
Enabling Reconstruction of Attacks on Users
via Efficient Browsing Snapshots

Phani Vadrevu∗, Jienan Liu∗, Bo Li∗, Babak Rahbarinia†, Kyu Hyung Lee∗, and Roberto Perdisci∗
∗ Department of Computer Science, University of Georgia, USA

† Department of Math and Computer Science, Auburn University Montgomery, Alabama, USA
{vadrevu,jienan,bo,kyuhlee,perdisci}@cs.uga.edu, brahbari@aum.edu

Abstract—In this paper, we present ChromePic, a web browser
equipped with a novel forensic engine that aims to greatly enhance
the browser’s logging capabilities. ChromePic’s main goal is to
enable a fine-grained post-mortem reconstruction and trace-back
of web attacks without incurring the high overhead of record-and-
replay systems. In particular, we aim to enable the reconstruction
of attacks that target users and have a significant visual component,
such as social engineering and phishing attacks. To this end,
ChromePic records a detailed snapshot of the state of a web
page, including a screenshot of how the page is rendered and a
“deep” DOM snapshot, at every significant interaction between
the user and the page. If an attack is later suspected, these fine-
grained logs can be used to reconstruct the attack and trace back
the sequence of steps the user followed to reach the attack page.

We develop ChromePic by implementing several careful
modifications and optimizations to the Chromium code base, to
minimize overhead and make always-on logging practical. We
then demonstrate that ChromePic can successfully capture and
aid the reconstruction of attacks on users. Our evaluation includes
the analysis of an in-the-wild social engineering download attack
on Android, a phishing attack, and two different clickjacking
attacks, as well as a user study aimed at accurately measuring the
overhead introduced by our forensic engine. The experimental re-
sults show that browsing snapshots can be logged very efficiently,
making the logging events practically unnoticeable to users.

I. INTRODUCTION

Web browsers have unfortunately become the preferred entry
point for a large variety of attacks. For example, through the
browser, a user may be exposed to malware infections via social
engineering attacks [31] or drive-by downloads [14], phishing
attacks [9], cross-site scripting [48], cross-site request forgery [4],
clickjacking [15], etc.

While the mechanics of these attacks (i.e., how they are
typically executed within the browser) are well understood, it is
often challenging to determine how users arrived to a given attack
page in the first place. At the same time, tracing back the steps
through which an attack unfolds can be critical to fully recover
from an intrusion [18] and prevent future compromises. For
instance, security analysts and forensic investigators often try not

only to understand how a specific attack instance was executed
(e.g., find the URL from which malware was downloaded), but
also attempt to put the attack into context by reconstructing
the steps that preceded it [30] (e.g., whether the user fell for a
social engineering attack and inadvertently triggered the malware
download). While existing browser and system logs may assist in
reconstructing a partial picture of how an attack page was reached,
these logs are often sparse and do not provide sufficient details
to precisely reconstruct the events preceding the user landing on
the attack page, and what exactly happened afterwards.

Quoting [21], “we tend to lack detailed information [about
an attack] just when we need it the most.” Therefore, to enable
a detailed reconstruction and trace-back of web attacks we
need enhanced logging capabilities [19], [21], [28]. For instance,
systems such as ClickMiner [29] and WebWitness [30] rely on
full network traffic logs (or traces) and deep packet inspection
to reconstruct the sequence of pages visited by users before they
reach an attack page (e.g., a malware download URL). However,
even by using full traffic traces, these systems are sometimes
unable to precisely reconstruct all steps that brought a user to
encounter an attack page, due to the complexity of modern web
technologies and the consequent discrepancies between system
events (e.g., user-browser interactions) and the network traffic they
generate [29], [30]. Furthermore, encrypted (e.g., HTTPS) traffic
would all but prevent these systems from inferring the complete
path to the attack page. Other approaches, such as ReVirt [11]
and WebCapsule [28], go beyond network traffic logging and
analysis, and instead focus on recording fine-grained details at
the system level to enable full attack replay. However, whole-
system record-and-replay [10], [11] is computationally expensive,
and is especially difficult to deploy on resource constrained
mobile devices. On the other hand, while in-browser record-and-
replay [28] can be more easily ported to mobile devices, it is
hindered by difficulties introduced by OS-level non-determinism
(e.g., due to thread scheduling) and can result in an inaccurate
replay of browsing sessions [28], thus preventing reliable attack
reconstruction. Furthermore, to enable replay, record-and-replay
systems typically require storing large amounts of information,
including all network traffic generated by the browser.

