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Abstract—Pattern lock is widely used as a mechanism for
authentication and authorization on Android devices. In this
paper, we demonstrate a novel video-based attack to reconstruct
Android lock patterns from video footage filmed using a mobile
phone camera. Unlike prior attacks on pattern lock, our approach
does not require the video to capture any content displayed on the
screen. Instead, we employ a computer vision algorithm to track
the fingertip movements to infer the pattern. Using the geometry
information extracted from the tracked fingertip motions, our ap-
proach is able to accurately identify a small number of (often one)
candidate patterns to be tested by an adversary. We thoroughly
evaluated our approach using 120 unique patterns collected from
215 independent users, by applying it to reconstruct patterns from
video footage filmed using smartphone cameras. Experimental
results show that our approach can break over 95% of the
patterns in five attempts before the device is automatically locked
by the Android system. We discovered that, in contrast to many
people’s belief, complex patterns do not offer stronger protection
under our attacking scenarios. This is demonstrated by the fact
that we are able to break all but one complex patterns (with a
97.5% success rate) as opposed to 60% of the simple patterns in
the first attempt. Since our threat model is common in day-to-day
lives, our workr calls for the community to revisit the risks of
using Android pattern lock to protect sensitive information.

I. INTRODUCTION

Pattern lock is widely used on Android devices to protect
sensitive information. It is preferred by some users over PIN-
or text-based passwords, as psychology studies show that the
human brain remembers and recalls visual information better
than numbers and letters [9]. According to a recent study,
40% of the Android users use patterns to protect their devices
instead of a PIN [7]. Pattern lock is also used for authentication
– for example, Alipay, the largest third-party online-payment
platform, uses pattern lock as part of the login authentication.
Given its pervasive usage, a security breach of the pattern lock
could lead to serious consequences.

*Corresponding authors: Zhanyong Tang and Zheng Wang

Researchers have uncovered a number of ways to crack
Android pattern lock. Smudge attacks use the oily residues left
on the screen to recover the pattern [1]. However, this approach
relies on the persistence of the smudge which can be easily
destroyed by subsequent on-screen activities after unlocking.
In a recent study, Zhang et al. [34] shows that it is possible
to infer a locking pattern by analyzing how the WiFi signal is
affected by the finger motions when drawing the pattern. Their
approach is restricted to a limit set of scenarios due to: (1) the
complex setup of the attack and (2) the WiFi signal can be
disrupted by any moving objects nearby or body movements.

Recently, video-based side-channel attacks are shown to be
effective in reconstructing PIN- or text-based passwords. Some
of the early work in this area rely on video footage filmed using
a camera directly faced the screen or the keyboard [4, 16].
Recent work shows that this limitation can be lifted by exploit-
ing spatial-temporal dynamics of the hands during typing [23].
Despite the success of video-based attacks on PIN- and text-
based passwords, no work so far has exploited video-based
side-channels to crack pattern lock. To do so, the attack must
address a number of new challenges. These include: How to
map the user’s fingertip movements to a graphical structure
consisting of continuous points instead of discrete keystrokes?
How to transform the fingertip movements tracked from the
camera’s perspective to the user’s view point to correctly
reconstruct the pattern? How to cancel the camera shake effect
that can significantly affect the performance of the attack? How
to identify two overlapping line segments of a pattern? The size
of the touch-screen or the pattern grid can vary from one device
or one application to the other, how can the algorithm adapt
to these changes? These issues make prior work video-based
attacks inapplicable. To overcome these challenges requires
creative solutions to be constructed in the new application
context of pattern lock.

This paper presents a novel approach to crack Android
pattern lock using video footage that captures the user’s
fingertip motions when drawing the pattern. Unlike smudge
attacks [1], our approach does not require the video footage
or images to be captured by a camera directly faced the screen.
Furthermore, the video can be filmed at a distance of 2 meters
from the user in public places. Such a distance is less likely to
raise suspicion compared to shoulder surfing [21] that requires
a closer observation distance to have a clear sight of the content
displayed on the screen.

Our attack employs a computer vision algorithm to track
the fingertip motions from the video. Using the geometry
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(a) The user was listening to
music and unaware of what
was happening around.

(b) The device screen seen
from the video filmed in (a).

(c) The video was recorded
from a distance of 2.5 meters.

(d) The device screen seen
from the video filmed in (c).

(e) An outdoor filming
scenario.

(f) The device screen seen
from the video filmed in (e).

Figure 1. Examples of scenarios in which a mobile phone camera is used
to film the unlocking process. In these scenarios, the camera does not need to
have a clear sight of the screen.

information extracted from the fingertip motions, it then maps
the tracked fingertip locations to a small number of (often just
one) candidate patterns to be tested on the target device.

We thoroughly evaluate our approach using 120 unique
patterns collected from independent users. We show that our
approach is effective in inferring candidate patterns and as
a result, an attacker can unlock the target device with a
success rate of over 95% (up to 97.5%) in five attempts. We
demonstrate that, in contrast to many people’s belief, complex
patterns do not provide stronger protection over simple patterns
under our attack. According to a recent study [18], people tend
to use complex patterns for important financial applications
such as online banking and shopping. Our finding suggests that
using pattern lock to protect sensitive information is risky.

Contributions The key contribution of this paper is a new
attack for Android pattern lock. Our attack exploits techniques
developed in the computer vision domain to address the key
challenges highlighted above.

This paper makes the following specific contributions:

• A New Attack: This is the first work to reconstruct locking
patterns without relying on the content shown on the
screen (Section II-B). Experimental results show that our
method can break over 95% of the locking patterns in five

attempts (Section VI-A). Given that the Android operating
system (OS) allows five tries before locking the device,
our attack represents a real threat for pattern lock.

• Identifying New Vulnerabilities: According to a recent
study [8], direct observation techniques, e.g. shoulder
surfing, are considered to be a low risk due to the close
distance between the attacker and the user (in order to
gain a clear sight of the device screen). As a result, many
users may underestimate the dangers from using pattern
lock in public places. Under our attack, filming can be
carried out at a distance of 2 meters from the user and the
mobile phone camera does not need to directly face the
target device. Such a camera setting makes our attack less
likely to raise suspicion and more likely to success when
compared to direct observation techniques. For instance,
the video can be filmed by an adversary who pretends to
interact with his phone, sitting next to the user in a public
place (see Figure 1). In many similar scenarios, many
users will not be suspicious of the attacker’s behavior.

• New Findings: Our study suggests that complex patterns
are more vulnerable under video-based attacks (Sec-
tion VI-A). This finding debunks many people’s concep-
tion that more complex patterns give stronger protection.
Therefore, our work sheds new insights on the practical
use of pattern lock.

II. BACKGROUND

A. Android Pattern Lock

Pattern lock is widely used to protect sensitive information
and perform authentication on Android touch-screen devices.
To unlock a device protected with pattern lock, the user is
asked to draw a predefined sequence of connected dots on a
pattern grid1. Figure 2 (e) shows a pattern which consists of
seven dots on a 3 × 3 grid. To form a pattern, the user starts
by selecting one dot as the starting point and then swiping
over multiple dots of the grid until the fingertip is lifted from
the screen. There are several rules for creating an Android
pattern: (1) a pattern must consist of at least four dots; (2) each
dot can only be visited once; and (3) a previously unvisited
dot will become visited if it is part of a horizontal, vertical
or diagonal line segment of the pattern. Taking into account
these constraints, the total number of possible patterns on a
3×3 grid is 389,112 [29]. Given the large number of possible
patterns, performing brute-force attacks on Android pattern
lock is ineffective, because the device will be automatically
locked after five failed tries.

