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Abstract—Accelerometer-based gait recognition for mobile
healthcare systems has became an attractive research topic in
the past years. However, a major bottleneck of such system is
it requires continuous sampling of accelerometer, which reduces
battery life of wearable sensors. In this paper, we present KEH-
Gait, which advocates use of output voltage signal from kinetic
energy harvester (KEH) as the source for gait recognition. KEH-
Gait is motivated by the prospect of significant power saving by
not having to sample the accelerometer at all. Indeed, our mea-
surements show that, compared to conventional accelerometer-
based gait detection, KEH-Gait can reduce energy consumption
by 78.15%. The feasibility of KEH-Gait is based on the fact
that human gait has distinctive movement patterns for different
individuals, which is expected to leave distinctive patterns for
KEH as well. We evaluate the performance of KEH-Gait using
two different types of KEH hardware on a data set of 20 subjects.
Our experiments demonstrate that, although KEH-Gait yields
slightly lower accuracy than accelerometer-based gait detection
when single step is used, the accuracy problem can be overcome
by the proposed Multi-Step Sparse Representation Classification
(MSSRC). We discuss the advantages and limitations of our
approach in detail and give practical insights to the use of KEH
in a real-world environment.

I. INTRODUCTION

With rapid advancements in embedded technology, wear-
able devices and Implantable Medical Devices (IMDs) have
become an integral part of our everyday life. It is predicted
that by 2025, the market for personal wearable devices will
reach 70 billion dollar. The major deployments of those devices
are expected to be in health monitoring and medical assistance
domains [1], [2]. Some popular wearable devices, such as Fitbit
and Apple Watch, are already monitoring and storing a mass of
sensitive health data about the user. The private information of
users can be further explored to provide a variety of emerging
applications in the healthcare area. For example, the collected
sensory data can be explored for the understanding of user’s
physical and mental health states [3].

However, such wearable systems are vulnerable to imper-
sonation attacks in which an adversary can easily distribute
his device to other users so that data collected from these
users can be claimed to be his own. In this way, the attacker
can claim potential healthcare profits that are allocated to
people with certain illnesses even though he may not have
any illnesses [4]. For instance, a policy holder may obtain
a fraudulent insurance discount from a healthcare insurance
company by using other people’s health data. Another example
is that in a mobile healthcare system for disease propagation
control [5], an attacker can obtain additional vaccine allocation
by launching user impersonation attacks and thus compromise
the regular operations of such systems.

To mitigate the risk of malicious attacks, most wearable
devices rely on explicit manual entry of a secret PIN number.
However, due to the small screens of wearable devices and
frequent unlocking requests, it is inconvenient for users to enter
the keys manually. Furthermore, this method is not applicable
when an adversary colludes with other users to spoof the
healthcare company.

Gait recognition using wearable sensors, such as ac-
celerometers, has emerged as one of the most promising
solutions for user authentication. It offers several advantages
over other biometrics especially when applied in wearables.
For instance, although fingerprint and face have been proposed
for user authentication on smartphones, fingerprint readers and
cameras are not always available on wearable devices such
as pacemakers and smart watches. In comparison, because
walking is a daily activity, the main advantages of gait are its
availability and spontaneity. Furthermore, gait is non-intrusive,
and can be measured without subject intervention or knowl-
edge [6]. This motivates us using gait as a biometric. Extensive
previous studies have already demonstrated its feasibility in
user authentication [7], [8], [9], but they have also shown that
continuous accelerometer sampling drains the battery quickly.
High power consumption of accelerometer sampling, which
is typically in the order of a few milliwatts, also makes it
challenging to adopt gait-based user authentication in resource-
constrained wearables. Although power consumption may be
not a big issue for wearables with large batteries such as
smartphone, other wearables like IMDs suffer from short
battery life because IMDs are long-lived devices and battery
replacement requires surgical intervention [10].

A vision for wearable devices is to be battery-free (self-
powered). A current trend in battery-free devices is to in-
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vestigate kinetic energy harvesting (KEH) solutions to power
the wearable devices [11], [12], [13], [14]. However, one
fundamental problem in KEH is that the amount of power that
can be practically harvested from human motions is insufficient
to meet the power requirement of accelerometer for accurate
activity recognition [15]. As reported in [11], the amount
of power that can be harvested from human motion is only
in the order of tens to hundreds of microwatts. This 2-3
orders of magnitude gap between power consumption and
power harvesting is the biggest obstacle for realising gait-
based authentication in batteryless wearables. Although the
power consumption of sensors has been largely reduced in
the last years thanks to the Ultra-Low-Power electronics [16],
we believe in the near future energy harvesting will be used
to augment or substitute batteries. For example, AMPY [17]
has released the world’s first wearable motion-charger which
can transform the kinetic energy from user’s motion into
battery power. SOLEPOWER [18] produces smart boots that
use user’s steps to power embedded lights, sensors, and GPS.
KINERGIZER has developed a small piezoelectric generator
with the ability to harvest energy at low frequencies to produce
as much as 200µW of power [19].

Motivated by this prospect, we propose gait recognition by
simply observing the output voltages of KEH. The feasibility
of the proposed idea is based on the observation that if humans
have unique walking patterns, then the corresponding patterns
of harvested power from KEH should be unique too. The pro-
posed system offers several advantages. The major advantage
of KEH-based gait recognition is the potential for significant
power savings arising from not sampling accelerometer at
all. On the other hand, the output voltage can be used to
charge the battery, thus further extending battery life. Finally,
as energy harvester will be integrated in wearable devices in
the near future, the output voltage can be naturally utilized for
authentication purpose without introducing extra sensors. This
makes it a promising solution for light-weight authentication
for wearable devices. The main challenge of implementing
such a system is achieving high recognition accuracy by using
a 1-axis voltage signal rather than 3-axis accelerometer signals.
We address this issue by proposing a novel sparse fusion
method which exploits the information from multiple steps.
To the best of our knowledge, this is the first work that
proposes and experimentally validates the feasibility of gait
recognition using KEH. The main contributions of this paper
are as follows:

• We propose a novel gait-based user authentication
system for mobile healthcare system, called KEH-
Gait, which uses only KEH voltage as the source
signal to achieve user authentication.

• We build two different KEH prototypes, one based on
piezoelectric energy harvester (PEH) and the other on
electromagnetic energy harvester (EEH). Using these
KEH devices, we evaluate gait recognition accuracy
of KEH-Gait over 20 subjects. Our results show that,
with conventional classification techniques, which op-
erate over single step, KEH-Gait achieves approxi-
mately 6% lower accuracy compared to accelerometer-
based gait recognition.

• We demonstrate that authentication accuracy of KEH-
Gait can be increased to that of accelerometer-based

gait detection by employing a novel classification
method, called Multi-Step Sparse Representation Clas-
sification (MSSRC), which efficiently fuses informa-
tion from multiple steps.

• Finally, using measurements, we demonstrate that
currently available microprocessors can read KEH
voltage within 33 µs, which is two orders of mag-
nitude faster than what it takes to wakeup, interro-
gate and read acceleration values from typical 3-axis
accelerometers. This means that with microproces-
sor duty cycling, KEH-Gait promises major energy
savings over conventional accelerometer-based gait
detection.