In this paper, we present ChromePic, a web browser equipped
with a novel forensic engine aimed at greatly enhancing Chrome’s
logging capabilities. ChromePic’s main goal is to enable a fine-
grained reconstruction and trace-back of web attacks without
incurring the high overhead typically associated with record-
and-replay systems such as [11], [28]. In particular, we aim to
enable the reconstruction of attacks that target users and have
a significant visual component, such as social engineering and

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the paper
was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23100

phishing attacks. To this end, we focus on instrumenting Google
Chromium [40] (the open source project on which the Chrome
browser is based) to efficiently record a browsing snapshot at
every meaningful interaction between the user and the browser.
For example, every time the user clicks on a page or presses a
key (e.g., Enter), we record the input information (e.g., mouse
coordinates, key code, etc.) and the page URL shown in the
browser bar. Furthermore, we take a screenshot of the rendered
page, and a “deep” snapshot of the related DOM tree and
embedded resources (e.g., iframes, images, etc.). We refer to
this type of detailed browsing snapshots as webshots. Intuitively,
such rich logs would allow a security team or forensic analyst to
travel back in time and effectively reconstruct a user’s browsing
actions over a desired time window. In fact, we can consider the
screenshot contained in each webshot as a “video frame.” These
screenshots can then be stitched back together to reconstruct
precisely what the user saw during every significant interaction
with the browser. Furthermore, each screenshot is associated with
the related full state of the DOM (including embedded objects
and JavaScript source code) recorded at the very same instant in
time. Namely, we record exactly how a specific page DOM was
structured, how it was rendered at the time of a user-browser
interaction, and how the user interacted with it, thus enabling an
analysis of how the attack was implemented. Our ChromePic
browser addresses the following challenges:

• Forensic Rigor: Our main goal (and challenge) is to enable
webshots to be taken synchronously with user-browser
interactions. Namely, let u(t0) represent a user-browser
interaction u (e.g., a mouse click or key press) that occurs
at time t0. Because we aim to prevent any (potentially
malicious) JavaScript code that listens on u from altering the
page before the webshot is taken, our goal is to “freeze” the
processing of u until we take both a screenshot of the page
currently displayed by the browser as well as a full DOM
snapshot. Only after the snapshot is completed the event u
will be released and processed by the browser. The need
for this synchronous snapshots constraint is motivated by
the fact that we intend to prevent any discrepancy between
what is logged in the webshot and what the user saw (and
the DOM of the page he/she interacted with) at the very
instant of time t0 when the event u occurred.

• Efficiency: As attacks cannot be easily predicted, ChromePic
aims to be always-on and continuously log webshots.
This allows us to record undetected (and unexpected)
attacks, in accordance with the compromised recording
design principle [33]. However, to make always-on logging
practical, efficiency is critical and logging overhead must be
reduced to a minimum. In particular, because webshots are
taken synchronously with each user input, we effectively
introduce a processing overhead that increases the natural
processing of input events. Therefore, the challenge we face
is to make sure that no negative effect (e.g., latency) will be
perceived by the user. Based on previous studies on human-
computer interaction [47], we target a logging time budget
of around 150ms, which would make the logging events
practically unnoticeable to users. To this end, we implement
a number of careful system-level browser modifications and
optimizations, which we describe in detail in Section IV.

• Transparency: We require webshots to be taken in a
transparent way w.r.t. the web pages that are being logged.

For instance, there should be no easy way for (malicious)
javascript code running on a page to detect whether the
interactions (inputs) between the user and the page are
being logged or not. In addition, webshots should also be
transparent to users, in that once they are enabled the user
should not notice any difference in the behavior of the
browser when webshots are being recorded.

In Sections IV and V we discuss why the existing snapshot-
taking capabilities currently implemented by Chromium do not
satisfy the above requirements. For instance, we describe the
implementation of a browser extension that attempts to meet the
same requirements described above using the existing extension
API, and demonstrate why such a solution is not viable.

The reader may notice that because ChromePic continuously
records detailed information about the state of the browser,
including visual screenshots, our system may produce numerous
logs, some of which may include sensitive information. While
protecting the security and privacy of the logs recorded by
ChromePic is outside the scope of this paper, it is important to
notice that existing solutions could be used to mitigate these
concerns. For example, sensitive URL whitelisting and log
encryption using a key escrow as proposed in [28] could also be
used in ChromePic. We discuss these solutions in more details in
Section VIII. Also, while a typical browsing session may result
in numerous webshots, often the changes to a page between
two consecutive user-browser interactions are minimal, thus
resulting in few changes between snapshots. This provides an
opportunity for storing only the difference between snapshots.
In addition, the visual screenshots can be reduced in size using
lossy compression, and the overall storage requirements for the
logs of each browsing session could be further reduced using
standard archiving tools. We discuss storage requirements in
more details in Section VII.

In summary, we make the following contributions:

• We propose ChromePic, a web browser equipped with a
novel forensic engine that aims to enable the reconstruction
and trace-back of web browser attacks, especially for attacks
that directly target users and have a significant visual
component, such as social engineering and phishing.

• We develop ChromePic by implementing careful modifi-
cations and optimizations to the Chromium code base, to
minimize overhead and make always-on logging practical.
In addition, we discuss why implementing ChromePic using
existing facilities, such as Chrome’s extension API, is not
a viable option.