B. Threat Model

In our threat model, we assume an adversary wants to
access some sensitive information from or to install malware
on a target device that is protected by pattern lock. This type
of attacks is mostly likely to be performed by an attacker who
have physically access to the target device for a short period
of time (e.g. via attending a meeting or a party where the
target user presents). To quickly gain access to the device,
the attacker would like to obtain the user’s locking pattern in
advance.

1In this paper we use the Android default pattern grid with 3 × 3 dots,
unless otherwise stated.
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Figure 2. Overview of the attack. Our system takes in a video segment that records the unlocking process (a). The adversary first marks two areas of interest
on the first video frame (b): one contains the fingertip involved in pattern drawing, and the other contains part of the device. Our system then tries to track
the fingertip’s location w.r.t. to the device. The tracking algorithm produces a fingertip movement trajectory from the camera’s perspective (c) which is then
transformed to the user’s perspective (d). Finally, the resulting trajectory in (d) is mapped to several candidate patterns (e) to be tested on the target device (f).

The attack starts from filming how the user unlocks the
device. Video recording can be done on-site or ahead of time.
The video will then be processed to identify a small number
of patterns to be tested on the target device. Because filming
can be carried out from a distance of as far as 2 meters using a
mobile phone camera and the camera does not need to directly
face the target device, this activity often will not be noticed by
the user. Moreover, given that many users use the same pattern
across devices and applications, the pattern obtained from one
device could also be used to break the user’s other devices.
We want to stress that the goal of this paper is to demonstrate
the feasibility of a new attack and the countermeasure is left
to our future work.

Examples of Filming Scenarios Figure 1 illustrates three
scenarios where filming can be performed without raising
suspicion to many users. For all the examples presented in
Figure 1, the filming camera had a left- or right-front view
angle from the target device and did not directly face the
screen of the target device. Due to the filming distance (2-
3 meters), the recoded video typically does not have a clear
vision of the content displayed on the screen. This observation
can be confirmed by the video snapshot placing alongside each
scenario, where it is impossible to identify the content shown
on the screen. The examples given in Figure 1 are some of the
day-to-day scenarios where security of the user’s device can
be compromised under our attack.

Assumptions Our attack requires the video footage to have
a vision of the user’s fingertip that was involved in pattern
drawing as well as part of the device (e.g. an edge of a phone).
We believe this is a reasonable assumption because in practice
many users often do not fully cover their fingers and the entire
device when drawing a pattern. This is particularly true when
holding a large-screen device by hands. To launch the attack,
the attacker needs to know the layout of the grid, e.g. whether
it is a 3× 3 or a 6× 6 grid. Our approach is to generate a set
of candidate patterns for each of the Android pattern grids and
the attacker can simply decide which set of candidate patterns
to use after seeing the target device (at the time the layout
of the grid will be available). However, unlike prior work on
video-based attacks on keystroke based authentication [23], our
approach does not require having knowledge of the console’s
geometry. In other words, the size of the screen or the position
of the pattern grid on the screen does not affect the accuracy of
our attack. We also assume the video does not need to capture
any content displayed on the screen. This assumption makes
previous video-based attacks on pattern lock [1] inapplicable.

III. OVERVIEW OF OUR ATTACK

This section gives an overview of our attacking system
which analyzes the user’s fingertip movement to infer the
locking pattern. The system takes in a video segment that
records the entire unlocking process. It produces a small
number of candidate patterns to be tested on the target device.
Figure 2 depicts the five steps of our attack:

1 Filming and Video Preprocessing: The attack begins from
filming how the pattern is drawn. The video footage can be
filmed at a distance of around 2 meters from the user using
a mobile phone camera (or 9 meters using a low-end digital
single reflex camera). After recording, the attacker needs to cut
out a video segment that contains the entire unlocking process.
We have shown that it is possible to automatically identify
this video segments in some scenarios (Section IV-A). After
cutting out the video segment, the attacker is then asked to
mark two areas of interest from one of the video frames: one
area consists of the fingertip used to draw the pattern, and the
other consists of part of the device (see Figure 2 (b)).

2 Track Fingertip Locations: Once the areas of interest are
highlighted, a computer vision algorithm will be applied to
locate the fingertip from each video frame (Section IV-B2).
The algorithm aggregates the successfully tracked fingertip
locations to produce a fingertip movement trajectory. This is
illustrated in Figure 2 (c). Keep in mind that at this stage the
tracked trajectory is presented from the camera’s perspective.

3 Filming Angle Transformation: This step transforms the
tracked fingertip locations from the camera’s perspective to the
user’s. We use an edge detection algorithm to automatically
calculate the filming angle which is then used to perform the
transformation (Section IV-C). For example, Figure 2 (c) will
be transformed to Figure 2 (d) to obtain a fingertip movement
trajectory from the user’s perspective.

4 Identify and Rank Candidate Patterns: In this step, our
software automatically maps the tracked fingertip movement
trajectory to a number of candidate patterns (Section IV-D). We
rank the candidate patterns based on a heuristic described in
Section IV-D2. For instance, the fingertip movement trajectory
in Figure 2 (d) could be mapped to a number of candidate
patterns shown in Figure 11. We show that our approach
can reject most patterns to leave no more than five candidate
patterns to be tried out on the target device.

5 Test Candidate Patterns: In this final step, the attacker
tests the candidate patterns on the target device.
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IV. IMPLEMENTATION DETAILS

A. Video preprocessing

The first step of our attack is to identify the unlocking
process from the video footage. While all our participants (see
Section V-A) consider this as a straightforward manual task,
we developed a simple yet effective heuristic to automatically
detect the video segment in some typical scenarios. Our
heuristic is based on the following observations: (1) before or
after unlocking, users often pause for a few seconds; (2) two
consecutive on-screen operations (e.g. swiping, zooming etc.)
typically expose some spatial-temporal motion characteristics.

In order to test our hypothesis, we have recorded 50 video
streams (each video lasts around 2 minutes) of how ten of
our participants drew patterns. During video recording, our
participants firstly performed some on-screen activities such
as web browsing and gaming for a period of time as they
wished; they then opened up a pattern lock screen to draw a
pattern and continued to perform other on-screen operations
afterwards. For each video stream, we then analyzed frames
that are associated with pattern drawing and those are not.

Figure 3 shows that all our participants paused at least
1.5 seconds before or after pattern drawing due to delay of
the user or the device. We also found that identical on-screen
activities often follow closely. For example, on several occa-
sions our participants had to swipe several times to locate a
program from the application list. These consecutive on-screen
operations have some spatial-temporal motion characteristics
that are different from pattern drawing. Figure 4 shows the
spatial-temporal motion structure for two gestures, swiping and
zooming, when they are performed once (a, c, e) and twice (b,
d, f). This diagram suggests that the spatial-temporal motion of
two identical on-screen activities contains one or more looping
structures for which pattern drawing does not have.

