ− 1 AND GATES AND 138 BIT COMMUNICATION PER AND GATE (§III). THE RESULTS FOR
OP-LUT AND SP-LUT THAT ACHIEVE THE BEST PERFORMANCE COMPARED TO N -MT ARE MARKED IN BOLD.

S-box, which has 8 input bits and 8 output bits. While [BP12]
have used a special Greedy-approach to identify a small
Boolean circuit, a LUT representation could be obtained by
simply evaluating the S-box on all 28 possible inputs.

Single-Output Functionalities. The communication complex-
ity of a Boolean circuit component with δ inputs depends
on the number of AND gates in its function representation,
which we bounded by δ − 1 (cf. §II-F). The communication
complexity of a δ-input LUT, on the other hand, only depends
on δ. Building on these observations, we outline the best
achievable communication ratio for a δ-input functionality of
our OP-LUT and SP-LUT protocols to a Boolean circuit,
evaluated using N -MT, in Tab. V. We observe that the best
communication ratio for OP-LUT is factor 0.95 for δ = 3
and for SP-LUT is factor 2.2 for δ = 7. Hence, we limit the
possible LUT sizes for OP-LUT to δ ∈ [2, 4] and for SP-LUT
to δ ∈ [2, 8]. Note, however, that using LUTs with more inputs
can result in better overall performance due to improved round
complexity.

The round complexity when evaluating a Boolean circuit
using GMW depends on the AND depth, which we bounded
by log2 δ (cf. §II-F). A δ-input LUT, on the other hand, always
requires one communication round, independently of δ (plus
one global communication round for the whole circuit with
SP-LUT). Hence, for basic operations, we expect a significant
decrease in rounds by factor log2 δ.

Multi-Output Functionalities. For functionalities with multi-
ple outputs, we assume that an optimal circuit is constructed
for each output bit separately, resulting in a Boolean circuit
with σ(δ−1) AND gates (cf. §II-F). However, many functions
can be optimized and computed more efficiently. In contrast,
our LUT protocols can easily be extended to handle function-
alities with multiple outputs without requiring an additional
logic optimization step (cf. §IV-E) but at the cost of at least
σ2δ bits communication, which cannot be reduced via logic
optimization. Hence, a Boolean representation can achieve
better communication for multi-output bit functionalities where
the number of AND gates can be highly optimized (e.g., ripple-
carry addition), while our LUT representation achieves better
communication for functionalities with many AND gates per
input and output bits (e.g., the AES S-box). Nevertheless,
our LUT representation needs fewer communication rounds,
independently of the number of outputs.

B. Basic Operations

A general comparison between our LUT protocols and
2-input gate Boolean circuit-based techniques is difficult to
perform, since the performance of both is very function-
dependent. To highlight the improvements, we compare the
efficiency of several basic operations: addition (ripple-carry

Add-RC, Brent-Kung Add-BK, and Ladner-Fischer Add-
LF) [SZ13], multiplication (ripple-carry Mul-RC and Ladner-
Fischer Mul-LF) [SZ13], equality (EQ), greater-than (sequen-
tial GT-Seq and tree-based GT-Tree) [SZ13], floating point
operations [DDK+15], and the AES S-Box [BP12]. For each
functionality, we give the total communication (setup + online)
in bytes and the online round complexity (the setup round
complexity is constant). We compare Yao’s garbled circuits
(256 bits per AND gate, cf. [ZRE15]) and the 2-MT multipli-
cation triple generation (260 bits per AND gate, cf. [ALSZ13],
decreased to 256 to match Yao’s communication), the N -MT
triple generation (138 bits per AND gate, cf. §III-E), our OP-
LUT protocol (using δ ∈ [2, 4] input LUTs, cf. §IV-C) and our
SP-LUT approach (using δ ∈ [2, 8] input LUTs, cf. §IV-D).
Note that for SP-LUT we omit the extra round that is added due
to the role-switching optimization (cf. §IV-E), since it amor-
tizes over the whole protocol execution. Also, we omit Yao’s
garbled circuits in the round complexity comparison, since it
has constant rounds for every functionality. We generate the
LUT representations of the basic operations using optimized
circuit descriptions fed into our automated toolchain (cf. §V).
We present the results for 32-bit operations in Fig. 3.