• We demonstrate that ChromePic can successfully capture
and aid the reconstruction of attacks on users. Specifically,
we report the analysis of an in-the-wild social engineering
download attack on Android, a phishing attack, and two
different clickjacking attacks.

• We evaluate the efficiency of our solution via a user study
involving 22 different users who produced more than 16.5
hours of browsing activities on hundreds of websites. We
provide precise measurements about the overhead introduced
by ChromePic on multiple devices, including desktop and
laptop Linux systems as well as Android tablet devices.
Our results show that the vast majority of webshots can be
taken very efficiently, making them practically unnoticeable
to users.

2

II. WEBSHOTS

As mentioned in Section I, we aim to enable the reconstruction
and trace-back of web attacks that target users, with particular
focus on attacks that have a significant visual component, such as
social engineering and phishing attacks. To this end, we design
ChromePic to embed an always-on forensic engine. Specifically,
we instrument the Chromium browser to record rich logs, called
webshots, that aim to capture the state of the rendered web pages
at every significant interaction between the user and the browser.

A. What is a WebShot?

A webshot consists of the following components: (i) a
timestamp and other available details about the user input event
that triggered the webshot (e.g., mouse event type and related
screen coordinates, keypress code, etc.); (ii) the full URL of the
page with which the user interacted; (iii) a screenshot of the
currently visible portion of the web page (the viewport) rendered
by the browser; (iv) a “deep” DOM snapshot that consist of the
page’s DOM structure, all embedded objects (e.g., the content of
all images), the DOM and embedded objects of all iframes,
the JavaScript code running on the page, etc.

To satisfy the forensic rigor requirement mentioned in
Section I, webshots must be taken synchronously with the
triggering user input. This requirement, along with the always-on
operational goal for our ChromePic system, has a significant
impact on the amount of overhead we can afford for producing
each webshot. In Section IV, we describe a set of very careful
code instrumentations and optimizations that make efficient
webshots feasible.

B. Input Events that Trigger a WebShot

WebShots are triggered by user interactions with web pages.
In theory, we could take a screenshot for every single “raw” user
input event, including every mouse movement, every key-down
event, every tap or gesture on a touchscreen, etc. However, many
user input events (e.g., most mouse movements) have no real
changing effect on the underlying web page. Furthermore, to
reduce overhead, it is desirable to minimize the type and number
of events that actually trigger a webshot. At the same time, our
goal is to capture enough webshots to allow for the reconstruction
and trace-back of possible attacks. To balance these conflicting
goals, we trigger a webshot for each of the following events:

• Mouse Down: Mouse clicks are a common interaction
between users and web pages. Clicks often have important
consequences, such as initiating the navigation to a new
page, submitting a form, selecting a page element, etc. As
each click starts with a mouse down event, we trigger a
webshot for each such event.
• Tap: On touchscreen devices, taps are the initial event for a

variety of gestures, including “clicking” on a link or button.
Therefore, a tap often (though not always) has an effect
similar to a mouse down event. Therefore, we trigger a
webshot at every tap event.
• Enter Keypress: In many cases, pressing Enter has

the same effect as a mouse click, such as submitting a
form, navigating to a new link, etc. Therefore, we trigger a
webshot at every keydown event for the Enter key.
• Special Keys: We also trigger a screenshot every time a

special key is pressed. For example, pressing tab while

entering data in a form usually allows to transition from
an input field to another, thus indicating that the previous
field has been fully entered. Other keys (e.g., the space bar)
may be used to scroll a page or pause/start a video, or to
navigate to the previous page (e.g., using the backspace).
We have selected a total of five special keys whose raw
keydown event triggers a webshot.

• Generic Input Events: All other input events, such as mouse
movements, mouse wheel, key presses, etc., that do not fall
within the above categories are also considered. Specifically,
we trigger a webshot for each “generic” event, but impose a
time constraint: if the previous webshot has been taken more
than a predefined number of seconds ago (e.g., 5 seconds),
we take another webshot, otherwise we skip this event (i.e.,
no webshot is taken). Notice that this time constraint only
applies to “generic” input events, and to the case when a key
is kept pressed. For all other single events mentioned earlier
(e.g., mouse down, tap, etc.) we always take a webshot,
regardless of the time.

Webshots are logged synchronously with the triggering input
event, as required by the forensic rigor property introduced in
Section I. Effectively, the user input will be held from processing
until a full webshot is taken. In Section IV, we will explain
that because user inputs are processed on the render thread of
Chromium’s renderer process, this has the effect of preventing
the DOM of the page from changing before the webshot is
recorded. Hence, each webshot reflects what the user saw at the
moment of her interaction with the page. This has the effect
of preventing attempts from the attacker to hide the attack by
altering the log, for example by rapidly changing the DOM
and appearance of the page immediately after a user-browser
interaction.