Our heuristic for identifying the pattern drawing process
is described in Algorithm 1. The input to the algorithm is
a video capturing the unlocking process, and the output of
the algorithm is a time-stamp tuple, <start, end>, which
marks the start and the end of a video segment. To locate
the video segment of pattern drawing, we first filter out on-
screen activities where the fingertip location does not change
within a timeframe of 1.5 seconds (lines 4 and 11). This
allows us to exclude some basic on-screen activities such as
clicking. We use the number of video frames, frameCount, as
a proxy to estimate the time interval between two on-screen
operations. Here, a time interval of 1.5s translates to 45 frames
or 90 frames when the video was shot at 30 or 60 frames per
second (FPS) respectively. We also use the spatial-temporal
characteristics described above to exclude two consecutive
swiping or zooming gestures (line 8). Finally, we exploit the
observation that users typically pause at least 1.5s before or
after unlocking to locate the start and end points of pattern
drawing (line 19).

Limitations Our heuristic is not perfect. It is likely to fail if
the user was typing using a Swype-like method (i.e. entering
words by sliding a finger from the first letter of a word to its
last letter) during video recording. In this case, our method will
identify multiple video segments of which one may contain the
pattern unlock process. If multiple segments are detected, the
algorithm will ask the user to confirm which video segment
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Figure 3. The cumulative distribution function (CDF) of the time interval
between pattern drawing and other on-screen activities.
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Figure 4. Spatial-temporal characteristics for performing an on-screen gesture
once (a, c, e) and twice (b, d, f).

to use. In this scenario, the first identified segment is likely to
be the correct one. In practice, an experienced attacker would
wait patiently to avoid this complicated situation by finding the
right time for filming (e.g. for a screen lock, the time is just
after the device is retrieved). The attacker could also watch
the video to manually cut it to ensure the obtain the correct
video segment. It is worthwhile to mention that automatically
identifying the pattern unlocking process is not central to our
attack because an attacker often can obtain a quality video
input used the manual methods described above. Despite its
limitations, our algorithm can reduce the efforts involved in
some common scenarios.

B. Track fingertip locations

After cutting out the video segment of pattern drawing,
we need to track the finger motions from the video segment.
We achieve this by employing a video tracking algorithm
called Tracking-Learning-Detection (TLD) [15]. This algo-
rithm automatically detects objects defined by a boundary
box. In our case, the objects to be tracked are the user’s
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Figure 5. Tracking the fingertip movement trajectory. For each video frame, the system tracks two areas: one surrounds the fingertip and the other covers the
edge of the device. The fingertip position is determined by computing the relative coordinates of the central points of the two areas. The red points highlighted
in the final results (d) are the touching points tracked from the three video frames.

Algorithm 1 Unlocking process identification heuristic
Input:

IV : Video footage
frameCount: Pause threshold before or after unlocking

Output:
<start,end>: Start and end of the unlocking video segment

1: frames[]← getV ideoFrames(IV )
2: LEN ← getFramesLen(frames[])
3: for i = 1 : LEN − frameCount do
4: sL ← hasF ingertipChanged(frames[i :

i+ frameCount])
5: if !sL then
6: sNo = i+ frameCount
7: for j = sNo : LEN do
8: if checkLoop(frames[j : LEN ]) then
9: eNo = i

10: break;
11: else if !hasF ingertipChanged(frames[j : j +

frameCount]) then
12: eNo = i
13: break;
14: end if
15: end for
16: break;
17: end if
18: end for
19: < start, end >← getTargetV ideo(frames[], sNo, eNo)

fingertip and an area of the device. These are supplied to the
algorithm by simply highlighting two areas on the first frame
of the video segment (see Figure 2 b). The algorithm tries to
localize the fingertip from each video frame and aggregates the
successfully tracked locations to produce a fingertip movement
trajectory as an output (see Figure 2 c).

1) Generate The Fingertip Movement Trajectory: The TLD
algorithm automatically detects objects based on the examples
seen from previous frames. For each tracked object, the algo-
rithm generates a confidence between 0 and 1. A tracking is
considered to be successfully if the confidence is greater than
a threshold. We set this threshold to 0.5 which is found to give
good performance in our initial design experiments using 20
patterns2. TLD has three modules: (1) a tracker that follows
objects across consecutive frames under the assumption that
the frame-to-frame motion is limited and objects are visible;
(2) a detector to fully scan each individual frame to localize
all appearances of the objects; and (3) a learner that estimates

2To provide a fair evaluation, the patterns used in all our initial test runs in
the design phase are different from the ones used later in evaluation.

errors of the detector and updates the detector to avoid these
errors in future frames.

The TLD learner automatically extracts features from the
area of interest to build a K-Nearest Neighbor classifier [13]
which is a part of the detector. In the following frames, the
learner estimates the detection errors and generates new train-
ing examples (i.e. new appearances of the object) arose from
object motion to re-train the classifier to avoid these errors.
For each video frame, TLD calculates the tracking confidence
and if the confidence is lower than the predefined threshold,
the result of this particular frame will be discarded. This
allows the algorithm to tolerate a certain degree of detection
errors. Finally, the successfully detected object locations will
be put onto a single image as the output. Detailed discussion
of TLD can be found at [15]. Sometimes the algorithm may
fail to detect the objects in many video frames due to poor
selections of interesting areas. If this happens, our system will
ask the user to re-select the areas of interest. We have also
extended TLD to report when a fingertip position is seen on the
footage. This temporal information is recorded as the number
of video frames seen with respect to the first frame of the video
segment. This is used to separate two possibly overlapping line
segments described in Section IV-D.

2) Camera Shake Calibration: By default, the TLD algo-
rithm reports the position of a tracked object with respect to
the top-left pixel of the video frame. However, videos recorded
by a hand-held device is not always perfectly steady due to
camera shake. As a result, the top-left pixel of a video frame
may appear in a different location in later frames. This can
drastically affect the precision of fingertip localization, leading
to misidentification of patterns.

Our approach to cancel camera shake is to record the
fingertip location with respect to a fixed point of the target
device. To do so, we track two areas from each video frame.
One area is an edge of the device and the other is the fingertip.
Both areas are highlighted on the first frame by the user. The
location of a successfully tracked fingertip is reported as the
the relative coordinates of the two center points of the marked
areas. This approach can also be used to calibrate the minor
motions of the target device during pattern drawing.

Example: To illustrate how our camera-shake calibration
method works, considering Figure 5 where two areas are firstly
marked by two bounding boxes in subfigure (a). Both areas
will then be automatically detected by the TLD algorithm in
following video frames as shown in subfigures (b) and (c). The
coordinates of the two center points of each box are the values

5
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Figure 7. Filming angle calculation. The filming angle, θ, is the angle between
the edge line of the device and a vertical line.

of x and y, and their relative positions are represented by 4X
and 4Y . For each frame where both areas are successfully
tracked, we compute the relative coordinates, (4X , 4Y ),
which are reported as the location of the tracked fingertip.

Figure 6 shows the results when using TLD to process
a video that was filmed with some camera shake effects.
Figure 6 illustrates the tracking results without (a) and with (b)
camera-shake calibration. To aid clarity, we have converted the
trajectories into the user’s perspective. Without camera-shake
calibration, the resulting trajectory is significantly different
from the actual pattern shown in Figure 6 (c). Because of this
great difference, using Figure 6 (a) will lead to misidentifica-
tion of candidate patterns. By contrast, Figure 6 (b) generated
with camera-shake calibration is more alike the correct pattern.