The rest of the paper is structured as follows. Sec II
provides technical background on energy harvesting devices.
Sec III introduces trust models and attacker models of gait-
based authentication system. Sec IV presents the system archi-
tecture of KEH-Gait. Prototyping of KEH wearables and gait
data collection are described in Sec V. We present evaluation
results in Sec VI, and analyze power consumption in Sec VII.
We have a discussion of our work in Sec VIII and introduce
related work in Sec IX before concluding the paper in Sec X.

II. BACKGROUND

(a) (b)

Fig. 1: Examples of two KEH devices: (a) PEH, and (b) EEH.

Vibration-based energy harvesting has received growing
attention over the last decade. The research motivation in
this field is due to the reduced power requirement of small
electronic components, such as the wireless sensor networks
used in passive and active monitoring applications. The three
basic vibration-to-electric energy conversion mechanisms are
the piezoelectric [20], electromagnetic [21], [22] and electro-
static [23].

As electrostatic usually needs external voltage source, we
built two proof-of-concept prototypes based on piezoelectric
and electromagnetic respectively. Therefore, we briefly de-
scribe piezoelectric energy harvester (PEH) and electromag-
netic energy harvester (EEH) to make the paper self-contained.
The piezoelectric effect converts mechanical strain into electric
current or voltage. This strain can come from many different
sources, such as human motions and low-frequency seismic
vibrations. Figure 1(a) shows a basic design of PEH. Piezo-
electric vibrational energy harvesters are usually inertial mass
based devices, where a cantilever with a piezoelectric outer
layer is excited into resonance by a vibration source at the root
of the cantilever. The inertial mass is located on a vibrating
host structure and the dynamic strain induced in the piezo-
electric layer results in an alternating voltage output. Unlike
piezoelectric, the basic principle of electromagnetic generators
are based on Faraday’s law of electromagnetic induction. As
shown in Figure 1(b), the voltage, or electromotive force is
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generated when an electric conductor is moved through a
magnetic field. Because of the small size and light weight,
PEH is promising for hand-held and wearable devices such as
wristwatches (e.g., the SEIKO Kinetic watch1), on the other
hand, due to the weight of magnet, EEH usually has a larger
weight and may not be embedded in the wearable devices,
but can be used as an external mobile power source (e.g., the
AMPY Move mobile charger).

III. TRUST AND ATTACK MODELS

Authentication

Upload
gait data

Data centerUser Wearable 
device

Genuine user

Spoof attacker

fail

pass

Fig. 2: The overview of a typical healthcare monitoring system.

We envision the use of KEH-Gait primarily in resource-
constrained healthcare monitoring wearable devices to authen-
ticate the identity of the user to prevent spoof attack. KEH-
Gait addresses the issue of short battery life by using an energy
harvester to replace an accelerometer. In the near future, energy
harvesters can even be integrated in the hardware system to
achieve battery-free wearable devices. Figure 2 illustrates the
workflow of a typical healthcare monitoring system. In such a
system, each user is given a unique user ID and a monitoring
application which runs on a wearable device that can collect
private sensor data and transmit them to the data centre of
a healthcare company. Before transmission, the device first
collects gait data and transmits them to the sever. The server
will then perform authentication to verify the user’s identity
by using the gait data. If the user passes authentication, the
further private data like blood pressure or heart rate are then
transmitted to the server. While if the user verification fails,
i.e., the user spoofing attack is detected, the sensor data
collected from this user’s device will not be reported to the
server. In the server, sensor data will be analysed and processed
by the healthcare company to derive user’s physical and mental
conditions. For instance, the measurements of heartbeats and
blood pressure can be used to predict user’s psychological
conditions. A wide range of applications can also be enabled
by such mobile healthcare systems and some examples are:

• User’s physical behaviors are often reflection of phys-
ical and mental health and can be used by healthcare
companies to facilitate early prediction of future health
problems like depression [3].

• Health food companies can make advertisement by
cooperating with healthcare related applications such
as “IDOMOVE”2, e.g., providing discount coupons for
users who walk more than 1hr a day.

1KINETIC: http://www.seiko-cleanenergy.com/watches/kinetic-1.html.
2IDOMOVE: https://www.idomove.com/
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Fig. 3: Gait recognition systems: (a) conventional
accelerometer-based gait recognition and (b) KEH-Gait.

For some applications, continuous authentication may be
unnecessary. However, one-time validation of the users identity
is becoming insufficient for modern devices and applications
that process sensitive data. A simple example is the mobile
phone will lock the screen and demand users to enter their
PIN every few minutes. Such situations might benefit from a
seamless authentication approach that incorporates continuous
verification of the user’s identity. KEH-Gait leverages gait
which is a common daily activity to provide unobtrusive and
continuous authentication without user intervention. There are
also many commercial products that provide biometrics-based
continuous authentication systems such as BehavioSec3 and
Eyefluence4.
A. Trust Model

In this paper, we assume the data collected by sensors built
in the wearable devices are trustworthy. Also, our system trusts
the communication channel between the wearable device and
the healthcare company’s server. We discuss the feasibility of
our assumption as follows.

Tamper-resistant Sensor. An attack can physically ac-
cesses to the sensor or chipset and manipulate the recorded
data. To make sure the device has not been modified, a health-
care company can apply tamper-resistant techniques [24]. As
mentioned in [25], ARM TrustZone extension can also be used
to ensure the integrity of the sensors [26].

Trusted Transmission. A man-in-the-middle(MITM) at-
tack may occur when the device is communicating with the
server. Therefore, the device and server should establish a
secure communication channel. To address this attack, the
healthcare company can install a digital certificate in the wear-
able device and the device will perform SSL authentication
when communicating with the server.
B. Attack Model

The aforementioned mobile healthcare system is vulnerable
to user spoofing attacks. For instance, an adversary can dis-
tribute his device to another person, and upload the data of that
person aiming to obtain healthcare benefits. Besides, multiple

3https://www.behaviosec.com/
4http://eyefluence.com/
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(a) Acceleration signal of subject 1
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(b) Acceleration signal of subject 2
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(c) Output voltage of subject 1 from a PEH device
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(d) Output voltage of subject 2 from a PEH device
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(e) Output voltage of subject 1 from an EEH device
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(f) Output voltage of subject 1 from an EEH device

Fig. 4: A comparison of the output voltage signal from different devices: (a) and (b) exhibit the acceleration signal from 3-axis
accelerometer when two different subjects are walking; (c) and (d) plot the output voltage signal from a PEH device; (e) and (f)
show the output voltage signal from an EEH device.

users may collude to launch user spoofing attacks to fool
the mobile healthcare system. Therefore, the adversary model
considered in this paper focuses on impersonation attacks. We
assume the presence of two types of impersonation attacks:
a passive adversary and an active adversary. The passive
adversary tries to spoof the healthcare system by using his
own walking patterns. The active spoofing attacker knows the
authentication scheme and will try his best to imitate the
walking pattern of the genuine user to spoof the healthcare
system.