III. USE CASES

In this section, we discuss a representative use case scenario,
to highlight how our system could be used in practice. In general,
we envision ChromePic to be particularly useful in aiding the
reconstruction and trace-back of attacks that involve user actions,
such as social engineering and phishing attacks. In these cases,
reconstructing what the user saw or what exact information
was entered on a phishing page is critical to understand how
the attack unfolded. We argue that these types of attack are
difficult to reconstruct without a visual account of what the user
experienced. ChromePic would ideally be deployed in corporate
and government network environments, where web-based attacks
may represent the first step of larger incidents (e.g., targeted
attacks). At the same time, we believe ChromePic may also be
useful in other scenarios, such as in web application debugging.

Example Use Case: Meet Bob, a corporate employee who, while
using the browser at work, falls victim to a social engineering
malware download attack [31] by clicking on a misleading
advertisement. Once installed, the malware opens a backdoor to
the corporate network, which is later used by the malware owners
to gain access to and exfiltrate sensitive information, triggering
a data breach detection (e.g., due to side effects such as selling
of information in the underground markets). Then, a forensic
analysis team is hired to investigate how the data was leaked. By
analyzing network logs, such as web proxy logs that report all
URLs visited by the corporate network users, the forensic analysts
notice something anomalous (e.g., a particularly suspicious set

3

of URLs) in Bob’s web logs recorded a week earlier. Therefore,
the analysts ask for authorization to explore Bob’s ChromePic
logs. Finally, by exploring the webshots produced by our system,
the analysts are able to reconstruct the social engineering attack
that tricked Bob into installing the initial malicious software.

By learning how Bob fell for the attack, including obtaining
a precise reconstruction of the visual tricks used for the social
engineering attack, the corporate network security team could
then develop a user training session on social engineering, to
better educate corporate employees on how to decrease the
likelihood of becoming a victim [16]. In addition, by having both
the screenshot taken at the very moment when the user clicked on
the misleading ad, as well as the related full DOM snapshot, this
information could be used to enhance browser-based defenses
against social engineering [3].

Notice that ChromePic enables the reconstruction not only of
the exact moment in which the attack is triggered (e.g., a click
on a social engineering malware ad), but also of the sequence
of pages with which the user interacted before falling for the
attack. In addition, in case of phishing attacks ChromePic would
also provide an account of the exact information the user leaked
on the phishing site. Knowing what information was “phished”
may be important to decide what actions to take to mitigate
the damage to both the user and to the corporate network (e.g.,
the user may have leaked access credentials related to sensitive
corporate assets).

IV. SYSTEM DETAILS

A. Background

Before we present the details of ChromePic, we first provide
a brief overview on the Chromium browser architecture. As
Chromium’s architecture is fairly complex, we will limit the
following description to highlight only those components that
are needed to understand how our code modifications and
optimizations work.

Chromium uses a multi-process architecture [40], which
includes a main browser process, called Browser, and one
rendering process, called Renderer, per each open browser tab1.
The Browser runs multiple threads [45], including a UI Thread,
which handles UI events among other things, and an IO Thread,
which handles the IPC communications [39] between the Browser
and all Renderers. Each Renderer is also multithreaded [38]. The
Renderer’s Main Thread is responsible for communicating via
IPC with the Browser, whereas the Renderer’s Render Thread
is responsible for rendering web content, including executing
JavaScript code.

As shown in Figure 1, user inputs to a web page are first
received by the Browser’s UI Thread, and then asynchronously
communicated via IPC (by the IO Thread) to the Renderer that
is responsible for the tab where the page is rendered. The IPC
message will first be processed by the Renderer’s Main Thread,
and then forwarded to the Renderer’s Render Thread [38]. For
instance, a click on a hyperlink will be processed by the Render
Thread, to decide whether a navigation event should be triggered.

1In practice, a Renderer may in some cases be responsible for rendering more
than one tab [40]. To simplify our description, in the following we will assume
one tab per Renderer. Also, we will not consider out-of-process-iframes [41],
which are a recent ongoing project.

Browser
IO Thread

IPCSend(input)

User

Renderer
Main Thread

input

Renderer
Render Thread

Notify(input)
Input
Processing

Browser
UI Thread

Send(input)

Fig. 1. Overview of how user inputs to a web page are passed to the Renderer
Thread. Dashed arrows indicate asynchronous calls. Notice that the function
names are intentionally simplified, and do not exactly reflect the (long chains
of) function calls that exists in the source code.

Furthermore, JavaScript code execution (e.g., initiated due to a
listener registered on the input event), is also executed in the
context of the Render Thread.

B. ChromePic Overview

Figure 2 provides a simplified overview of how our
ChromePic browser generates a webshot. Notice that all dashed
arrows in the figure represent asynchronous calls.