C. Filming angle transformation

In practice, the filming camera will not directly face the
target device to avoid raising suspicion by the target user. As
a result, the fingertip movement trajectory generated by the
tracking algorithm will look differently from the actual pattern.
For example, for the pattern presented in Figure 2 (a), if the
video is filmed from the attacker’s front-left to the target device
(i.e. with a filming angle of approximate 45 degrees), we get
the trajectory shown in Figure 2 (c). Using this trajectory
without any postprocessing will lead to misidentification of
candidate patterns. Therefore, we must transform the resulting
trajectory to the user’s view point. To do so, we need to
estimate the angle between the filming camera and the target
device. Our approach is described as follows.

We use an edge detection algorithm called Line Segment
Detector (LSD) [12] to detect the longer edge of the device.
The filming angle is the angle between the detected edge
line and a vertical line. This is illustrated in Figure 7. In

Section VI-E, we show that a minor estimation error of the
filming angle has little impact on the attacking success rate.
By default, we assume that the pattern grid is presented in
the portrait mode3. If this is not the case, i.e. the pattern grid
is shown in the landscape mode, we need to use the shorter
edge of the device to calculate the filming angle. We believe
that an attacker interested in a particular target device would
have some knowledge of how the pattern grid is presented
under different orientation modes and be able to identify the
device orientation by watching the video. There are also other
methods to be used to identify the filming angle [28].

Based on the estimated filming angle, θ, we use the
following formula to transform the tracked fingertip movement
trajectory from the camera’s view point to the user’s:

S = TS
′

, T =

[
cos θ − sin θ
sin θ cos θ

]
(1)

where T is a Transformation Matrix, S
′

is the coordinate
of a point of the tracked trajectory, and S is the resulting
coordinate after the transformation. For each video frame, our
algorithm individually calculates the filming angle and perform
the transformation, because the filming angle may change
across video frames.

D. Identify and rank candidate patterns

In this step, the fingertip movement trajectory will be
mapped to a number of candidate patterns to be tested on
the target device. The goal of the attack is to exclude as many
patterns as possible and only leave the most-likely patterns to
be tried out on the target device. Our approach is to use the
geometry information of the fingertip movement trajectory, i.e.
the length and direction of line segments and the number of
turning points, to reject patterns that do not satisfy certain
criteria. In this section, we first describe how to identify
overlapping line segments and extract length and direction
information before presenting how to use the extracted infor-
mation to identify and rank candidate patterns.

1) Extracting Structure Information: A pattern can be
defined as a collection of line segments where each line
segment has two properties: the length of the line, l, and
the direction of the line, d. We define a pattern, P , as a

3The pattern grid of the Android native pattern lock is always presented in
the portrait mode regardless of the orientation of the device.
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Figure 8. This figure shows the tracked fingertip movement trajectory (a) of
a pattern (b). Point S on (a) is the the starting point and points A, B, C, and
D on (b) represent four turning points.

Algorithm 2 Line Segment Identification
Input:

struct T []: Temporal information of each tracked location
timeTh: Threshold of whether two line segments are overlapping

Output:
tp[] Turning points of fingertip movement.

1: for each fingertip movement with temporal sequences T [] do
2: tpNum = 0;
3: struct lines[]← getLines(T [])
4: lNum← getLinesNumber(lines[])
5: for i = 1 : lNum do
6: if checkOverlap(lines[i], timeTh) then
7: p[tpNum++]← getOverlapPoints(line[i])
8: end if
9: p[tpNum++]← getTurningPoints(line[i])

10: end for
11: end for
12: tp[] = p[0 : end− 1]
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Figure 9. Separating two overlapping line segments by checking the number
of overlapping points within a timeframe.

collection of line segment prosperities, P = {L,D}. Here
L = {l1, l2, · · · , ln} is a collection of the lengths of all line
segments (that are numbered from 1 to n) of the pattern, and
D = {d1, d2, · · · , dn} is the collection of directions for all
line segments in L. Algorithm 3 describes how P is extracted.
We extract the length and the direction of each line segment
from the tracked fingertip movement trajectory and store them
into arrays L[] and D[] respectively.

Identify Line Segments The first step of geometry information
extraction is to identify individual line segments from the
trajectory. This can be achieved by finding turning points, the
start and the end points of the pattern, because two points
define a line segment. For example, turning points, A and B,
in Figure 8 defines a line segment, AB. In Algorithm 2, we use
a linear fitting method [17] to discover turning points (line 3).
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Figure 10. All possible line directions for a 3× 3 Android pattern grid.

A specific challenge here is how to separate two overlapping
line segments (see Figure 12 c for an example). It is to note
that up to two lines can be overlapped on a pattern grid. The
naive linear fitting algorithm would consider two overlapping
segments to be a single line as their points stay close to
each other. We overcome this problem by using the temporal
information (that is recorded by the tracking algorithm) to
separate two overlapping points. To do so, we visit all tracked
points of each line segment given by the linear fitting algorithm
(line 5) within a timeframe (timeTh) of 20 video frames for a
video of 30 FPS (40 for a video of 60 FPS). For each point,
we calculate its Euclidean distances to all other points within
the timeframe. We consider two points to be overlapping if
their distance is less than 5 pixels. For a video shot at 30
FPS, we consider there exist two overlapping line segments
if 5 (10 for a 60 FPS video) or more overlapping points in
the timeframe. Again, these threshold values were determined
through our initial design experiments. Finally, we consider the
center of all points as the turning point of the two overlapping
line segments and use turning point to separate the two lines.

Example: As an example, consider a fingertip movement
trajectory shown in Figure 9 (a). The red rectangle on the
figure is a timeframe consisting of 20 tracked points. If we
zoom in on the timeframe, we get Figure 9 (b) where a point
is labelled with a frame number according to when the point
was seen, starting from 1 for the earliest point. In this example,
there are more than 6 overlapping points within the same
timeframe, which are marked by a green circle. We use the
center point (No.10) of the overlapping points as the turning
point to separate the two line segments.

Extract the Line Length The physical length of a line
segment depends on the sizes of the screen and the pattern
grid, and the space between two touch dots. To ensure our
approach is independent of the device, we normalize the
physical length of a line segment to the shortest line found on
the tracked trajectory. For the example shown in Figure 8 (a),
the line lengths for segments, SA, AB, BC, CD, and DE, are
2ls, ls, 2ls, l, 2ls, respectively. Here segments AB and CD have
the shortest length, ls. The physical length of a line segment
is calculated by computing the Euclidean distance between the
start and the end points of a segment.

Extract Direction Information In addition to the line length,
we also want to know to which direction the fingertip moves.
This information is useful for inferring which dots are selected
to unlock the pattern. Figure 10 (a) shows all possible 16
directions on a 3×3 pattern grid. The directions are numbered
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Table I. MAPPINGS FROM LINE SLOPES AND FINGERTIP-HORIZONTAL
MOVEMENTS TO DIRECTION NUMBERS

Direction No. 1 2 3 4 5 6 7 8
slope (L → R) +∞ 2 1 1

2
0 − 1

2
−1 −2

Direction No. 9 10 11 12 13 14 15 16
slope (R → L) −∞ 2 1 1

2
0 − 1

2
−1 −2

Algorithm 3 Candidate Pattern Identification Algorithm
Input:

L[]: Relative line length
D[]: Direction number (see Figure 10)
tn: Number of turning points of fingertip trajectory
lengthTh: Threshold of considering two lines to have the
same length
directionTh: Threshold of considering two lines to be in
the same direction

Output:
P []: Candidate patterns

1: for each possible pattern p with tn turning points do
2: n← getLineNumber(P [])
3: pL[]← getRelativeLength(p)

/*Relatvie line length for pattern p*/
4: pD[]← getDirection(p)
5: if match(pL[], L[], lengthTh) then
6: if match(pD[], D[], directionTh) then
7: P []← p
8: end if
9: end if

10: end for
11: P []← sort(P [])

from 1 to 16 in clockwise. For each line segment of the
tracked trajectory, we calculate its line slope and the horizontal
movement of the fingertip (i.e. left→ right or vice versa). This
information will then be checked against Table I to determine
the direction number of the line segment. The horizontal
movement of the fingertip is determined by first using the
temporal information to find out the start and the end points
of the line and then comparing the horizontal coordinates of
the two points. The line slope is also computed based on the
coordinates of the start and the end points of the line segment.
Figure 10 (b) gives the direction number of each tracked line
segment of a fingertip movement trajectory.