From the results we can observe that our SP-LUT protocol
nearly always has the lowest communication, achieving up to
factor 2 less communication than the N -MT generation, which
is the next best. Our OP-LUT protocol always performs worse
than the N -MT generation but most of the times achieves lower
communication than Yao’s garbled circuits and the regular 2-
MT generation. The only operations where our LUT protocols
perform worse than the Boolean circuit-based protocols are the
ripple-carry adder (Add-RC), the multiplication circuits (Mul-
RC and Mul-LF), and the sequential greater-than (GT-Seq),
where our SP-LUT approach performs similar to Yao and 2-
MT. As discussed in §VI-A, this is probably due to the low
multiplicative complexity of the ripple-carry addition as well
as the high number of outputs per LUT. Also notably, our
LUT protocols require less communication for the tree-based
greater-than (GT-Tree) than for the sequential greater-than
(GT-Seq), even though the GT-Tree circuit has around three
times more ANDs than the GT-Seq circuit. Hence, building on
certain circuit structures results in more efficient LUT circuits
and there is still potential for further optimizations.

Regarding the round complexity, we emphasize that our
LUT approaches are almost always better than 2-input gate
Boolean circuits, except for the ripple-carry adder (Add-RC)
evaluated with OP-LUT. On average, OP-LUT reduces the
number of communication rounds by factor 2x while SP-LUT
even reduces them much further by factor 3-4x.

10

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

A
dd

−
R

C

A
dd

−
B

K

A
dd

−
LF

G
T

−
S

eq

G
T

−
T

re
e

F
P

−
G

T

E
Q

S
−

B
ox

C
om

m
un

ic
at

io
n

[B
yt

es
]

Yao/2−MT
N−MT

OP−LUT
SP−LUT

(a) Communication Small Operations

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

M
ul

−
R

C

M
ul

−
LF

F
P

−
A

dd

F
P

−
M

ul

F
P

−
E

xp
2

F
P

−
Lo

g2

F
P

−
D

iv

F
P

−
S

qr
t

C
om

m
un

ic
at

io
n

[B
yt

es
]

Yao/2−MT
N−MT

OP−LUT
SP−LUT

(b) Communication Large Operations

 0

 5

 10

 15

 20

 25

 30

 35

A
dd

−
R

C

A
dd

−
B

K

A
dd

−
LF

G
T

−
S

eq

G
T

−
T

re
e

F
P

−
G

T

E
Q

S
−

B
ox

#R
ou

nd
s

2/N−MT
OP−LUT
SP−LUT

(c) Rounds Small Operations

 0

 50

 100

 150

 200

 250

 300

 350

M
ul

−
R

C

M
ul

−
LF

F
P

−
A

dd

F
P

−
M

ul

F
P

−
E

xp
2

F
P

−
Lo

g2

F
P

−
D

iv

F
P

−
S

qr
t

#R
ou

nd
s

2/N−MT
OP−LUT
SP−LUT

(d) Rounds Large Operations

Fig. 3. Total Communication (a,b) using Yao’s garbled circuits (§II-D) and 2-MT (§II-E), our N -MT (§III), our OP-LUT (δ ≤ 4 inputs, cf.
§IV-C) and our SP-LUT (δ ≤ 8 inputs, cf. §IV-D) and round complexity in the online phase (c,d) for a Boolean circuits evaluation using GMW
(MT), OP-LUT, and SP-LUT for 32-bit operations and the 8-bit AES S-box. Yao’s round complexity is constant and therefore not included.

VII. APPLICATIONS

In this section we evaluate the concrete benefits of our LUT
protocols on two practical examples: privacy-preserving AES
(§VII-A) and private set intersection (§VII-B). We compare
our OP-LUT and SP-LUT protocols to a Boolean 2-input gate
circuit, evaluated using Yao’s garbled circuits and GMW using
the 2-MT and N -MT pre-computation in a LAN and WAN
setting and summarize our results in Tab. VI.

Benchmark environment. We implement our OP-LUT with(
N
1

)
OT pre-computation and SP-LUT protocols in the ABY

framework of [DSZ15], written in C++. We benchmark the
protocols in two settings: a LAN setting, consisting of two
Intel i7 Haswell PCs connected by a Gigabit network, and a
WAN setting, consisting of a Google n1-standard-4 instance
with 4 vCPUs and an Amazon m3Xlarge instance with 4
vCPUs which are connected by a network with 28 MBit
bandwidth and 122 ms ping latency on average. We argue
that the WAN setting presents a practical MPC setting, since
the machines are controlled by two different cloud providers
and located at two different continents in the US and Europe.

We run the experiments using 4 threads on each machine,
average the results over 10 executions, and dismiss outliers
with more than twice the runtime. For Yao’s garbled circuits,
we perform multi-threading by splitting the original circuit into
four separate parts that are evaluated in parallel. The variance
in the LAN setting was ≈ 1% and in the WAN setting ≈ 5%.