In response to a user input, ChromePic takes the following
main actions: (1) on the Browser process, it calls Chromium’s
code for taking a screenshot of the current visible tab (see details
in Section IV-D), to which the user input is destined; (2) it opens
a file that will be used to save the DOM snapshot and passes its
file descriptor, fd, to the Renderer, along with the user input;
(3) as the input and fd are received by the Renderer, it saves the
current entire DOM, including embedded objects and JS code,
in MHTML format; (4) once the DOM snapshot has been saved,
the Renderer waits for confirmation from the Browser that the
screenshot taking process has terminated; only then, (5) the user
input is processed using the original Renderer’s workflow. In this
process, notice that if the screenshot finishes before the DOM
snapshot is saved, there will simply be no delay between steps
(3) and (5).

The high-level steps described above allow us to guarantee
that each webshot is taken synchronously with the user input, and
no DOM modification due to the current input is allowed before
the webshot is logged, in accordance with the forensic rigor
requirement stated in Section I. Moreover, our webshot events
are transparent to the (possibly malicious) page. ChromePic’s
code is designed so that after logging the input can continue
its “natural” processing path, and no information regarding the
webshot events is transferred to the page (notice that while
side-channel attacks cannot be excluded, user input timings are
not easily predictable, thus making detecting the existence of
ChromePic a laborious, non-deterministic endeavor).

Challenges. While the process of taking synchronous screenshots
may appear straightforward at first, our design of ChromePic
faces two main challenges. First, the limited documentation
for many of the modules we instrumented forced us to a great
deal of “reverse engineering” of the source code. In fact, our
code modifications had to span not only multiple processes, but
also multiple threads per process (UI, IO, Renderer, GPU, etc.).
In addition, while we strived to limit the number of changes
to existing code as much as possible, to meet our efficiency
requirements we had to engineer a number of optimizations, so
to minimize the webshot overhead shown in Figure 2.

4

Browser
IO Thread

IPCSend(input, fd)

take tab
screenshot

User

Renderer
Main Thread

IPCSend(screen_taken)

input

Renderer
Render Thread

Notify(input, fd)

Notify(screen_taken)

regular input
processing

take DOM
snapshot

TakeScreenshot()

Browser
UI Thread

Send(input, fd)

wait for
screenshot...Browser

File Thread
Save(screen)

Send(screen_taken) webshot
overheadsave to file (fd)

Fig. 2. Simplified view of how ChromePic processes user inputs that trigger a webshot. Dashed arrows indicate asynchronous calls.

C. Identifying the Target Renderer Process

Every Renderer Process has a corresponding
RenderProcessHost object in the Browser process,
which is used to send and receive IPC messages between
the two processes. Effectively, the RenderProcessHost
represents the Browser side of a single Browser-Renderer
IPC connection [40]. A RendererProcessHost object
communicates with multiple RenderWidgetHost instances,
each one representing one tab in the browser [38]. For
every RenderWidgetHost object, we create a custom
SnapshotHandler object whose responsibility is to
coordinate the process of taking webshots for a given
tab. When an input event is received, the responsible
RenderWidgetHost object is identified by the Browser, and
represents the last point in the Browser after which the event is
passed on to the correct Renderer via IPC message. We take
control of the input event just before it is passed on to the
Renderer, and handle the event via our SnapshotHandler
instead. By doing so, we are able to identify the correct
RoutingID for the IPC messages [39], and therefore we can
coordinate the process of taking a snapshot with the appropriate
Render Thread.

D. Taking Screenshots Efficiently

One way to implement the TakeScreenshot func-
tion shown in Figure 2, would be to call Chromium’s
CopyFromCompositingSurface and simply wait for
the CopyFromCompositingSurfaceFinished callback
(see Figure 3). However, we empirically found that this process
sometimes takes a large amount of time to finish (e.g., several
hundred milliseconds, depending on the web page). Obviously,
a large latency would be unsustainable for our purposes, as
it violates our efficiency requirements. Therefore, we had
to break down and study the details of the process used
by Chromium to satisfy CopyFromCompositingSurface.
While documentation such as [37], [42] helped, this was not an
easy task, as it required a much deeper understanding of the
internals of Chromium’s compositing process than found in the
sparse Chromium project documents.

We then discovered that to efficiently take synchronous
screenshots we could safely use the process depicted in Figure 3.
Specifically, to satisfy CopyFromCompositingSurface,
the Browser relies on a graphics library (GL) API and assistance
from the GPU (with code running on the GPU process, or GPU
thread in Android [37]). The GL/GPU module in Figure 3 is
represented separately from the Browser UI thread for presen-
tation convenience (to be more precise, the DrawFrame and
GetFrameBufferPixels functions are actually executed

GL / GPU

User

input
CopyFromCompositingSurface()

Browser
UI Thread

setNeedsCommmit
DrawFrame()

GetFrameBufferPixels()

RequestCopyOfOuput()

Browser
IO Thread

Send(screen_taken)
PrepareTextureCopyOutputResult()

Result

CropScaleReadBack
CopyFromCompositingSurfaceFinished

IPC message
to Renderer

Browser
File Thread

Save

TakeScreenshot()

Fig. 3. Overview of how screenshots are taken and the Renderer is notified
(notice that some of the function call names have been shortened and made
more readable for presentation purposes, compared to the source code).

asynchronously within the context of the Browser’s UI thread.
Only the ReadBack part of the screenshot taking process is
executed on the GPU process/thread).