The main goal of our system is to detect spoofing attacks.
In fact, there are many other possible attacks to such healthcare
system. We discuss these possible attacks and corresponding
solutions. The first type of attacks we consider is replay
attacks. In replay attacks, an adversary first records a mea-
surement trace from another person. Then he replays the data
trace to the monitoring device to fool the healthcare monitoring
system. This attack can be easily detected as discussed in [25].
Although a MITM attack during communication between the
device and server can be easily prevented, there is another type
of MIMT in which an adversary may build a MITM monitor
which bridges the user’s skin and a wearable device. For
example, once it detects a response message indicating healthy

problems such as high blood pressure, it will manipulate the
data and transmit the forged data to the server. This type
of attack can be addressed by the scheme in [25]. Further
potential threats include deriving the walking patterns by
studying a video of the target’s gait through computer vision
techniques. We believe this is a potential vulnerability of
unknown severity and leave it as future work.

IV. SYSTEM ARCHITECTURE OF KEH-GAIT

In this section, we discuss the proposed KEH-Gait frame-
work in details. First, we compare KEH-Gait with traditional
accelerometer based gait recognition system. Figure 3(a) shows
the pipeline of a traditional accelerometer-based gait recog-
nition system, in which the accelerometer data are used to
train a classifier for gait recognition. In contrast, as shown in
Figure 3(b), KEH-Gait exploits the output voltage signal of the
kinetic energy harvester for gait recognition directly. By not
using the accelerometer, KEH-Gait can save the energy that
is used to sample the accelerometer. The saved energy can
be further used to power other components in the wearable
device, such as the classifier and radio. The radio can be used
to transmit the personal data to a base station or a server.

Figure 4 compares the output voltage signal from two
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Fig. 5: System flowchart of KEH-Gait

types of energy harvester (EH) generated by two subjects
when they are walking. These figures provide a clear visual
confirmation that the voltage signal from the energy harvester
contains personalized patterns generated by the subjects. This
observation is promising as our goal is to recognize different
subjects based on the output voltage signal of the EH when
they are walking.

A. System Overview

As shown in Figure 5, the whole procedure of KEH-
Gait consists of three parts: offline dictionary training, pre-
processing of input signals, and classification.

During the offline dictionary training phase, gait cycles
are first segmented from time series voltage signal and then
interpolated into the same length. All detected cycles are
passed to unusual cycles deletion to remove outliers of gait
cycles. The obtained gait cycles are used to form the training
dictionary A. After obtaining A, we apply the projection
optimization algorithm in [27] to obtain a optimized projection
matrix Ropt. Then the reduced training dictionary Ã = RoptA
is used in the classifier as described in Section II.

After the acquisition of the test signal, we again apply gait
cycle segmentation and interpolation to obtain the gait cycles
from the test signal. The same optimized projection matrix
(as used for training) is used to reduce the dimension of the
test signal and provide the measurement vector ỹi = Roptyi,
i = 1, 2, · · · , k, and k is the number of obtained gait cycles.

Now both the training dictionary Ã and the measurements
ỹi are passed to the classifier. The `1 classifier first finds the
sparse coefficient vector xi. Then the vectors of different gait
cycles are fused based on a novel sparse fusion model, and the
fused sparse vector is used to calculate the residuals. Finally,
the identity is obtained by finding the minimal residual.

In the following sections, we detail the design of signal
pre-processing, offline dictionary training, and classification in
turn.

B. Signal Pre-processing

1) Gait Cycle Segmentation: In order to recognize a gait
signal, it is essential that we separate the time series of walking
periods into segments, such that each segment contains a com-
plete gait cycle. The gait cycle can be obtained by combining
two successive step cycles together as technically the gait
cycle is across a stride (two steps). As mentioned in [28],
typical step frequencies are around 1-2Hz, we apply a band-
pass Butterworth filter [29] on the sampled data to eliminate
out-band interference. The lower and upper cutoff frequency is
set as 1Hz and 2Hz separately (filter order is 4). After filtering,
the step cycles are separated by finding peaks associated with
the heel strike as shown in Figure 6. Thereafter, the gait cycle
is obtained by combining two consecutive step cycles together.

After gait cycle extraction, the output voltage data are
segmented into short gait cycles based on the peak detection.
Figure 7 presents the distribution of cycle duration (i.e. time
length of stride) for 20 healthy subjects walking at their normal
speed. We can see that most of the gait cycle ranges between
0.8-1.3s (80-130 samples at 100Hz sampling rate). This results
in turn can be used to omit unusual gait cycles and exclude
the cycles not produced by walking, i.e., the cycles which last
less than 0.8s and exceed 1.3s are dropped.

2) Linear Interpolation: Detected cycles are normalized
to equal length by linear interpolation because SRC requires
vectors of equal length as input. As mentioned above, normal
gait duration lies between 80 and 130 samples, we apply linear
interpolation on the samples to ensure that they achieve the
same length of 130 samples.

C. Offline Training

The training data are also passed to gait cycle segmentation
and linear interpolation to obtain gait cycles with same length.
In addition, we delete unusual cycles and optimize projection
matrix to further improve recognition accuracy.

1) Deletion of Unusual Cycles: Unusual cycles caused by
occasional abnormalities like temporary walking pauses or
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turning contains much noise that will deteriorate the recog-
nition accuracy. Apart from deleting unusual cycles using
cycle durations, the detected cycles are also passed to a
function which further deletes unusual cycles. This function
uses Dynamic Time Warping (DTW) distance scores to remove
outliers from a set of cycles. Specifically, we first compute the
DTW distance between the detected cycle and typical cycle.
Thereafter, we delete unusual cycles by a simple threshold
method, i.e., if the DTW distance of detected cycle and typical
cycle is higher than a predefined value (12 in the proposed
system), the detected cycle will be dropped. The typical cycle
is the one which is assumed to represent the subject’s gait
signal. This is obtained by computing the the average of all
cycles in the training data.

2) Projection Optimization: After unusual cycles removal,
the remaining gait cycles obtained from training data are
used to form the final training dictionary A. Motivated by a
recent work [27], we apply the projection matrix optimization
method proposed in [27] to reduce the dimensionality of SRC
while retaining the high classification accuracy. The projection
matrix Ropt is learned from dictionary A based on Tabu
search [30]. We refer the reader to [30] for more details.

D. MSSRC

SRC aims to solve the classification problem of one test
vector, however, the evaluation results in Section VI-C show
that the recognition accuracy of using one gait cycle can
achieve 86% (PEH dataset) and 75% (EEH dataset) only. To
overcome this limitation, we propose a novel sparse fusion
model which fuses the sparse coefficients vectors from mul-
tiple consecutive gait cycles to further improve recognition
accuracy.