Implementation features. Our LUT protocols work in the pre-
processing model, where setup and online phase are executed
separately. Both phases can be combined in case of an ad-hoc
execution, resulting in a lower total time. To process a shared
value, our LUT protocols need to read, process, and store a ta-
ble entry, in contrast to Boolean circuit-based protocols, which
can process multiple shares at once. Thereby, the amortization
that happens when the same circuit is evaluated a large number
of times in parallel is less compared to a Boolean circuit-based
evaluation. Finally, our LUT protocols pre-compute and store
tables, which results in a larger memory footprint compared
to GMW, which only stores single bits. However, the storage
requirement is still much lower than for pre-computed Yao’s
garbled circuits and the table generation and evaluation can be
pipelined, similar to garbled circuits [HEKM11].

11

Network LAN WAN
AES Encryption
Blocks 1 1,000 1 1,000
Protocol Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT
Setup [s] 0.007 0.003 0.004 0.003 0.003 1.395 0.822 0.688 0.781 0.970 0.300 0.423 0.396 0.502 0.180 50.758 25.552 13.719 19.315 2.699
Online [s] 0.003 0.006 0.005 0.006 0.137 0.028 0.024 0.453 0.228 2.397 1.642 0.790 2.234 2.808 2.102 11.080
Total [s] 0.010 0.009 0.010 0.008 0.009 1.561 0.850 0.720 0.805 1.419 0.528 2.823 2.793 2144 0.970 52.992 28.360 16.526 21.417 13.779
Sent [MB] 0.194 0.184 0.140 0.127 0.055 172 169 96 103 44 0.194 0.184 0.140 0.127 0.055 172 169 96 103 44
Private Set Intersection
Set Sizes 256 16,384 256 16,384
Protocol Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT
Setup [s] 0.113 0.069 0.057 0.062 0.267 3.180 2.117 1.784 1.819 5.878 2.414 1.157 1.069 1.237 0.901 61.834 31.347 16.533 18.730 9.857
Online [s] 0.026 0.003 0.004 0.022 1.227 0.079 0.132 0.781 0.802 0.457 0.348 0.693 36.750 1.867 1.742 4.789
Total [s] 0.139 0.072 0.060 0.066 0.310 4.407 2.195 1.862 1.951 6.659 3.217 1.705 1.526 1.585 1.594 98.584 33.214 18.400 20.472 14.089
Sent [MB] 6.923 4.320 2.475 2.971 1.247 339.2 209.4 119.6 144.0 58.6 6.923 4.320 2.475 2.971 1.247 339.2 209.4 119.6 144.0 58.6

TABLE VI. SUMMARY OF OUR APPLICATION RESULTS ON AES AND PSI FOR YAO’S GARBLED CIRCUITS (§II-D), 2-MT (§II-E) AND OUR
N -MT (§III-E) FOR GMW, AND OUR OP-LUT (§IV-C) AND SP-LUT (§IV-D) PROTOCOLS. BEST RESULTS MARKED IN bold.

A. AES Encryption

One of the most widely used benchmark examples for se-
cure computation is AES, which has applications in encrypted
password authentication [Sec15]. We assume that a client holds
either one or 1,000 plaintexts, which should be encrypted with
an expanded key, held by a server. We use the Boolean AES
S-box circuit from [BP12] which has 34 AND gates and a
multiplicative depth of 4. The OP-LUT representation of the
S-box consists of a network of δ = 2 to σ = 1, δ = 3 to
σ = 2, and δ = 4 to σ = 4 LUTs which requires 795 bytes
of communication and has 3 communication rounds. The SP-
LUT representation of the AES S-box uses a δ = 8 input to
σ = 8 output LUT to evaluate an S-box.

From the results in Tab. VI, we can observe that no protocol
consistently performs best across all experiments. This can be
explained by a varying bottleneck, depending on the evaluated
function and the setting. In the AES(1,000) LAN setting, the
N -MT protocol performs best since it has a good balance
between computation and communication. In the AES(1) WAN
setting, Yao’s protocol performs best, since it has the lowest
number of communication rounds. Finally, in the AES(1,000)
WAN setting, the SP-LUT protocol performs best, since it has
the lowest communication. The 2-MT and N -MT approaches
have the same online phase but the setup phase of the N -MT
protocol is more efficient due to the lower communication.
For AES(1000), Yao’s protocol performs worst since its com-
munication is uni-directional from garbler to the evaluator as
opposed to the other protocols, where the communication is
evenly divided between both parties.