In simplified terms, we can break down the screenshot-taking
process into five main steps: (1) draw (i.e., composite the layers
of) the web page; (2) copy the pixels; (3) crop/scale; (4) read
back the final bitmap; (5) save to file (we execute the file
saving process within the Browser’s File Thread [45]). However,
we found that once step (2) is completed, the screenshot has
effectively been taken, and do not need to wait for the crop/scale
operation before we can “release” the user input for further
processing. Namely, after step (2) the screenshot content is not
going to be influenced by the processing of the input, even if
the input causes the DOM to change.

The DrawFrame operation is controlled by the compositor
scheduler cc::scheduler, which takes into account factors
such as the device’s v-sync and dynamically establishes a target
rate at which frames are drawn [36]. For instance, on devices with
a v-sync frequency of 60Hz, a frame would be ideally drawn
every ∼16ms. Thanks to these properties, the time between
the arrival of the user input and our Send(screen_taken)
message in Figure 3 is typically on the order of only few tens
of milliseconds (see Section VII).

E. Taking “Deep” DOM Snapshots Efficiently

Along with each screenshot, we also take a “deep” DOM
snapshot that not only includes the current structure of the DOM
(at the time of the input), but also the content of all frames,
embedded objects (e.g., images), and javascript code. To enable
these rich DOM snapshots, we apply several important changes to
Chromium’s code for saving web pages in MHTML format [32].
Specifically, we enhance Chromium’s code to include javascript

5

code into the DOM snapshots and, importantly, to significantly
improve efficiency. Below, we focus on detailing these latter
code optimizations.

To save a page in MHTML format, Chromium implements a
GenerateMHTML function, which can be called in the Browser
process from the UI Thread. Given a specific tab, this function
is responsible for serializing the tab’s web page content into
MHTML format, and to save it into a file. However, the Browser
does not have direct access to the DOM of the page in each tab.
Therefore, to save the MHTML content the Browser must rely on
the Renderer process. But because the Renderer executes within
a sandbox, it cannot directly open a file to save the MHTML
content. Chromium’s solution is to (1) open a file in the Browser
process; (2) pass the file descriptor of the already opened file to
the Renderer; and (3) ask the Renderer (via IPC message) to
produce the MHTML content of the main page and each frame
it embeds, and to save it into this file.

Unfortunately, instead of sending only one IPC message to
the Renderer for the entire process, Chromium’s code results into
sending one IPC message to request to save the main page, as
well as one separate IPC message to the Renderer to request the
saving of each frame embedded in the page2. Because modern
complex web pages contain a potentially large number of frames
(e.g., an iframe for each ad embedded in the page), the full
process of serializing and saving the MHTML content can be
quite expensive, lasting from hundreds of milliseconds to a few
seconds. Therefore, using the existing code to take a DOM
snapshot synchronously with each user input would violate our
efficiency requirements.

One of the reasons why the above process is highly inefficient
is that for each IPC that is received, the Renderer creates a Task,
which will (asynchronously) run on the Render Thread, at a time
decided by the Renderer Scheduler [35]. As mentioned in [36],
“the render thread is a pretty scary place,” due to its complexity.
Its execution “routinely stalls for tens to hundreds of milliseconds
[...] on ARM, stalls can be seconds long” [36]. The reason is that
there are many different types of tasks that share the same Render
Thread processing time. For example, execution commonly stalls
due to the execution of “long” javascript code [44]. Therefore,
each task related to a frame’s MHTML seralization could easily
find itself starving for CPU time, thus bloating the overall time
needed to complete the full DOM snapshot.

To address the above challenges and dramatically reduce
the overhead related to taking DOM snapshots, we use the
following approach. Instead of calling GenerateMHTML, thus
generating multiple IPC messages to the Renderer specifically
dedicated to MHTML serialization, we send only one IPC
message to the Renderer. In fact, we piggyback the “take DOM
snapshot” message from the Browser onto the input-passing IPC
message that the Browser already must send to the Renderer
to communicate the user input (see Figure 2). To this end,
we modify the IPCSend(input) IPC message to also carry
a file descriptor parameter, fd, which is related to a file we
explicitly open to allow the Renderer to save the DOM snapshot.
In addition, we instrument the input-processing task that would
normally only process the user input, so that when its Task

2This approach will be useful in the future, once the out-of-process-iframes
project is completed and the functionality is turned on by default, as discussed
later in the paper.

is executed it will first serialize the page into MHTML format,
and then simply continue with the regular user input processing,
as shown on the right side of Figure 2. This guarantees that the
DOM snapshot is taken synchronously with the related user input
event, and before any input-driven DOM changes can occur.