The key assumption behind the proposed method is that
gait cycles obtained from consecutive gait cycles tend to have
a high agreement on the sparse representations because each
of the gait cycles from the same person should be linearly
represented by the same class in the dictionary. Suppose

we have acquired a set of M gait cycles from the test
signal. Following the single test vector approach described
in Section II, we can obtain a set of estimated coefficients
vectors X̂ = {x̂1, x̂2, ..., x̂M} by solving the `1 optimization
problem for each gait cycle. Theoretically, a precise sparse
representation will only contain the non-zero entries at the
locations related to the specific class. However, noise exists in
the empirical estimations. Therefore, the estimated coefficients
vector of the m-th test gait cycle can be expressed as:

x̂m = x+ εm (1)

where x is the theoretical sparse representation of the test
vector and εm is used to account for noise. The test vector
could be misclassified due to low Signal to Noise Ratio (SNR).
To enhance the SNR of the classification system, we propose a
new sparse representation model by exploiting the information
from multiple gait cycles. The new sparse representation model
can be expressed as:

x̂sum =

M∑
m=1

αmx̂m (2)

where αm is the weight assigned to x̂m based on the Sparsity
Concentration Index (SCI) defined in [31]:

SCI(x̂m) =
K ·maxj‖δj(x̂m)‖1/‖x̂m‖1 − 1

K − 1
∈ [0, 1] (3)

the SCI measures how concentrated the coefficients are in the
dictionary. SCI(x̂m) = 1, if the test vector can be strictly
linearly represented using training vectors from only one class;
and SCI(x̂m) = 0, if the coefficients are spread evenly over
all classes. The weight of x̂m is obtained by normalizing the
SCIs among the obtained M gait cycles:

αm = SCI(x̂m)/

M∑
n=1

SCI(x̂n) (4)

With the knowledge of x̂sum, the compressed residual of
each class is computed as:

ri(ysum) = ‖Roptysum −RoptAδi(x̂sum)‖2 (5)

where ysum =
M∑
m=1

αmym is the weighted summation of all

the test vectors. Following the same approach in [31], [27], the
final classification result is obtained by finding the minimal
residual.

To identify whether the walker is the genuine user or im-
poster, we adapt the same principle in [27] by using confidence
level defined as:

confidence =

(
1

K

K∑
i=1

ri − min
i=1,...,K

ri

)
/

1

K

K∑
i=1

ri (6)

The confidence level is in the range of [0, 1] and the verification
decision can be made by:

confidence

{
≥ C genuine user
< C imposter

where C is a threshold we set empirically. An appropriate
threshold can be chosen by data-driven approach to make the
recognition system robust to imposters.
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V. HARDWARE PLATFORM AND DATA COLLECTION

A. Proof-of-concept Prototype

PEH data logger. To this end, we built a data logger to
collect PEH voltage signals. The data logger includes a vi-
bration energy harvesting product from the MIDÈ Technology
called Volture, which implements the transducer to provide AC
voltage as its output. Our hardware also includes a 3-axis ac-
celerometer to record the acceleration signals, simultaneously
with the voltage signal. An Arduino Uno has been used as a
microcontroller device for sampling the data from the Volture.
A sampling rate of 100Hz has been used for data collection.
The sampled data has been saved on an 8GB microSD card
which has been equipped to the Arduino using microSD shield.
A nine volts battery has been used to power the Arduino. To
control the data collection, our data logger also includes two
switches, one is an on/off switch and the other to control the
start and stop of data logging. The Arduino measures voltage
between 0 and 5 volts and provides 10 bits of resolution
(i.e., 1024 different values). Therefore, we calculated the
corresponding output voltage from the measurements using
the following formula V = 5∗measurement

1023 . The hardware
platform and the internal appearance of the data logger are
shown in Figure 8.

12.5 cm

4 cm

6 cm

Piezoelectric Energy Harvester 

Power switch for the start/stop data recording

B MircoSD Card

Volts Battery to power ArduinoArduino Uno Microcontroller

Power switch for on/off the device

(a)

                                 

Piezoelectric Energy Harvester 

(Volture v25w) 8 GB MircoSD Card

9 Volts Battery to power Arduino

MircoSD Shield

Arduino Uno Microcontroller

(b)

Fig. 8: PEH data logger: (a) the external appearance and (b)
the internal details.

EEH data logger. We also built an EEH data logger to
collect voltage signals generated from an EEH device. The
data logger contains a harvesting circuit, through which energy
is generated by moving a magnet through an inductor. A
Tmote sky board has been used as a microcontroller device
for sampling the data from the inductor. A sampling rate of
100Hz has been used for data collection. The sampled data has
been saved in the 48K Flash of the MSP430 microcontroller.
Two AA batteries has been used to power the Tmote sky board.
We use a button to control the data collection.

Coil Magnet

Tmote Sky 

board

Electromagnetic 

energy harvester

0.8cm

4
.7

cm

Fig. 9: EEH data logger

(a) Indoor experiment (b) Outdoor experiment

(c) Holding PEH device (d) Holding EEH device

Fig. 10: The illustration of data collection.

B. Data Collection

The dataset used to evaluate the performance of the pro-
posed system consists of 20 healthy subjects (14 males and
6 females)5. During the data collection phase, the participants
were asked to hold the data logger in their preferred hand and
walk at their normal speed (0.7-1.1m/s). The data collection
is performed in several environments (indoor and outdoor)
in order to capture the influence of different terrains. An
illustration of indoor environment and outdoor environment
is shown in Fig 10(a) and Fig 10(b). The terrain of the chosen
outdoor environment varies including plain, grass and asphalt.
Each volunteer participated in two data collection sessions
that was separated by one week. During each session, the
participants were asked to hold the device (see Fig 10(c)
and Fig 10(d)) and walked along the specific route shown in
Figure 10(a) and Figure 10(b) for approximately 5 minutes.
Based on the above description, the gait dataset is close to
a realistic environment as it includes the natural gait changes
over time and different environments (indoor and outdoor).
In total, we have collected over 300 seconds of samples for
each subject from the EH devices as well as the accelerometer.
We collect two voltage datasets by using the PEH and EEH
devices, respectively, and perform gait cycle segmentation and
unusual gait cycle deletion on both of the datasets, and finally
we extract 200 gait cycles from each subject for evaluation.

5Ethical approval for carrying out this experiment has been granted by the
corresponding organization (Approval Number HC15304 and HC15888)

7



Sampling rate (Hz)
1 10 20 30 40 50 100

A
c
c
u

r
a
c
y
 (

%
)

0

20

40

60

80

100

(a)

15% 25% 50% 75% 100%
Compression rate

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

Accelerometer signal(100Hz)
Voltage signal-PEH signal(100Hz)
Voltage signal-EEH signal(100Hz)
Accelerometer signal(8Hz)

(b)
Number of gait cycles

1 2 3 4 5 6 7 8

A
c
c
u

r
a
c
y
 (

%
)

0

20

40

60

80

100

Accelerometer signal (100Hz)
Voltage signal-PEH (100Hz)
Voltage signal-EEH (100Hz)
Accelerometer signal (8Hz)

(c)

Fig. 11: (a) Recognition accuracy vs sampling rate. (b) recognition accuracy under different compression rate when k=1. (c)
recognition accuracy under different number of gait cycles when = 75%.

VI. EVALUATION

A. Goals, Metrics and Methodology

In this section, we evaluate the performance of the pro-
posed system based on the collected dataset. The goals of the
evaluation are threefold: 1) investigate the relation between
recognition accuracy and sampling rate of accelerometer data;
2) compare the recognition accuracy of KEH-Gait with that
of using accelerometer data; 3) compare the proposed clas-
sification method in KEH-Gait with several state-of-the-art
classification algorithms.

In this paper, we focus on the following three evaluation
metrics:

• Recognition accuracy: it represents the percentage of
correct classifications which is simply the number of
true classifications over the total number of tests.