B. Private Set Intersection

In the private-set intersection (PSI) application, two parties
want to identify the intersection of their private sets without
revealing any element that is not in the intersection. PSI
can be used for computing the revenue of online advertise-
ment, for finding common contacts, or for genomic computa-
tions [PSSZ15]. For our experiments, we use the circuit-based
PSI protocol of [PSSZ15], which computes the intersection
between two sets by first mapping the elements into hash tables
and then performing a pair-wise comparison between each bin
of the hash tables. We compute the intersection between two
sets of either 256 or 16,384 elements with length 32-bit. The
Boolean circuit for sets of 256 elements has 138,600 AND
gates and for sets of 16,384 elements has 6,724,062 AND
gates and both have a multiplicative depth of 5. The OP-LUT

circuit for 256 elements has 44,352 δ = 4 to σ = 1 LUTs
and 5,544 δ = 2 to σ = 1 LUTs and the circuit for 16,384
elements has 2,123,388 δ = 4 to σ = 1 LUTs and 353,898
δ = 2 to σ = 1 LUTs and both have a depth of 4. The SP-LUT
circuit for 256 elements has 16,632 δ = 8 to σ = 1 and 5,544
δ = 5 to σ = 1 LUTs and the circuit for 16,384 elements has
707,796 δ = 8 to σ = 1 and 353,898 δ = 6 to σ = 1 LUTs
and both have a depth of 3.

As shown in Tab. VI, the overall best performing protocol
for the PSI experiments in the LAN and PSI(256) WAN
settings is our N -MT generation. In the PSI(256) WAN setting,
our LUT protocols are only slightly slower, while in the
PSI(16,384) setting, our SP-LUT protocol achieves the best
performance. The reason for the poor performance of SP-
LUT in the LAN setting is its high computation overhead,
which is due to the high number of δ = 8 to σ = 1
LUTs, which is around factor 5 higher than for the N -MT
protocol. Nevertheless, in the WAN setting, where communi-
cation becomes the bottleneck, the computation overhead of
our SP-LUT protocol amortizes and it performs better than
the standard 2-MT generation. Yao’s garbled circuits protocol
performs poorly in the LAN and WAN settings, since it has
larger communication per AND gate than the other protocols
and the number of input wires to the circuit, which require
κ bit communication in the online phase, is as high as the
number of AND gates. Finally, the Boolean circuits protocols
have a fast online time in the LAN setting, since the number
of communication rounds is low, but OP-LUT achieves better
online time in the WAN setting, due to the higher latency.

VIII. RELATED WORK

In this section, we discuss related work on improving
secure computation (§VIII-A), secure computation protocols
that represent the functionality as network of multi-input
gates (§VIII-B), and Boolean circuit compilers (§VIII-C).

A. Efficient Secure Computation

One of the main reasons why secure computation was
believed to be inefficient was the high number of symmetric
cryptographic primitive invocations. In particular, in Yao’s
garbled circuits the circuit garbler requires 4 invocations to
garble an AND gate while for GMW, both parties require 6
invocations to generate a multiplication triple during OT exten-
sion. A dramatic improvement on the computation efficiency of
secure computation protocols has come with the introduction

12

of the AES-NI processor extensions [KSS12], [BHKR13],
[GLNP15]. Currently, the most efficient instantiation is the
fixed-key AES garbling of [BHKR13], which imposes an ideal
permutation assumption on AES. Alternative instantiations that
require weaker assumptions and use pipelining techniques to
improve efficiency have been given in [GLNP15]. In [ZRE15]
it was shown how to reduce the communication in Yao’s
garbled circuits to 2κ bits per AND gate and it was proven that
this matches the lower bound. In [KKS16] the authors utilize
the fact that AND gates in Yao’s garbled circuits where one
party knows the plaintext input can be garbled at lower cost
to reduce the communication for specific circuits.
One approach to circumvent the high cost for certain opera-
tions are mixed-protocols, which mix secure computation pro-
tocols that operate on arithmetic and Boolean circuits. Thereby,
a function can be divided in sub-blocks that are evaluated in
the secure computation protocol for which the representation is
more efficient. The TASTY framework [HKS+10] combined
additively homomorphic encryption and Yao’s garbled circuits
protocol. The ABY framework [DSZ15] used OT instead of
homomorphic encryption to compute the multiplication. Our
work can be combined with these approaches to achieve
another degree of freedom when constructing mixed-protocols.

B. Multi-Input Gates in Secure Computation

The gate-evaluation secret sharing approach (GESS)
[Kol05] is an information theoretic variant of garbled circuits
that can be based on OT and performs secure computation in
a constant number of rounds. The idea of GESS is to process
the circuit from the outputs to the inputs such that shares
on the output wires determine the shares on the input wires,
which leads to a quadratic size increase in circuit depth for
shares on the input wires. Sliced-GESS [KK12] efficiently
extends GESS to circuits with higher depth at the cost of an
increased number of communication rounds by slicing the
circuit into sub-circuits of constant depth, which are connected
via a string selection OT (security against a covert client can
be achieved using longer strings as selection bits in the OTs).
The efficiency of sliced-GESS is not experimentally evaluated
and its performance is highly affected by the topology of
the evaluated circuit and is best for rectangular circuits with
constant width where each gate has 2 outputs. According
to an unpublished full version2, the best performance for
such a rectangular circuit is (112 + κ)/3 = 80-bit per gate,
where each slice has depth d′ = 3, κ = 128 and with the OT
extension optimization of [KK13], [ALSZ13], which reduces
the number of sent ciphertexts from two to one. In contrast
to GESS, the performance of our approach is less dependent
on the topology of the overall circuit and independent of the
function computed in the slices.
[IKM+13] outlines a scheme called one-time truth tables
(OTTTs), which relies on representing the whole function
as a single truth-table and allows the evaluation of an
arbitrary-size truth-table in a constant number of rounds and
with linear communication complexity in the input length
during the online phase using correlated randomness that
is pre-computed in the setup phase. However, the scheme
scales poorly for functions with large input size as the
setup phase requires super-polynomial communication and