2) Map the Tracked Trajectory to Candidate Patterns: In
this step, we use the extracted geometry information to map the
fingertip movement trajectory to a small number of candidate
patterns which will then be ranked using a heuristic. This
process is described in Algorithm 3.

Identify Candidate Patterns Our implementation simply
enumerates all possible patterns for a given pattern grid to
identify candidate patterns, starting from the top-left touch
point. We reject patterns that do not meet the requirements
that the correct pattern is expected to have. The requirements
are the number of line segments (this is checked by counting
the number of turning points), and the length and the direction
for each line segment. This is an automatic process performed
by our software system without any user involvement. We con-
sider two line segments having the same length and slope if the
difference between them is less than a threshold. Specifically,

a(1) a(2) a(3) a(4) a(5)

b(1) b(2) b(3) b(4) b(5)

c(1) c(2) c(3) c(4) c(5)

d(1) d(2) d(3) d(4) d(5)

Figure 11. Possible mappings for the tracked fingertip movement trajectory
presented in Figure 2 (d).

the relative length threshold, lengthTh, is set to 1.12 and the
slope threshold, directionTh, is set to 0.25. To determine the
thresholds, we have evaluated a range of possible values in our
initial design experiments to chose the best performing values.

Example: We use the pattern depicted in Figure 2 as an
example to describe our algorithm. Figure 11 gives several
possible mappings for the fingertip movement trajectory shown
in Figure 2 (d). For this particular trajectory, the collections of
lengths and directions are L = {l,

√
2l, l} and D = {5, 11, 5}

respectively. Any pattern that does not meet L or D should
not be considered as a candidate pattern for this trajectory.
For this reason, Figure 11 a(1)–a(5) will be rejected. Take
Figure 11 a(1) as an example, the line lengths and directions
for all four line segments of this pattern are {l,

√
5
2 l, l} and

{5, 12, 5} respectively. It does not meet the expected L or D
and should be rejected. The patterns presented in b(1)–b(5)
and c(1)–c(5) of Figure 11 will also be rejected for the same
reason.

Rank Patterns Candidates patterns are then ranked using a
simple heuristic. The heuristic assumes a pattern starting from
left dot of the grid is more likely to be the correct pattern over a
pattern starting from a right dot. This assumption is supported
by recent studies which show that people tend to select a left
dot as the starting point to construct a pattern [18, 29]. If
two candidate patterns start from the same dot, we consider
the pattern with a longer total line length is more likely to
be the correct pattern. Using these criteria, the five candidate
patterns are ranked in order from subfigures d(1) to d(5) in
Figure 11. Therefore, an attacker would first try the candidate
pattern presented in Figure 11 d(1). This attempt will lead to
a successful attack for the example presented in Figure 2. Our
experimental results confirm that this heuristic is effective.

V. EXPERIMENTAL SETUP

A. Data Collection

The patterns used in our evaluation were collected from
users who use at least one Android device (a smartphone or
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Figure 12. Illustrations of the terminologies used in Equation 2.

(a) Example patterns belong to the simple category.

(b) Example patterns belong to the median category.

(c) Example patterns belong to the complex category.

Figure 13. Examples of patterns collected from our participants. Patterns
are grouped into simple, median and complex categories, according to their
complexity scores.

complexity score:
43.8

complexity score:
44.7

complexity score:
46.8

Figure 14. Three most complex patterns on a 3×3 grid based on Equation 2.

a tablet) on a daily basis. To collect the patterns, we have
distributed over 1,000 survey forms and collected back 215
valid forms, resulting in 120 unique patterns4. Our participants
include 95 females and 120 males who were undergraduate or
postgraduate students at the host university. The majority of
our participants are in an age group of under 30.

To collect the patterns, we have conducted a “pen-and-
paper” survey by asking participants to fill in an anonymized
questionnaire. The questionnaire and survey were approved by
the research ethics board (REB) of the host institution. We
have made sure that our survey complied with strict privacy
regulations. For example, we did not collect any personally
identifiable information other than the gender and age group
of the participant. Our participants were well informed on
the purpose of the study and how the data will be managed
and used. The survey forms were distributed as voluntary
homework so that the participants can take the survey form
away to fill in. Users were invited to return the survey
form anonymously within three weeks to a dedicated, locked
mailbox, if they wish to participate in the study. To avoid a user
submits multiple copies of the same form, each survey form

4Available to be downloaded at: https://dx.doi.org/10.17635/lancaster/
researchdata/113.

Table II. SCREEN SIZES FOR THE TEST PHONES

Size
Brands MI4 Honor7 Note4

Height(cm)×Width(cm) 13.9× 6.9 14.3× 7.2 15.4× 7.9

is given a unique, randomly generated 32-digital number.

Overall, 37.6% of our participants confirmed that they use
pattern lock as the screen lock to protect their Android devices
on a daily basis; and 33% of those who do not use a pattern
as their screen lock said that they are often required to use
a pattern for authentication by an application like Alipay.
Furthermore, 60% of our participants also indicated that the
pattern they provided is currently being used or have been
used in the past by themselves. Other participants (often those
did not use a locking pattern on a daily basis) indicated that
they have provided a pattern which they would like to use if
a locking pattern is required. Based on this information, we
are confident that the patterns we collected represent some of
the real world patterns. Finally, all participants believe that
a complex pattern provides stronger protection than a simple
counterpart.

B. Pattern Complexity Classification

We quantify the complexity of a pattern using the complex-
ity (strength) score proposed in [27]. The complexity score,
CSP , of a pattern, P , is defined as:

CSP = SP × log2(LP + IP +OP ) (2)

where SP is the number of connected dots, LP is the the
total length of all line segments that form the pattern (see
Figure 12 a), IP are the number of intersections (which are
also termed as “knight moves” in some prior work [30], see
Figure 12 b) and OP are the number of overlapping linear
segments (see Figure 12 c). To calculate the line length,
we assume the length between two horizontally or vertically
adjunct dots is one. Thus, our method is independent of the
size of the screen and the grid.

Intuitively, the more connected dots (SP ), line segments
(LP ), intersections (IP ) and overlapping line segments (OP )
that a pattern has, the more complex it is. For example, the
patterns shown in Figure 13 (c) use all the nine dots of the grid,
and have at least seven line segments and three intersections.

Base on the complexity score, we divide the collected
patterns into three complexity categories: simple, median and
complex. A simple pattern has a score of less than 19, a median
complex pattern has a score between 19 and 33, and a complex
pattern must have a score greater than 33. This classification
gives us roughly 40 patterns per category. Figure 13 gives
some examples for each category while Figure 15 shows the
distribution of these patterns according to their complexity
scores. Based on this definition, the most complex pattern on
a 3× 3 grid has a score of 46.8 (see Figure 14). The complex
scores of the patterns we collected range from 6.4 to 46.8.