• False positive rate (FPR): probability that the authen-
tication system incorrectly accepts the access request
by an imposter.

• False negative rate (FNR): probability that the au-
thentication system incorrectly rejects the access re-
quests from the genuine users.

The recognition accuracy of KEH-Gait is obtained by
using output voltage in one gait cycle as a test vector. For
fair comparison, we perform the same signal processing and
classification method on acceleration data. The only difference
is the test vector is obtained by concatenating acceleration data
along three axes in one gait cycle together. In the evaluation,
we compare MSSRC with Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), and Naive Bayes (NB). The intuition
of we use SRC is that it has shown better performance than
traditional classification methods (e.g., SVM and KNN) in
recognition tasks of sensor areas such as face recognition [27],
[32] and voice recognition [33]. SRC is known to be robust to
noise because of its use of `1 optimization [27]. Thus, we use
SRC in KEH-Gait and improve its performance by exploring
the sparsity of testing vectors as discussed in Section IV-D.
The parameters in SVM, KNN and NB are well tuned to
give highest accuracy. For KNN classifier we set the number
of nearest neighbors as 10. For SVM classifier, we choose
linear kernel function, and the soft margin constant is set 10.
We choose normal Gaussian distribution for NB. For each
classifier, we perform 10-fold cross-validation on the collected
dataset. Specifically, we randomly split the dataset into 10 folds

with equal size. Then, each fold is retained as the validation
data for testing the classifier, and the remaining 9 folds are used
as training data. The cross-validation process is then repeated
10 times, with each of the 10 folds used exactly once as the
testing data. In the evaluation, we let k denote the number
of gait cycles fused to perform classification and σ denote
the compression rate. The compression rate means the number
of projections/features over the dimension of original testing
vector. We plot the results of the average values and 95%
confidence level of the recognition accuracy obtained from 10
folds cross-validation.

B. Recognition Accuracy v.s. Sampling Rate

In the first experiment, we evaluate the impact of sampling
rate on the gait recognition accuracy of acceleration data. The
goal is to investigate the relation between recognition accuracy
and the consumed power of accelerometer, as the power
consumption is directly related to the sampling rate. We use
MSSRC as the classifier and calculate the recognition accuracy
at different sampling rates by subsampling the acceleration
data from 100Hz to 1Hz. As shown in Figure 11(a), the
recognition accuracy increases with growing sampling rate.
This is intuitive as the more measurements are sampled, the
more information is available, and thus, enabling more accurate
classification. However, the improvement diminishes after the
sampling rate is greater than 40Hz. The results indicate that to
achieve high recognition accuracy, a sampling rate of at least
40Hz is required. In the rest of the evaluation, we limit our
discussion on sampling at 40Hz.

As we will discuss in Section VII-B1, the power consump-
tion of accelerometer-based system will increase significantly
with the rising sampling frequency. Based on our measurement
results, the accelerometer-based system consumes approxi-
mately 300µW with 40Hz to achieve accurate recognition.
However, this consumption requirement is far beyond the
actual power generated by the energy harvester (neither PEH,
nor EEH). According to a recent theoretical study of energy
harvesting from human activity [11], assuming 100% con-
version efficiency, the power can be harvested from walking
is only 155µW . Unfortunately, in practical, according to our
measurement results, the average power produced from walk-
ing is 19.17µW using EEH, and approximately 1µW using
PEH which is not tuned specifically for human activity energy
harvesting. In this case, due to the limited amount of power that
is available to power the system, its sampling frequency will
decrease below 40Hz. As a result, the recognition accuracy
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(a) PEH dataset with different compression rate (k = 1)
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(b) PEH dataset with different k (σ = 0.75)
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(c) EEH dataset with different compression rate (k = 1)
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(d) EEH dataset with different k (σ = 0.75)

Fig. 12: Comparison with other classification methods on two datasets (sample rate 40Hz).

will dramatically decrease accordingly. The results highlight
the necessity of using kinetic voltage signal to achieve gait
recognition directly, instead of using the accelerometer signal.
In the next subsection, we will show that the recognition
accuracy of using kinetic voltage signal is comparable to that
of using accelerometer data.

C. KEH-Gait v.s. Accelerometer-based System

In this section, we investigate whether KEH-Gait can
achieve comparable accuracy compared to accelerometer sig-
nal. In case of using accelerometer signal, we calculate the
recognition accuracy at two different sampling rates: 1) raw
sampling rate (100 Hz) of the data logger; and 2) the highest
achievable sampling rate of the accelerometer if it is powered
by the energy harvester. From our dataset, the energy harvester
can generate 19.17 µW on average from walking. Thus,
according to the handbook of MPU9250 which is used in our
prototypes, it can sample at most 8Hz if it is powered by the
energy harvester.

In this experiment, we set k = 1 and calculate the
recognition accuracy by varying compression rate σ from
15% to 100%, and the results are plotted in Figure 11(b).
We can see that the recognition accuracy of using voltage
signal is significantly higher than that of using accelerometer
at sampling rate of 8Hz. This suggests that the harvested power
cannot support the accelerometer to sample at a high frequency
which leads to low recognition accuracy; instead, using the
voltage signal itself is able to achieve higher recognition
accuracy. However, the recognition accuracy of using voltage
signal is still approximately 6% (PEH) and 17% (EEH) below
than that of using raw accelerometer signal when σ = 100%.

We now demonstrate that the recognition accuracy of using
harvested power signal can be improved significantly by the
proposed MSSRC, and it reaches a comparable recognition
accuracy compared to using the raw accelerometer signal. In

this experiment, we set σ = 75% as the accuracy improvement
diminishes when the number of projections/features increased
to 200 as shown in Figure 11(b). Then we calculate the
recognition accuracy of KEH-Gait using accelerometer signal
and voltage signal, while increasing k from 1 to 8. From the
results in Figure 11(c), we notice that the recognition accuracy
is improved significantly when more gait cycles are fused
together. The result is intuitive as more information can be
obtained to identify the subject by using more gait cycles. We
also find that by using voltage signal of PEH, we can achieve
a comparable accuracy compared to using raw accelerometer
signal when k = 8, and the recognition accuracy of EEH is
slightly lower (3%) than using raw accelerometer signal. In the
real application, k can be tuned by the healthcare company to
satisfy their own needs. For example, a larger k makes the
system more secure to the imposters while it sacrifices user
experience because it will take more time to collect required
steps.

D. Comparison with Other Classification Methods

We now evaluate whether MSSRC outperforms other state-
of-the-art classification algorithms. Specifically, we compare
MSSRC with SVM, KNN, and NB. We perform comparison
on two datasets separately.