2Available at http://www.cs.technion.ac.il/∼ranjit/papers/slicegess.pdf.

storage in the length of the function’s input. [DZ16] tailors
the pre-computed randomness to AES S-boxes to allow
an efficient online evaluation of AES with security against
malicious adversaries. Their setup phase, however, becomes
very communication intensive, since all possible outcomes for
every AES S-box have to be pre-computed once. We present
and analyze the efficiency of [IKM+13] with pre-computation
using [DZ16] in §IV-B and give a protocol that improves on
the communication complexity in the setup phase for practical
input sizes in §IV-C.
FastGC [HEKM11] used Yao’s protocol to evaluate multi-input
gates. Using the garbled row reduction technique [NPS99],
this approach requires κσ · (2δ − 1) bits communication in
the setup phase for a LUT with δ input and σ output bits
and, in the online phase, requires constant rounds and no
communication. However, a traditional 2-input gate Boolean
circuit evaluation using Yao’s protocol is more efficient than
a multi-input gate evaluation, since the communication for
multi-input garbled tables scales exponentially in δ.
A concurrent and independent work introduces
TinyTable [DNNR16], a malicious secure computation
protocol that uses pre-computed tables for secure evaluation
of functions. TinyTable was shown to achieve better online
communication for 2-input AND gates in the semi-honest
model. For tables with more inputs, its online phase was
evaluated only on the AES SBox. In order to pre-compute
the tables, [DNNR16] uses the same idea as [DZ16], outlined
in §IV-B, namely to pre-compute the circuit once for every
input combination, which results in a large communication
overhead in the setup phase.
A recent work [GLMY16] proposes to garble a circuit as
independent smaller sub-components, which reduces the
communication cost in the online phase but results in a
multi-round protocol and more overall communication.
An ongoing and independent work outlines a polynomial-
based garbling scheme in Yao’s protocol [MPS15]. The
scheme requires the function to be represented as building
blocks with multiple inputs instead of 2-input gates. We view
their work as orthogonal to ours, since they focus on the
constant-round Yao’s protocol while our approach focuses on
multi-round secret-sharing based protocols.
The authors of [KKW16] showed how to efficiently overlay
a large number of switch branches in secure computation
and propose to evaluate switch statements in GMW using
the

(
N
1

)
OT protocol of [KK13]. This idea is similar to our

multi-input LUT protocols but specifically tailored to switch
statements, while our LUT protocols can be used to evaluate
generic functionalities.
New garbling techniques that allow Yao’s garbled circuits
protocol to evaluate several functions more efficiently than a
regular linear garbling scheme were given in [BMR16]. In
particular, the authors showed that their garbling techniques
allows a more efficient evaluation of arithmetic circuits and
multi-input threshold gates in Boolean circuits. For general
Boolean circuit constructions, the authors give a construction
that is of theoretical interest since it circumvents the 2κ lower
bound of [ZRE15] when evaluating a single AND gate but
does not generalize to arbitrary circuits.

13

http://www.cs.technion.ac.il/~ranjit/papers/slicegess.pdf

C. Boolean Circuit Compilers

Circuit compilers abstract the complexity of designing
Boolean circuits by compiling a high level language (such
as Java or C or Verilog) into a Boolean circuit. CBMC-
GC [HFKV12] uses a model checker to generate a Boolean
circuit from a description in C. The portable circuit for-
mat (PCF) [KSMB13] compiles high level code into an
assembler-like representation. The programming framework
ObliVM [LWN+15] introduces a special purpose language
which is compiled into a memory-trace oblivious program
based on Boolean circuits and ORAM. TinyGarble [SHS+15],
[DDK+15] presents a radically different approach of lever-
aging already established hardware synthesis tools within a
fully automated toolchain to compile a circuit description in
a hardware description language such as VHDL or Verilog
into a Boolean circuit. In our work, we go beyond the
TinyGarble approach and utilize and re-purpose LUT-based
synthesis tools which are used to map circuit implementations
on Field Programmable Gate Arrays (FPGAs) to generate LUT
representations for a wide range of functions.