C. Video Recording and Preprocessing

User Participation We recruited ten postgraduate students
(five male and five female students) from Northwest University
to reproduce the 120 patterns (collected from users) and the
60 most complex patterns (see Section VI-A) on three target
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Figure 15. The distribution of complexity scores for the patterns given by
our participants.

mobile phones: a Xiaomi MI4, a Huawei Honor7 and a
Samsung Note4. Table II lists the screen size for each target
mobile phone.

Recording Devices We used three smartphones for video
recording: an Apple iPhone4S, a Xiaomi MI4 and a Meizu2.
Each mobile phone was used to record 40 patterns with
a 1080p HD resolution of 30 FPS under different settings
described as follows.

Video Recording Setup By default, we used the Android 3×
3 native pattern grid, but we evaluated our approach using
other pattern grids with different sizes in Section VI-G. We
recorded each pattern under three filming angles, 45, 90 and
135 degrees, by placing the camera on the left-front, front,
and right-front of the target device respectively. By default,
the video was recorded indoor during daytime under a natural
lighting condition. In Section VI-D we evaluated our approach
under different lighting conditions both indoor and outdoor. By
default, videos were recorded at a distance of 2 meters from
the target device and we evaluated the impact of the filming
distance in Section VI-G.

Video Filming Before recording, our participants were given
the opportunity to practice a pattern several times, so that
they can draw the pattern at their natural speed. On average,
this practice session took 10 trails per user per pattern. When
drawing the pattern, some participants sat, while others stood,
some hold the device by hands, while others placed it on a
table. Each pattern was drawn on three target devices and
recorded under three filming angles. Thus, for the 120 patterns
collected from users, we recorded 1,080 videos in total.

Video Preprocessing For each video stream, we used the
algorithm described in Section IV-A to cut out the video
segment of the unlocking process. We left around 200 to 300
milliseconds of the video segment before and after the pattern
unlocking process. To track the fingertip locations, we used
Windows Movie Maker to highlight two areas of interest on
the first frame of the video segment: one area surrounds the
fingertip, and the other contains an edge of the phone (see
Section IV-B2).

Implementation Our prototyped attacking system built upon
a TLD library [14] in Matlab. The developed software ran on
an Intel Core i5 PC with 8GB RAM. The operating system is
Windows 10. Our implementation can be ported onto Android
or Apple iOS systems, which is our future work. On our
evaluation platform, our software takes less than 30 seconds
to process a video to produce candidate patterns.
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Figure 16. For each pattern category, the figure shows the success rate using
no more than 1, 2, 3, 4 and 5 attempts.

VI. EXPERIMENTAL RESULTS

In this section, we first present the overall success rate
for cracking the 120 patterns collected from our participants
plus the top 60 most complex patterns on a 3× 3 pattern grid.
Our results show that our approach can successfully crack over
95% of the patterns using no more than five attempts. We then
analyze how the success rate is affected by the filming distance,
filming angles and camera shake. Finally, we demonstrate that
direct observations lead to poor performance before evaluating
our approach on alternative pattern grids.

A. Overall Success Rate

Result 1: We can successfully crack over 95% of the patterns
in five attempts and complex patterns are less secure compared
to simple patterns under our attack.

In this experiment, videos were recorded from a distance of
2 meters away from the target device. This mimics a scenario
where the adversary sits at the next table to the user in a public
space (e.g. a restaurant). The smartphones used for filming in
this experiment were hand-held. Figure 16 shows the success
rate for cracking different types of patterns within 1, 2, 3, 4
and 5 attempts. For all the patterns used in this evaluation, our
approach does not generate more than five candidate patterns.
For complex patterns, we are able to crack all except one (with
a 97.5% success rate) in the first attempt. For simple and
median patterns, the success rate increases with more tries.
In one attempt, we are able to successfully crack 60% and
87.5% of the simple and median patterns respectively. With
two attempts, the success rate increases to 87.5%, and 95% for
simple and median patterns respectively. Using five attempts,
we are able to crack all simple patterns and all but one median
patterns. The reason that we failed on one median and one
complex patterns is because of some blur motions of the video
footage (probably caused by the video compressing algorithm),
which leads to many tracking failures. But we are able to crack
the same pattern using a video filmed by a different device. It
is important to note that the native Android system allows up
to five failed tries before locking the device [11]. This means,
in practice, our approach is able to successfully crack most
locking patterns.

Another interesting observation is that in contrast to many
people’s intuition, complex patterns do not provide stronger
protection under our attack – as can be seen by the fact
that most of the complex patterns can be cracked in one
attempt. This is because although complex patterns can better
protect the user against direct observation techniques like
shoulder surfing [21], their unique graphical structures help
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Figure 17. The distribution of candidate patterns for each category. No more
than 5 candidate patterns were generated by our algorithm.

Table III. TRACKING PRECISION VS FILMING DISTANCE

Distance 1 m 2 m 3 m 3.5 m

fingertip 100% 98.7% 80.9% 68%
device edge 100% 99.4% 90.6% 69%

our algorithms to narrow the possible options down. This is
confirmed by Figure 17. It shows that for most median and all
complex patterns, our system produces one candidate pattern
– the correct one for most of our test cases.

We also evaluated our approach using the top 60 most
complex patterns (according to Equation 2) on a 3 × 3 grid.
To evaluate our approach on a wide range of patterns, we
exclude patterns that are simply a rotation to an already chosen
pattern. Figure 14 illustrates three highly complex patterns
which have a complexity score between 43.8 and 46.8. The
three patterns use all the nine dots of the grid and have a larger
number of line segments, intersections and overlapping lines
when compared to simpler patterns. Because of their complex
graphical structures, remembering these patterns using direct
observation techniques would be difficult. In this experiment,
we can crack all the complex patterns in one attempt. This
result reinforces our claim that complex patterns are less
security under video-based attacks.

B. Impact of Filming Distances

Result 2: We can crack over 80% of the patterns in five
attempts, if the video was filmed using a smartphone within
a distance of 2.5 meters away from the target.

We would like to know how the filming distance affects
the success rate of the attack. To do so, we used all the 120
collected patterns and we varied the filming distance from 1
meter to 3.5 meters. Figure 19 shows how the cracking success
rate changes as the filming distance increases. There are minor
discrepancies in the success rate between this diagram and
Figure 16 because we used less patterns in this experiment.
When the filming distance is less than 2 meters, our approach
can crack all patterns in five attempts. The success rate drops
significantly when the filming distance is greater than 2.5
meters. Beyond this point, the quality of the video filmed by
a mobile phone tends to drop significantly with many object
deformations. The degradation of the video quality makes it
difficult for the TLD algorithm to successfully track objects
across video frames. This is confirmed by Table III which
shows that the tracking precision for the fingertip and the
device edge drops from around 99% to 68% when the filming
distance increases from 2 meters to 3.5 meters. The increased
tracking failures result in an increased number of missing

points on the tracked trajectory, leading to a deteriorative
performance in identifying candidate patterns. This can be seen
from Figure 18 where the quality of tracking clearly decreases
when the filming distance is greater than 3 meters. Nonethe-
less, our approach can achieve a high success rate when the
filming distance is within 2.5 meters. Such a distance allows an
attacker to record the video without raising suspicions in many
day-to-day scenarios (some of these are depicted in Figure 1).