Performance on PEH dataset. We follow the same exper-
imental procedure in Section VI-C to evaluate the recognition
accuracy of different methods under different d (number of
projections/features). From Figure 12(a), we find that KEH-
Gait improves recognition accuracy by up to 7% compared to
the second best classification method (i.e., NB). We further
evaluate the recognition accuracy of SVM, KNN and NB by
combining several gait cycles together. As KEH-Gait utilizes
multiple gait cycles to find the final classification result, we
apply the majority voting scheme to achieve a fair comparison.
Specifically, we first obtain the identity of each gait cycle by
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Fig. 13: Evaluation results: (a)-(d) robustness to gait variations. (e)-(f) robustness against attackers.

using SVM, KNN and NB, then we apply majority voting
scheme to combine the results together, the subject with the
highest voting is declared to be the recognized person. Again,
we set σ = 75% and calculate the recognition accuracy of
different methods by varying k from 1 to 5 (number of gait
cycles). From the results in Figure 12(b), we find that KEH-
Gait consistently achieves the best performance and is up to
10% more accurate than the second best approach (i.e., NB).
The improvement of MSSRC over other methods is because
MSSRC exploits the sparsity information from multiple gait
cycles.

Performance on EEH dataset. We perform the same steps
as above on EEH dataset and plot the results in Figure 12(c)
and Figure 12(d). The results show that KEH-Gait is 6% better
than NB when σ = 75%, k = 1, and 4% better than NB when
σ = 75%, k = 5. We also find that the overall performance
on EEH dataset is lower than that on PEH dataset. We believe
the drop on recognition accuracy is caused by the fact that the
magnet is not sensitive to slight vibrations and motions.

The results in this section suggest that the proposed
MSSRC in KEH-Gait can improve recognition accuracy signif-
icantly by fusing several steps together and outperform several
state-of-the-art classification algorithms. Another straightfor-
ward method to apply SRC on multiple steps is to first apply

SRC on each step and then obtain the final results by major-
ity voting scheme. We found that MSSRC is approximately
3% − 7% more accurate than direct majority voting on our
dataset since it exploits the sparsity information of multiple
measurements. Due to limited space, we do not plot the results
of direct major voting in this paper.

E. Robustness to Gait Variations

To evaluate the robustness of KEH-Gait to gait variations,
we conduct the following two experiments: different day evalu-
ation and different environment evaluation. In this experiment,
same day evaluation means the training set and test set are
chosen from the sessions of the same day while different
days evaluation chooses the sessions from two different days
separated by 1 week. Similarly, in different environment eval-
uations, indoor evaluation means the training set and test set
are chosen from indoor environment while outdoor evaluation
chooses training data and test data from outdoor environment.
We conduct this evaluation on PEH dataset and EEH dataset
respectively. As the results in Figure 13(a) and Figure 13(b),
the accuracy of different day is lower than the same day
evaluation as the different days evaluation tends to produce
more changes to gait. However, KEH-Gait can still achieve
the accuracy of 95% and 89% on the two dataset respectively
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when more than 5 steps are used. This observation holds in
the different environment evaluation. From Figure 13(c) and
Figure 13(d), we can see outdoor environment achieves lower
accuracy than indoor environment because it includes several
different terrains such as grass path and asphalt road. Gait
changes can be caused many other factors such as speed and
shoes etc.. We further discuss the influence of these factors in
Section VIII-B.

F. Robustness Against Attackers

As mentioned in Section III, we assume the presence of a
passive adversary and an active attacker during an authentica-
tion session. We evaluate the robustness of the proposed system
against the eavesdropper and active attacker by conducting the
following two imposter attempt experiments.

• A passive imposter attempt is an attempt when an
imposter performs authentication using his own walk-
ing pattern. This attack happens when the genuine
user passes his device to another person to spoof the
healthcare system.

• An active imposter attempt means the imposter mimics
the gait of the genuine user with the aim to spoof
the healthcare system. This attack happens when the
several users collude to fool the healthcare system.

The first experiment is conducted to evaluate the robustness
to a passive imposter. In this experiment, we use the raw
voltage signal from other subjects as passive imposter attempts.
We then repeat this experiment by testing all the steps of
the 20 subjects in the dataset. To evaluate the robustness
against the second imposter attack scenario, we group the 20
subjects into 10 pairs. Each subject was told to mimic his/her
partner’s walking style and try to imitate him or her. Firstly,
one participant of the pair acted as an imposter, the other one as
a genuine user, and then the roles were exchanged. The genders
of the imposter and the user were the same. They observed
the walking style of the target visually, which can be easily
done in a real-life situation as gait cannot be hidden. Every
attacker made 5 active imposter attempts. The authentication
accuracy is evaluated by FPR and FNR. In general, FPR relates
to the security of the system, while FNR to the usability.
An interesting point in the Decision Error Trade-off (DET)
curve is the Equal Error Rate (EER) where FPR=FNR. For
instance, an EER of 5% means that out of 100 genuine trials
5 is incorrectly rejected, and out of 100 imposter trials 5 are
wrongfully accepted. We set k = 5 and vary the confidence
threshold C to plot DET curve in Figure 13.

The results on two dataasets are plotted in Figure 13(e)
and Figure 13(f) respectively. The red dash line stands for the
possible points where FPR is equal to FNR. The crossover
(marked as a diamond) of the red dash line and FPR-FNR
curve stands for the location of the EER. We notice that
EER of KEH-Gait is 8.4% and 14.1% on the two datasets
respectively, which means out of 100 passive imposter trials 8
are wrongfully accepted by using PEH and 14 are wrongfully
accepted by using EEH. We also find that an imposter does
benefit from mimicking the genuine user’s walking style. The
EER increases to 13.3% and 17.1% on the two datasets
respectively. For the accelerometer-based system, the EER of
a passive attacker and an active attacker are 6.8% and 11.6%,

respectively. The results indicate that the PEH-based system
can achieve comparable EER compared to the accelerometer-
based system. The individual nature of walking gait provides
our scheme security against impersonation attackers and the
evaluation results are encouraging. The false negatives occur
when the gait patterns of the imposter and user are close. This
problem could be dealt with by using two factor authentication.

VII. ENERGY CONSUMPTION PROFILE

Battery lifetime is widely regarded as the major barrier of
achieving long term human-centric sensing. Reducing system
energy consumption has attracted tremendous research efforts
in both academics and industries. In this section, we will
conduct an extensive energy consumption profiling of state-
of-the-art wearable systems.

The energy consumption of our system consists of three
parts: sensor sampling, memory reading/writing, and data
transmission. We find that memory reading/writing consumes
significant less energy compared to the other two parts. A
recent study [34] also investigates the energy consumption of
different Random Access Memory (RAM) technologies, and
their findings support our measurement results. According to
their measurement, it only consumes 203pJ to write to (or
read from) Static Random Access Memory (SRAM) which is
used in SensorTag. That means if we collect 5s gait data at
40Hz, it only takes 5 × 40 × 203 =40.6nJ to read or write
data. Compared to the energy consumption of other parts, the
energy consumed by SRAM is negligible. Therefore, we only
consider the energy consumption of sensor sampling and data
transmission in our evaluation.

A. Measurement Setup

The Texas Instrument SensorTag is selected as the target
device, which is embedded with the ultra-low power ARM
Cortex-M3 MCU that is widely used by today’s mainstream
wearable devices such as FitBit. The SensorTag is running
with the Contiki 3.0 operating system. The experiment setup
for the power measurement is shown in Figure 14(a). In order
to capture both the average current and the time requirement
for each sampling event, the Agilent DSO3202A oscilloscope
is used. As shown in the figure, we connect the SensorTag
with a 10Ω resistor in series and power it using a 3V coin
battery. The oscilloscope probe is then connected across the
resistor to measure the current going through.