IX. CONCLUSION AND FUTURE WORK

The current bottleneck in most implementations of semi-
honest secure two-party computation protocols are the network
bandwidth and latency. In this work, we show how to signif-
icantly reduce the communication as well as the round com-
plexity at the cost of increased computation. For secure com-
putation on Boolean circuits, we reduce the communication
from 2κ-bit to nearly a single κ-bit ciphertext per AND gate.
Furthermore, we outline how to significantly improve round
complexity and the communication complexity by representing
the functionality as a network of lookup tables (LUTs). We
introduce two protocols, OP-LUT and SP-LUT, for evaluating
LUTs and a compiler that leverages a hardware synthesis tool
that we customize to automatically translate functions from
a high-level description to a LUT representation. Finally, we
show that our SP-LUT protocol achieves a remarkable 3-
4x better round complexity and reduces the communication
beyond even the one κ-bit per AND gate boundary that we
achieve by evaluating a Boolean circuit using GMW even with
our improved pre-computation for many basic operations. In
addition, our LUT protocols can be freely combined with a
Boolean circuit evaluation using GMW, incurring no additional
costs and achieving the benefits of both representations.

We see multiple interesting research questions for fu-
ture work: A) Is it possible to improve the LUT compiler?
Even though the hardware synthesis tools already generated
optimized circuits with good performance, we see potential
in extracting XOR gates from LUTs, since XORs can be
evaluated for free. This would result in LUTs with less inputs
and outputs. B) Is it possible to combine the efficient setup
phase of our SP-LUT approach with the efficient online phase
of our OP-LUT approach and thereby obtain a protocol that
achieves both, an efficient setup as well as an efficient online
phase? C) Do our protocols extend to stronger adversaries?

ACKNOWLEDGMENTS

This work has been partially funded by the European
Union’s 7th Framework Program (FP7/2007-2013) under grant
agreement n.609611 (PRACTICE), by the German Federal
Ministry of Education and Research (BMBF) within CRISP, by
the DFG as part of project E3 within the CRC 1119 CROSS-
ING. This work is in parts supported by NSF awards 1619261
and 1649423 and AFOSR/MURI FA9550-14-1-0351.

REFERENCES

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More
efficient oblivious transfer and extensions for faster secure
computation. In CCS’13, pages 535–548. ACM, 2013.

[Alt] Altera Inc. Quartus prime design software.
https://www.altera.com/products/design-software/fpga-design/
quartus-prime/overview.html.

[ARS+15] M. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and
M. Zohner. Ciphers for MPC and FHE. In EUROCRYPT’15,
volume 9056 of LNCS, pages 430–454. Springer, 2015.

[BB94] M. L. Bonet and S. R. Buss. Size-depth tradeoffs for Boolean
fomulae. Information Processing Letters, 49(3):151–155, 1994.

[BCD+09] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P.
Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen,
J. Pagter, M. I. Schwartzbach, and T. Toft. Secure multiparty
computation goes live. In FC’09, volume 5628 of LNCS, pages
325–343. Springer, 2009.

[Ber] Berkeley Logic Synthesis. ABC: a system for
sequential synthesis and verification, release 70930.
http://www.eecs.berkeley.edu/∼alanmi/abc/.

[BHKR13] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient
garbling from a fixed-key blockcipher. In S&P’13, pages 478–
492. IEEE, 2013.

[BJSV15] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht. How the
Estonian tax and customs board evaluated a tax fraud detection
system based on secure multi-party computation. In FC’15,
volume 8975 of LNCS, pages 227–234. Springer, 2015.

[BMR16] M. Ball, T. Malkin, and M. Rosulek. Garbling gadgets for
boolean and arithmetic circuits. In CCS’16, pages 565–577.
ACM, 2016.

[BP05] J. Boyar and R. Peralta. The exact multiplicative complexity
of the Hamming weight function. Electronic Colloquium on
Computational Complexity (ECCC’05), TR05(049), 2005.

[BP12] J. Boyar and R. Peralta. A small depth-16 circuit for the
AES S-box. In Information Security and Privacy Research
(SEC’12), volume 376 of IFIP Advances in Information and
Communication Technology, pages 287–298. Springer, 2012.

[CO15] T. Chou and C. Orlandi. The simplest protocol for oblivious
transfer. In Progress in Cryptology – LATINCRYPT’15, volume
9230 of LNCS, pages 40–58. Springer, 2015.

[DDK+15] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi,
T. Schneider, and S. Zeitouni. Automated synthesis of optimized
circuits for secure computation. In CCS’15, pages 1504–1517.
ACM, 2015.

[DNNR16] I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci.
Gate-scrambling revisited - or: The TinyTable protocol for 2-
party secure computation. Cryptology ePrint Archive, Report
2016/695, 2016.