We also evaluated our approach on videos filmed using a
entry-level single-lens reflex (SLR) camera, Nikon D90, with
a low-end 105mm lens. The SLR camera was placed from a
distance of 9 meters away from the target device. For this set
of videos, we are able to achieve the same performance when
compared to using videos filmed by a mobile phone camera
with a 2-meter filming distance. The further filming distance
is largely due to better video quality brought by the advanced
SLR camera and the lens. Therefore, in practice, an attacker
can also use a professional video recording device to launch
the attack from a further distance.

C. Impact of Camera Shake

Result 3: Our method can tolerate a certain degree of camera
shake in the hand-held mode.

In this experiment, we used an IPhone4S smartphone to
record how a pattern is drawn on a Huawei Honor7 phone. This
experiment was carried out under three settings: fixed, hand-
held and shaky, where the filming device was respectively fixed
using a tripod, hand-held, and hand-held but with constant
movements of approximate 2cm in the horizontal or the vertical
directions. The recording device was placed on the left-front,
front, and right-front of the target device. In the experiment, we
affixed the target device on a table using double-sided tapes.

We use a reference point to quantify camera shake. The
point is the center position of an area of the target device.
The area is marked by a boundary box on the first frame (see
Figure 5). We calculate the difference (in terms of pixels) of
the locations of the reference point in two consecutive video
frames. We then use the difference to measure the degree of
camera shake. Figure 20 shows the cumulative distribution
function (CDF) of camera shake under the three different
filming settings. Here, the wider the distribution is, the less
steady the filming is. The shaky mode is least stable where
the difference of the reference point between two video frames
can be up to 250 pixels.

Figure 21 shows that our approach has the same perfor-
mance under the hand-held and the fixed modes. The modest
camera sake under the hand-held mode has little impact
on performance thanks to our camera-shake calibration. We
observe deteriorative performance under the shaky mode, but
the performance degradation is modest (80% vs 97% in five
attempts). In reality, an attacker would avoid drastic camera
shake by firmly holding the video recording device.

D. Impact of Lighting Conditions

Result 4: Low-light has a negative impact on the success rate
of the attack but our approach can still break over 70% of the
patterns when the video was filmed in a low-light environment.
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Figure 19. Impact of the filming distance.
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Figure 21. Impact of camera shake. Our approach has the same success rate
under the hand-held and the fixed modes and the performance degradation
under the shaky mode is modest.

In this experiment, videos were recorded under different
lighting conditions both indoor and outdoor. The experimental
settings are given in Table IV. The light intensity of these
condidtions ranges from 9500 lux (strong light), onto 240 lux
(normal light), and 55-70 lux (low light). These represent some
of the day-to-day scenarios where filming can take place. For
each setting, we tested all the 120 patterns on a Xiaomi MI4
phone and used an iPhone4S phone to record the video. The
filming camera was place on the left-front, front, and the right-
front of the target device from a distance of 2 meters.

Figure 22 shows that the success rate increases when video
filming were performed in a brighter lighting condition as
the light intensity changes from 55 lux to 9500 lux. This is

Table IV. LIGHTING CONDITIONS

Scenarios Indoor Indoor Indoor Outdoor

Time nighttime nighttime daytime daytime
Light Source warm LED white fluorescent sunlight sunlight
Light Intensity (Lux) 55− 70 70− 100 150–240 500–9500

5 5 7 0 1 5 0 - 2 4 0 5 0 0 - 9 5 0 0
7 0 %

8 0 %

9 0 %

1 0 0 %
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Figure 22. The cracking success rate within five attempts under different
lighting conditions.
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Figure 23. Impact of estimation errors of filming angles.

expected as low-light leads to increased video noise, blurred
motions and poor focus, which all have a negative impact on
the TLD algorithm. Nonetheless, our attack can still crack over
70% of the patterns in a filming environment of low light.

E. Impact of Filming Angle Estimation

Result 5: Our attack performs well when the error of filming
angle estimation is less than 5 degrees.

Recall that our attack needs to transform the fingertip
movement trajectory to the user’s perspective based on an
estimation of the filming angle (Section IV-C). Because our
filming angle estimation algorithm gives highly accurate re-
sults, we did not find the estimation error to be an issue in
our experiments. Nonetheless, it is worth studying how the
estimation error affects the success rate of our attack. To do
so, we deliberately added an error of 5-10 degrees to the
estimation in this experiment.

Figure 23 shows the results of this experiment. When the
error is less than ±5 degrees, there is little impact on complex

12



patterns and no impact at all on simple and median patterns.
However, an estimation error of more than 10 degrees can
significantly affect the success rate. Given such errors, the
resulting trajectory after transformations will be significant
different from the correct pattern. For example, when the
estimation error is 10 degrees from the true value, on average,
0.8, 2.6 and 4.2 line segments per pattern respectively will be
incorrectly labelled for simple, median and complex patterns.
This explains why the success rate for complex patterns drops
significantly when the filming angle estimation error is greater
or equal to 10 degrees.

F. Inferring Patterns with Eyes

Result 6: Our attacking methodology significantly outperforms
direct observation techniques.

In this experiment, we investigate whether an attacker can
infer the pattern by simply watching the video or through
direct observations. To answer this question, we asked each
of our ten participants to watch 60 videos (where a pattern
was drawn by other participants) to guess the pattern. We only
played the video segment during which a pattern is drawn to
the participant (around 3 seconds per video). To familiarize
participants with the process, we played five sample videos
and showed the correct patterns at the end of each video to
our participants before the experiment. Each participant then
had 10 minutes to watch a video and five chances to guess
a pattern. They could adjust the playing speed and replay the
video multiple times as they wished.

Figure 24 (a) shows the success rate of pattern guessing
with bare eyes. Our participants correctly guessed for nearly
half of the simple patterns in five attempts. However, they
found that it is difficult to infer complex patterns with many
line segments, overlapping lines and intersections. The success
rate of guessing complex patterns is less than 10% in five
attempts. This is not a surprising result because although it is
possible to correctly guess patterns with simple structures by
watching the video, doing so for patterns with more complex
structures is much harder.

We also asked participants to directly observe how a pattern
was drawn from a distance of 2 meters away from the target
device. The intuition behind this evaluation is that human eyes
can catch richer information over a digital video camera. The
results of this experiment are shown in Figure 24 (b). As can be
seen from the diagram, although the success rate is improved
compared to directly watching the video, the chances for
guessing the correct pattern in 5 attempts are quite low. In fact,
the success rates are 48.3%, 38.3% and 11.7% respectively for
simple, median and complex patterns.

G. Evaluation on Other Pattern Grids

Result 7: A pattern grid with more dots provides stronger
protection but our attack can still crack most of the patterns.

There are a few applications (such as CyanLock) and
customized ROMs available to increase the size of the pattern
grid from 3 × 3 to 4 × 4, 5 × 5, and 6 × 6. Although a
3 × 3 grid remains a popular choice (as it is supported by
the native Android OS), it is worth studying whether having
more touch dots on a pattern grid leads to stronger security. In
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Figure 24. Success rates of guessing patterns through watching the video (a)
or direct observations (b).
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Figure 25. Success rates of our attack for different locking grids.

this experiment, we first ranked all possible patterns for each
grid setting in ascending order according to their complexity
scores. We then equally divided the patterns into three groups,
simple, medium and complex, and asked our participants to
randomly select 20 patterns from each group for evaluation.
We report the success rate of our attack within five attempts.
In the experiments, we have adapted our algorithms for each
grid setting by adjusting the algorithm parameters (such as the
line direction numbers).