B. Energy Consumption of Sensor Sampling

1) Power Consumption of Sampling Accelerometer: The
SensorTag includes 9-axis digital MPU9250 motion sensor
combining gyroscope, digital compass, and accelerometer.
During the power measurements, we only enable the 3-axis
accelerometer and leave all the other sensors turned off. The
acceleration signal is sampled using the Inter-Integrated Circuit
(I2C) bus with a sampling frequency of 25Hz. Note that,
it is also possible for the wearable devices to use analog
accelerometers, which can be sampled through analog-to-
digital converter (ADC) instead of I2C bus. Sampling analog
accelerometers could avoid power consumption and additional
time requirement due to the I2C bus, but at the expense of
some processing costs in analog to digital converting. While
it is not immediately obvious whether analog accelerometer
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Fig. 14: Measurement setup and results.

sampling would be less or more power consuming relative
to the digital counterpart, a detailed measurement study [35]
indicates that digital accelerometer is more power efficient than
the comparable analog ones from the same manufacturers.

TABLE I: States of accelerometer sampling, which takes
17.2ms in total and consumes 322µW.

State Time
(ms)

Power
(uW)

S1 0.6 768
S2 7.2 72
S3 0.6 480
S4 3.2 72
S5 4 480
S6 1.6 1440

S sleep null 6

Figure 14(b) shows the details of accelerometer sampling
energy profile. As shown, each accelerometer sampling event
can be divided into six states. At the beginning of each event,
the MCU is waked up by the software interrupt from the
power-saving deep-sleep mode (S sleep), and it boots the
accelerometer (S1) before going back to sleep. During S2,
the accelerometer starts to power up while the MCU is in
sleep mode. Then, after one software clock tick (7.8 ms in
Contiki OS), the MCU wakes up again by the interrupt to
initialize the accelerometer (S3) and then goes back to sleep.
The accelerometer starts initializing in S4 and turning on in
S5. Finally, MCU wakes up in S6 to sample the acceleration
signal and then goes back to deep-sleep again. The average
power consumption and time requirement for each state are
shown in Table I.

2) Power Consumption of Sampling KEH: In this subsec-
tion, we investigate the power consumption in sampling the
voltage signal of the power source. During the measurement,
MCU is programmed to periodically sample the voltage of
the lithium coin battery with 25Hz sampling rate. The MCU
reads voltage signal through ADC. Figure 14(c) shows the
details of voltage sampling. Similar to the accelerometer, the
MCU goes back to deep-sleep mode after each sampling event.
However, sampling the voltage takes only 0.6ms, which is
much shorter than the 17.2ms required by the accelerometer
sampling. This is because the MCU can read the voltage
signal directly without having to prepare the hardware to be
powered-up, and the voltage signal to be prepared by the power
source. The details of power consumption and time duration
for voltage sampling event are shown in Table II.

TABLE II: States of voltage sampling.

State Time
(ms)

Power
(µW)

S1 0.6 480
S sleep null 6

3) Energy Consumption Comparison: We now compare
the energy consumption of sampling accelerometer and KEH.
In general, for the duty-cycled gait-recognition system, the
average power consumption in data sampling, Psense, can be
obtained by the following equation:

Psense =

{
TS×n
1000

Psample + (1− TS×n
1000

)Psleep if 0 ≤ n ≤ 1000
TS

,
Psample if 1000

TS
< n.

(7)
where, Psample is the average power consumption in the
sampling event (either sampling acceleration or KEH sig-
nal), and Psleep is the average power consumption when
the MCU is in deep-sleep mode (with all the other system
components power-off). n is the sampling frequency, and TS
is the duration of time (in milli-second) spent in a single
sampling event. Based on the measurement results given in
Table I and Table II, we can obtain the average power
consumption for the accelerometer sampling event equals to
322µW with a time requirement of 17.2ms, and 480µW with
a duration of 0.6ms for the KEH sampling event. Then,
based on Equation 7, we get the power consumption in data
sampling for both accelerometer-based and KEH-based gait-
recognition systems with different sampling frequencies. The
results are compared in Figure 15. It is clear to see that
the proposed KEH-Gait achieves significant power saving in
data sampling, comparing with the conventional accelerometer-
based gait-recognition system. More specifically, given the
analysis shown in Figure 11(a), a sampling rate higher than
40Hz is needed to achieve high recognition accuracy. With
a 40Hz sampling frequency, in case of data sampling, KEH-
Gait consumes 17.38µW, while the power consumption of
accelerometer-based system is 230.74µW.

As can be seen from Figure 11(c), to achieve the same
recognition accuracy, it needs to collect 3 gait cycles for the
accelerometer-based system and 5 gait cycles for the KEH-
based system. If we assume one gait cycle takes 1s (the average
time of one gait cycle is between 0.8s-1.2s), this results in
86.9µJ and 692.22µJ energy consumption in data sampling
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Fig. 15: Power consumption comparison.

for KEH-Gait and accelerometer-based system, respectively.

C. Energy Consumption of Data Transmission

Next, we evaluate the energy consumption of transmit-
ting acceleration and KEH voltage data via Bluetooth. We
conduct power measurement of the Bluetooth Low Energy
(BLE) beacon using the embedded CC2650 wireless MCU
in the SensorTag. With the 40Hz sampling rate and 75%
compression rate, KEH-Gait generates 200 voltage samples
every five seconds. This results in 300 bytes data to be
transmitted in total (2 bytes for each of the 12-bits ADC
voltage reading). This consumes an average power of 2.72mW
with a transmission time of 52ms, which results in 106.08µJ of
energy consumption. On the other hand, as 3-axis acceleration
data is collected for 3s, it results in 540 bytes of data and the
energy consumption of transmitting those data is 190.94µJ.

D. Total Energy Saving Analysis

After obtaining the energy consumption of sensor sampling
and data transmission, we investigate the potential of KEH-
Gait for energy saving. Based on the measured results, the
energy consumption of KEH-Gait to complete one authentica-
tion is approximately 192.98µJ, which has reduced the energy
consumption of the accelerometer-based system (883.16µJ) by
78.15%.

A recent study [35] tested the power consumption of six
most commonly available accelerometers, and they found that
when the sampling rate is 50 Hz, the mean power consumption
of these accelerometers is 1542µW, and the minimum power
consumption is 518µW. These accelerometers consume more
power than the one used in our experiments. These results
indicate that KEH-Gait is still superior to most commonly
used accelerometers in terms of energy savings. On the other
hand, the power consumption of accelerometers can be further
reduced by use of data buffers. For example, ADXL345 can
store 32 samples automatically without waking up the CPU.
However, similar optimisation technique can also be integrated
in the KEH-based system to reduce the system level energy
consumption. In this way, the energy consumption of both
accelerometer-based system and KEH-based system will be
reduced. We defer the design optimization of buffer-enabled
KEH-Gait to our future work.

VIII. DISCUSSION

A. PEH v.s. EEH

In this study, we analyze the feasibility of using power
signal generated from energy harvester for gait recognition

TABLE III: Comparison between PEH and EEH used.