[DSZ15] D. Demmler, T. Schneider, and M. Zohner. ABY - a framework
for efficient mixed-protocol secure two-party computation. In
NDSS’15. The Internet Society, 2015.

[DZ16] I. Damgård and R. W. Zakarias. Fast oblivious AES:
A dedicated application of the MiniMac protocol. In
AFRICACRYPT’16, volume 9646 of LNCS, pages 245–264.
Springer, 2016.

[FJJBT16] T. Kasper Frederiksen, T. P. Jakobsen, Nielsen J. B, and
R. Trifiletti. On the complexity of additively homomorphic UC
commitments. In TCC’16, volume 9562 of LNCS, pages 542–
565. Springer, 2016.

14

https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
http://www.eecs.berkeley.edu/~alanmi/abc/

[GLMY16] A. Groce, A. Ledger, A. J. Malozemoff, and A. Yerukhimovich.
CompGC: Efficient offline/online semi-honest two-party compu-
tation. Cryptology ePrint Archive, Report 2016/458, 2016.

[GLNP15] S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast garbling of
circuits under standard assumptions. In CCS’15, pages 567–578.
ACM, 2015.

[GM16] S. Gueron and N. Mouha. Simpira v2: A family of efficient
permutations using the AES round function. Cryptology ePrint
Archive, Report 2016/122, 2016.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game or a completeness theorem for protocols with
honest majority. In STOC’87, pages 218–229. ACM, 1987.

[HEKM11] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. In USENIX
Security’11, pages 539–554. USENIX, 2011.

[HFKV12] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure
two-party computations in ANSI C. In CCS’12, pages 772–
783. ACM, 2012.

[HKS+10] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: Tool for Automating Secure Two-partY
computations. In CCS’10, pages 451–462. ACM, 2010.

[Hua12] Y. Huang. Practical secure two-party computation. Ph.D. Thesis,
2012. Online: https://yhuangpress.files.wordpress.com/2014/02/
dissertation.pdf.

[IKM+13] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and
A. Paskin-Cherniavsky. On the power of correlated randomness
in secure computation. In TCC’13, volume 7785 of LNCS, pages
600–620. Springer, 2013.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending
oblivious transfers efficiently. In CRYPTO’03, volume 2729 of
LNCS, pages 145–161. Springer, 2003.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable conse-
quences of one-way permutations. In STOC’89, pages 44–61.
ACM, 1989.

[KK12] V. Kolesnikov and R. Kumaresan. Improved secure two-
party computation via information-theoretic garbled circuits. In
SCN’12, volume 7485 of LNCS, pages 205–221. Springer, 2012.

[KK13] V. Kolesnikov and R. Kumaresan. Improved OT extension for
transferring short secrets. In CRYPTO’13, volume 8043 of
LNCS, pages 54–70. Springer, 2013.

[KKS16] C. Kempka, R. Kikuchi, and K. Suzuki. How to circumvent
the two-ciphertext lower bound for linear garbling schemes.
In ASIACRYPT’16, volume 10032 of LNCS, pages 967–997.
Springer, 2016.

[KKW16] W. S. Kennedy, V. Kolesnikov, and G. T. Wilfong. Overlaying
circuit clauses for secure computation. Cryptology ePrint
Archive, Report 2016/685, 2016.

[Kol05] V. Kolesnikov. Gate evaluation secret sharing and secure one-
round two-party computation. In ASIACRYPT’05, volume 3788
of LNCS, pages 136–155. Springer, 2005.

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free
XOR gates and applications. In ICALP’08, volume 5126 of
LNCS, pages 486–498. Springer, 2008.

[KSMB13] B. Kreuter, A. Shelat, B. Mood, and K. Butler. PCF: A portable
circuit format for scalable two-party secure computation. In
USENIX Security’13, pages 321–336. USENIX, 2013.

[KSS12] B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure com-
putation with malicious adversaries. In USENIX Security’12,
pages 285–300. USENIX, 2012.

[LWN+15] C. Liu, X. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A
programming framework for secure computation. In S&P’15,
pages 359–376. IEEE, 2015.

[MCB07] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Improve-
ments to technology mapping for LUT-based FPGAs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAS’07), 26(2):240–253, 2007.

[MCCB07] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton. Com-
binational and sequential mapping with priority cuts. In

IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD’07), pages 354–361. IEEE, 2007.

[MMRR10] O. Martinello, F. S. Marques, R. P. Ribas, and A. I. Reis. KL-
cuts: A new approach for logic synthesis targeting multiple
output blocks. In Design, Automation Test in Europe Conference
Exhibition (DATE’10), pages 777–782. IEEE, 2010.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a
secure two-party computation system. In USENIX Security’04,
pages 287–302. USENIX, 2004.