There is one remaining question: how can we serialize
both the main page and all embedded frames, considering that
the original GenerateMHTML code needed to send multiple
IPC messages? To solve this problem, we write new MHTML
serialization code to explicitly traverse the entire frame tree from
the Render Thread, sequentially serialize each frame, and save
the entire DOM snapshot into the file previously opened by the
Browser (in Section VIII we discuss how this process could be
further adapted in the future, once out-of-process-iframes [41]
become enabled by default).

V. ALTERNATIVE IMPLEMENTATION USING EXTENSIONS

In this section, we discuss whether webshots could be
captured using Chrome’s extension API [7]. An extension-
based implementation would be appealing, because it does not
require any browser instrumentation and can easily be added
to existing browser releases. However, we will show that an
extension-based implementation of ChromePic is not a viable
alternative in practice, due to the constraints imposed by the
browser’s extension API itself and to the higher average overhead
associated with webshots produced via the extension. In the
following, we refer to the extension-based version of ChromePic
as ChromePicExt.

A. ChromePicExt Overview

Because our forensic rigor requirement (see Section I) dictates
that webshots must be taken synchronously with the user input,
the content javascript component of ChromePicExt
must intercept user inputs before any page javascript code. This
goal can be achieved in two steps: (1) by setting the run_at
property in the extension’s manifest file to document_start;
and (2) by registering an event listener for user input events
(e.g., mousedown, keydown, etc.) on the window object as
soon as the content javascript starts being executed.
All ChromePicExt’s event listeners are registered with the
useCapture option set to true, to guarantee that the
content javascript will be the first to capture and handle
the event, before any page javascript has a chance to receive the
same event. In the following, we will use cnt.js to refer to
the extension’s content javascript.

During the interaction between the user and the browser, if
a particular event that ChromePicExt is listening on is fired,
our listener captures it first and passes the event object to
the handler function implemented by the extension. At this
point, ChromePicExt’s cnt.js needs to temporarily stop the
propagation of the event object to any other listeners, including
listeners registered by the web page with which the user is
interacting, until a full browsing snapshot is taken. This is crucial
to ensure that the other event listeners will not have an opportunity
to change the appearance of the web page before the screenshot
and DOM snapshot are recorded. Notice also that because the
execution of javascript code within each renderer process is
single-threaded3 [43], the input event cannot be processed by

3Notice that WebWorkers cannot directly change the DOM.

6

any other listener until cnt.js “yields.” Furthermore, because
cnt.js runs in an isolated world4, the page javascript cannot
observe or interfere with the extension’s event processing.

Once a triggering event is received, to take a screen-
shot of the rendered content cnt.js needs to call the
captureVisibleTab API accessible via the background
extension component. At the same time, cnt.js also needs
to produce a snapshot of the current page’s DOM tree, which
could be achieved for example by asking the background
component to call the pageCapture.saveAsMHTML API.
Once both the screenshot and DOM snapshot are taken, the event
can be released so that the browser can propagate it to other
listeners.

Challenges. In Chrome, the content javascript compo-
nent of an extension has limited direct access to the extension API.
The full extension API can be accessed via the background
component. In the following, we refer to the background
extension component as bgnd.js, for short. The cnt.js
and bgnd.js components can communicate via message
passing. For instance, immediately after a user input is captured,
cnt.js can use sendMessage and ask bgnd.js to call
captureVisibleTab, thus producing a screenshot of the
current page with which the user is interacting. Unfortunately,
the simple approach described above does not satisfy the
forensic rigor requirement for webshots, because bgnd.js
runs in the extension process [6], rather than the renderer
process where cnt.js runs, and the screenshot is therefore
taken asynchronously. Similarly, to take a full DOM snapshot
bgnd.js can make use of saveAsMHTML, but this also causes
the DOM snapshot to be taken asynchronously w.r.t. the user input.
In other words, if the cnt.js simply captures a user event, asks
bgnd.js to take a webshot (using captureVisibleTab
and saveAsMHTML) and then immediately “yields,” the event
can be propagated by the browser to other listeners. Therefore,
there is no guarantee that the page javascript will not change
the page (DOM and rendering) before the webshot is actually
logged.

Possible Solutions. One possible approach to make the webshot
taking functionality synchronous may be for cnt.js to actively
wait (e.g., loop) until bgnd.js communicates that the webshot
request has been processed via a callback function. However,
because JavaScript execution within each process is single-
threaded5, this would prevent cnt.js from yielding to the
callback function, because it would need to run in the renderer
process where cnt.js is actively waiting. Therefore, this would
stall the renderer process and thus the web page (we have
empirically verified all observations). Another solution could be
to “sleep,” instead of actively waiting, for example by leveraging
setTimeout or setInterval. However, this would not
solve the problem, because while cnt.js “sleeps,” it effectively
“yields” and the captured user event will trickle down to the
next listeners, thus again violating the requirement that webshots
must be taken synchronously.