Size
(cm × cm × cm)

Weight
(grams)

Accuracy
(%)

Power
(uW)

Cost
(USD)

PEH 4.6 × 3.3 × 0.1 23.5 86.1 1 157
EEH 4.7 × 0.8 × 0.8 65 75.2 19.17 37.5

purpose. Specifically, we focus on two types of kinetic en-
ergy harvester: PEH and EEH. Our study demonstrates the
harvested power signal caused by human gait motions can be
used to identify different individuals. Table III summarizes a
comparison between the PEH and EEH devices we used in
this paper.

The first observation we can have is that the PEH we
used achieves higher recognition accuracy and generates more
energy than EEH when the user is holding the device in the
hand and walk normally. The results can be explained by our
observation that the EEH contains a heavy magnet which is
not sensitive to weak vibrations and motions (compared in
Figure 4(c) and 4(e)). This results in a roughly 10% difference
in the recognition accuracy.

In addition to the system performance, another important
characteristic in designing a wearable device is the form factor
and weight. In case of the PEH device, we built it upon the
Volture V25W PEH energy harvester with a 4.6cm × 3.3cm
× 0.1cm form factor. And it can be further reduced to 2.2cm
× 0.4cm × 0.1cm by exploiting smaller harvester produces
such as the PPA-1022. On the other hand, the EEH device
requires large mass displacement to ensure the free movement
of magnet which makes it difficult to reduce the form factor.
Moreover, in order to generate more power from the PEH
device, a 20 grams tip mass is attached to the PEH device
and results in an overall weight of 23.5 grams. Fortunately,
with current advancement in PEH design, the overall weight
of the PEH can be reduced to less than 10 grams without
significantly sacrificing the output power. In comparison, the
EEH device includes a heavy magnet and results in a weight
approximately 65 grams in total. Given the above facts, we
believe that PEH is more convenient to be embedded in future
wearable devices that have strict constraint in size and weight.

Finally, the price of the PEH we used in our prototype is
approximately 157USD (Volture V25W), while the cost of the
EEH we used is 37.5USD. Although both of the prices can be
largely reduced with a larger quantity of purchase, the cost of
building the PEH device is higher than that of the EEH device.

B. Factors Affecting Gait Recognition

Many factors exist that may impact the accuracy of a gait-
based recognition system, such as shoe, clothes, walking speed
and terrain. Previous studies have shown that the accuracy
will decrease when the test and training samples of the
person’s walking are obtained using different shoe types and
clothes [36]. Indeed, as shown in Section VI-E, the accuracy
of KEH-Gait decreases when session 1 is used for training and
session 2 is used for testing. The dataset used in the experiment
is challenging as it includes the natural gait changes over time
(two sessions separated by 1 week), as well as gait variations
due to changing in clothes, terrain and shoes. However, KEH-
Gait can still achieve the accuracy of 95% and 89% on the
two dataset respectively by the proposed MSSRC, which in
turn demonstrate the robustness of KEH-Gait to gait variations.
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The focus of our study is to demonstrate the feasibility of gait
recognition using KEH and improve its performance. Due to
space limitation, we defer the analysis of different factors to
our future work. In fact, there has been several attempts to
study the relationship between recognition performance and
different factors [36], [37]. For example, in terms of walking
speed, Muhammad and Claudia [37] found that normal walk
has best results and fast walk is a bit better than slow walk. As
for different types of terrains, they reported that gravel walk
has better results than grass and inclined walk. We encourage
the reader to refer to [36], [38], [37] for more details.

IX. RELATED WORK

Gait Recognition: Gait recognition has been well studied
in the literature. From the way how gait is collected, gait
recognition can be categorized into three groups: vision based,
floor sensor based, and wearable sensor based. In vision based
gait recognition system, gait is captured from a remote distance
using video-camera. Then, video/image processing techniques
are employed to extract gait features for further recognition.
A large portion in the literature belong to this category [39],
[40], [41], [42]. In floor sensor based gait recognition, sensors
(e.g., force plates), which are usually installed under the floor,
are used for capturing gait features, such as ground reaction
force (GRF) [43] or heel-to-toe ratio [44].

Compared with vision-based and other non-accelerometer
based gait measurements, acceleration can reflect the dynamics
of gait more directly and faithfully. For instance, accelerom-
eter based gait recognition do not suffer from the existing
problems for vision-based methods, like occlusions, clutter,
and viewpoint changes. Existing works of wearable sensor
based gait recognition are mainly based on the use of body-
worn accelerometers. The first work of accelerometer based
gait recognition is proposed by Ailisto et al. [8] and further
developed by Gafurov et al. [45]. In the initial stages, dedicated
accelerometers were used and worn on different body posi-
tions, such as lower leg [45], waist [8], hip [46], hip pocket,
chest pocket and hand [47]. With the prevailing of smartphone,
researchers have proposed several gait-based authentication
systems by utilizing the built-in accelerometer [48], [4], [49].
In a previous work, the researchers analyzed human gait by
a shoe-embedded piezoelectric energy harvester [50]. Weitao
et al. [51] proposed an automatic key generation system for
on-body devices by using gait.

Studies on KEH: There has been extensive studies on
wearable sensors. However, wearable sensors consume power
and most existing wearable products are powered by batteries.
Therefore, frequent recharge and replacement of the batteries
are required, which has become the main obstacle on the way
of achieving continuous gait recognition. To overcome this
problem, researchers are investigating to use the output signal
from KEH to achieve a wide range of applications in activity
tracking [15], [52] and health monitoring [53]. In [15], [52],
the authors proposed the idea of using the energy harvesting
power signal for human activities recognition. Their proposed
system can achieve 83% of accuracy for activities recognition.
In [53], the authors conducted the first experiment study of
using the output voltage signal from the PEH to estimate
calorie expenditure of human activities. They have shown
promising results of replacing accelerometer using KEH for

calorie expenditure. Following this trend of study, the proposed
KEH-Gait utilizes the voltage signal generated by the kinetic
energy harvester from walking to perform gait recognition.
By doing so, KEH-Gait can reduce the power consumption of
the gait recognition in the wearable device by not using the
accelerometer.

X. CONCLUSION

In this paper, we explore the feasibility of using KEH
to address the problem of user spoofing attacks in emerging
mobile healthcare systems. In particular, we present KEH-
Gait, a kinetic energy harvesting signal based gait recognition
system for user authentication. By not using the accelerometer,
the proposed KEH-Gait eliminates the need for powering the
accelerometer, making gait recognition practical for future
self-powered devices. We design and implement hardware
platforms to collect voltage data from two types of KEH,
PEH and EEH. Evaluation results based on a dataset of
20 subjects show that, using a novel classification method
(MSSRC), KEH-Gait is able to achieve recognition accuracy
comparable to accelerometer-based gait recognition. Besides,
KEH-Gait improves recognition accuracy by up to 10% com-
pared to several state-of-the-art classification algorithms. More
importantly, compared to conventional accelerometer-based
gait detection, KEH-Gait can reduce energy consumption by
78.15%. To the best of our knowledge, this is the first work
that experimentally validates the feasibility of gait recognition
using KEH, and our results show that the output voltage
signal of energy harvester is a promising informative signal
for wearable authentication system.
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