[MPS15] T. Malkin, V. Pastro, and A. Shelat. The whole is greater than
the sum of its parts: Linear garbling and applications. Workshop
talk at Securing Computation Workshop in Berkley, 2015. On-
line: https://simons.berkeley.edu/talks/tal-malkin-2015-06-10.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions
and mechanism design. In Electronic Commerce (EC’99), pages
129–139. ACM, 1999.

[PSSZ15] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing:
Private set intersection using permutation-based hashing. In
USENIX Security’15, pages 515–530. USENIX, 2015.

[RME+12] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and
C. Chen. Mapping into LUT structures. In Design, Automation
Test in Europe Conference Exhibition (DATE’12), pages 1579–
1584. IEEE, 2012.

[Sec15] Dyadic Security. Dyadic’s DSM web suite use-cases,
2015. Online: https://www.dyadicsec.com/wp-content/uploads/
2015/06/dyadicwhitepaper.pdf.

[SHS+15] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider,
and F. Koushanfar. TinyGarble: Highly compressed and scalable
sequential garbled circuits. In S&P’15, pages 411–428. IEEE,
2015.

[SS06] R. Schürer and W. Schmid. Monte Carlo and Quasi-Monte
Carlo Methods 2004, chapter MinT: A Database for Optimal
Net Parameters, pages 457–469. Springer, 2006. Online: http:
//mint.sbg.ac.at.

[Syn] Synopsys Inc. FPGA-based design. http://www.synopsys.com/
tools/implementation/fpgaimplementation/pages/default.aspx.

[Syn10] Synopsys Inc. Design compiler, 2010. http://www.synopsys.
com/Tools/Implementation/RTLSynthesis/DesignCompiler.

[SZ13] T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure
two-party computation with low depth circuits. In FC’13,
volume 7859 of LNCS, pages 275–292. Springer, 2013.

[TP14] M. S. Turan and R. Peralta. The multiplicative complexity of
Boolean functions on four and five variables. In Lightweight
Cryptography for Security and Privacy (LightSec’14), volume
8898 of LNCS, pages 21–33. Springer, 2014.

[Wol] C. Wolf. Yosys open synthesis suite. http://www.clifford.at/
yosys/.

[Xil] Xilinx Inc. Vivado design suite - hlx editions. http://www.xilinx.
com/products/design-tools/vivado.html.

[Xil09] Xilinx Inc. XST synthesis overview, 2009.
http://www.xilinx.com/support/documentation/sw manuals/
xilinx11/ise c using xst for synthesis.htm.

[Yao86] A. C. Yao. How to generate and exchange secrets. In FOCS’86,
pages 162–167. IEEE, 1986.

[ZRE15] S. Zahur, M. Rosulek, and D. Evans. Two halves make a
whole: Reducing data transfer in garbled circuits using half
gates. In EUROCRYPT’15, volume 9057 of LNCS, pages 220–
250. Springer, 2015.

15

https://yhuangpress.files.wordpress.com/2014/02/dissertation.pdf
https://yhuangpress.files.wordpress.com/2014/02/dissertation.pdf
https://simons.berkeley.edu/talks/tal-malkin-2015-06-10
https://www.dyadicsec.com/wp-content/uploads/2015/06/dyadicwhitepaper.pdf
https://www.dyadicsec.com/wp-content/uploads/2015/06/dyadicwhitepaper.pdf
http://mint.sbg.ac.at
http://mint.sbg.ac.at
http://www.synopsys.com/tools/implementation/fpgaimplementation/pages/default.aspx
http://www.synopsys.com/tools/implementation/fpgaimplementation/pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm

	Introduction
	Our Contributions
	High-Level Idea of Our Scheme
	Outline

	Preliminaries
	Notation
	LUT-based Boolean Circuits
	Oblivious Transfer
	Yao's Garbled Circuits
	Goldreich-Micali-Wigderson
	Size and Depth of Boolean Circuits

	More Efficient N()1 OT Extension
	Protocol Description
	Our Size-Optimized Codes
	Random Choice Bits
	Pipelined AES-256
	Multiplication Triples from N()1 OT

	LUT-based Secure Computation
	Lookup-Tables
	One-Time Truth Tables (OTTT)
	Online-LUT (OP-LUT)
	Setup-LUT (SP-LUT)
	Optimizations

	LUT-based Circuit Synthesis
	Hardware Synthesis Tools
	Customizing LUT-based Synthesis
	Generating Multi-Output LUTs

	Evaluation
	Comparison to Boolean Circuits
	Basic Operations

	Applications
	AES Encryption
	Private Set Intersection

	Related Work
	Efficient Secure Computation
	Multi-Input Gates in Secure Computation
	Boolean Circuit Compilers

	Conclusion and Future Work
	References