Figure 25 shows the success rate of our attack for different
grids. Similar to a 3 × 3 grid, our approach achieves a
higher success rate for complex patterns over simple ones.
On average, we can crack 90% of the complex patterns. We
observed that a grid with more dots does provide stronger
protection. For complex patterns, the success rate of our attack
drops from 95% on a 4 × 4 grid to 87% on a 6 × 6 grid.
For simple patterns, the success rate of our attack drops from
85% on a 4 × 4 grid to 75% on a 6 × 6 grid. This is
because a fingertip trajectory in general could be mapped to
a larger number of candidates on a grid with more dots. For
instance, the pattern shown in Figure 2 (f) can be mapped
to 55 candidate patterns on a 6 × 6 grid as opposite to 5 on
a 3 × 3 grid. Overall, our attack can crack over 75% (up to
95%) of the patterns within five attempts. One of the purposes
of introducing pattern grids with more dots is to allow users to
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use more complex patterns. However, this experiment suggests
that complex patterns remain less security on these grids under
our attack.

VII. DISCUSSIONS

A. Potential Countermeasures

The success of our attack depends on three factors: (1)
knowledge of the pattern grid; (2) a decent quality video
footage allowing the algorithm to track the fingertip movement;
(3) successfully identifying a video segment that captures the
entire process of pattern drawing.

For the first factor, the attacker can obtain relevant in-
formation via analyzing a device installed with the same
operating system and applications as the target. Randomization
techniques such as randomized pictures [6, 24] could be a
solution for the first factor. However, randomization-based
solutions often come at the cost of poorer usability. This issue
is a major obstruction for this approach to be adopted at a
large scale. Regarding the second factor, there are ways, such
as KALEIDO [35], to prevent unauthorized videotaping by
dynamically changing the colour and brightness of the screen
to confuse the filming camera. Furthermore, a non-technical
solution for this aspect would be to educate users to fully
cover their fingers when drawing a pattern. But doing this
on a large-screen device could be awkward especially when
the device is held by one hand. For the third factor, the
attacker’s solution depends on the type of the pattern. For a
screen lock, pattern drawing is the first activity (except for
receiving a phone call or making an emergency call) when the
device is retrieved. Therefore, identifying the video segment
is straightforward. When the pattern is used by applications,
we have observed that users typically pause for a few seconds
before or after entering the pattern. Therefore, an experienced
attacker should also be able to identify the video segment
in case our automatic algorithm (presented in Section IV-A)
fails to do so. A potential countermeasure is to mix pattern
unlocking with other on-screen activities. For examples, before
and after pattern drawing, the system can ask the user to type
in a sentence using a Swype-like method or to draw some
graphical shapes. The problem of this approach is that it could
annoy users by asking them to do more, especially for screen
unlocking – an activity that is performed many times a day.

B. Implications

While pattern lock is preferable by many users [7], this
work shows that it is vulnerable under video-based attacks. Our
attack is able to break most patterns in five attempts. Consid-
ering Android allows five failed attempts before automatically
locking the device, our work shows that this default setting is
unsafe. We also demonstrated that, in contrast to many users’
perception, complex patterns actually do not provide stronger
protection over simple patterns under our attack.

It is worth mentioning that our approach is only one of the
many attacking methods that researchers have demonstrated.
Examples of these attacks include video-based attacks on
keystroke-based authentication [23, 33], sensor-based attacks
for pattern lock [34]. Authentication methods that combine
different authentication methods [10, 19, 25] to constantly
checks the user’s identity could be a solution.

VIII. RELATED WORK

Our work lies at the intersection between computer vi-
sion based attacks and cracking graphical- and touch-based
authentication methods. This work brings together techniques
developed in the domain of computer vision and motion
tracking to develop a new attack.

Computer Vision-based Attacks No work has targeted using
video footage to crack Android pattern lock and this is the
first to do so. Our work is inspired by the work presented
by Shukla et al. [23] on video-based attacks of PIN-based
passwords. In addition to addressing the new challenges high-
lighted in Section I, our work differs to their approach in two
ways. Firstly, we target a different authentication method, i.e.
graphical-based passwords, which are fundamentally different
from PIN-based passwords. Secondly, our approach does not
require knowledge of the size of the screen or the grid. Other
work in the area including [33] which attacks PIN-based
passwords by analyzing how the screen brightness changes
when entering a password. But the subtle changes of the
screen brightness can be dramatically affected by the lighting
condition. In Section VI-D, we show that our attack is effective
under various lighting conditions. This restricts the application
of their approach. There is a body of work using reflections
to recover information typed by the user [2, 16, 20, 31]. They
all require having a clear vision of the content displayed on
the screen which is not required by our attack.

Cracking Graphical-based Passwords Aviv et al. demon-
strated that it is possible to reconstruct a locking pattern by
analyzing the oily residues left on the screen [1]. This method
is highly restricted as oily residues can be messed up by
any on-screen activities after pattern drawing. Zhang et al.
exploit the WiFi signal interferences caused by finger motions
to recover patterns [34]. Their method requires a complex setup
and is highly sensitive to moving objects of the environment.

Attacks on Touch-based Authentication Ballard et al. im-
plemented a forgery attack on handwriting authentication [3].
Using a small number of training examples, they achieve a
high success rate for this attack. More recently, Serwadda et
al. show that a simple robot can achieve high penetration rates
against touch-based authentication systems by analyzing on-
screen gestures including swiping and zooming [22]. In this
paper, we present a new, video-based attack for graphical-
based passwords. Research in this area all demonstrates the
need for a closer look of the security risks of touch-based
authentication.

Study of Android Pattern Lock Uellebenk et al. study how
people use Android pattern lock on a daily basis [29]. They
found that in practice many people only use a small set of
patterns due to the users’ bias in generating patterns. Løge
explored the correlation between human’s characteristics (e.g.
ages and genders) and the choice of patterns [18]. Her study
shows that users have a bias in selecting the starting dot to
form a pattern and people tend to use complex patterns for
sensitive applications.

Motion Tracking In addition to TLD, there are other methods
proposed in the past for tracking object motions. Some of them
apply image analysis to track the hand and gesture motions
from video footage [5, 26, 32]. In this paper we do not seek
to advance the field of motion tracking. Instead we demonstrate
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that a new attack can be built using classical motion tracking
algorithms. We show that the attack presented in this work can
be a serious security threat for Android pattern lock.

IX. CONCLUSIONS

This paper has presented a novel video-based side-channel
attack for Android pattern lock. The attack is based on a video
filmed a distance of 2 meters away from the target device using
a mobile phone camera. The attack is achieved by employing
a computer vision algorithm to track the fingertip movement
from the video, and then using the geometry information of
the fingertip movement trajectory to identify the most likely
patterns to be tested on the target device. Our approach was
evaluated using 120 unique patterns collected from indepen-
dent users as well as some of the most complex patterns. The
experimental results show that our attack is able to successfully
crack over 90% of the patterns in five attempts. We show
that, in contrast to many people’s belief, complex pattern
actually provides weaker protection over simple patterns under
our attack. Our study suggests that Android pattern lock is
vulnerable to video-based side-channel attacks.
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