One may think that cnt.js could simply capture an event
object, say e, and (1) make a deep copy of the object, thus
creating e′ = e; (2) cancel the propagation of e to the remaining

4https://developer.chrome.com/extensions/content scripts
5WebWorkers cannot be used in the scenario we are considering.

 1. // Save "shallow" DOM snapshot
 2. var domSnapshot = document.head.outerHTML + document.body.outerHTML;
 3. chrome.runtime.sendMessage(command: "save_dom", dom: domSnapshot);
 4.
 5. // Take screenshot
 6. var md_time = Date.now();
 7. var filename = "snapshots/"+md_time+".png";
 8. var xhr_request = new XMLHttpRequest();
 9.
10. chrome.runtime.sendMessage(command: "take_screenshot", file: filename);
11. while(true) {
12. try {
13. xhr_request.open('GET', chrome.extension.getURL(filename), false);
14. xhr_request.send(null); // send synchronous request
15. break;
16. } catch (err) {
17. // Synchronous XMLHttpRequest has failed
18. }
19. }

Fig. 4. Simplified cnt.js source code.

listeners6; (3) wait until the callback from bgnd.js indicates
that the webshot has been taken; and (4) re-dispatch the event
by injecting e′, so that the browser will propagate the user event
to the remaining listeners. Unfortunately, this will cause the
isTrusted property of e′ to be set to false, thus potentially
preventing some listeners from correctly processing the event. In
addition, the value of isTrusted would allow an attack page
to infer the presence of ChromePicExt, and perhaps stop the
attack to prevent it from being logged/analyzed, thus violating
the transparency requirement (see Section I).

B. Our Approach

To solve the above problems, we proceed as follows. First,
we will focus only on how to synchronously take a screenshot,
and then discuss how to take a DOM snapshot.

Once a message has been sent to bgnd.js to ask for a
screenshot to be taken, cnt.js actively waits for the screenshot
to be completed. However, as mentioned earlier, cnt.js cannot
actively wait for a callback from bgnd.js, as this would
bring cnt.js to stall. Instead, what cnt.js can do is: (1)
explicitly choose the name of the file where the screenshot
should be stored; (2) pass this information to bgnd.js (via
sendMessage) and at the same time ask it to concretely start
the screenshot capturing process; (3) actively probe the file
system using a synchronous XMLHttpRequest to the local
URL 7 to test whether the screenshot file has been saved (via
captureVisibleTab).

Figure 4 shows a simplified code snippet that implements
the approach outlined above. The synchronous XMLHttpRequest
will raise an exception if the file does not exist. In this case,
cnt.js will try again, until the file can be found on disk
(or a maximum number of attempts have been exhausted, as
a safeguard to avoid waiting indefinitely in case of failure at
the extension process side). After cnt.js exits the active wait
loop, the user input event will effectively be “released” and
passed by the browser to the remaining listeners, thus allowing
the processing of the event to continue (e.g., this could trigger
some DOM modification by the underlying page javascript).

Unfortunately, the approach described above cannot be used
to synchronously take a DOM snapshot using saveAsMHTML.
The reason is that while the call to saveAsMHTML happens

6Using Event.stopPropagation()
7Notice that this can be enabled in the extension’s manifest file, via the

web_accessible_resources parameter.

7

https://developer.chrome.com/extensions/content_scripts

(a) (b) (c)

Fig. 5. Some of the screenshots captured by ChromePic during an in-the-wild social engineering “fake-AV-like” attack on Android.

asynchronously via bgnd.js, which runs within the extension
process, ultimately saveAsMHTML will delegate the respon-
sibility of producing and saving the mhtml representation of
the DOM to the same Renderer process where cnt.js also
runs, within the Render Thread (see Section IV-E). Therefore,
if cnt.js actively waits for the mhtml file to be saved it
will simply wait indefinitely, as the mhtml file cannot be
produced until cnt.js “releases control” of execution on the
renderer’s main thread. One way to avoid this problem is to
simply program cnt.js to save the DOM structure, as shown
at the top of Figure 4. However, this is a much more limited,
“shallow” representation of the DOM, compared to what can be
obtained with saveAsMHTML, because embedded objects (e.g.,
the content of images or iframes) are not saved.

The cnt.js could be extended to produce a result that is
more similar to saveAsMHTML. For instance, the content of
images can be accessed by first loading them into a canvas and
then reading the content of the canvas [27]. But this is a quite
cumbersome and inefficient operation. Also, while cumbersome,
it would be possible to communicate (e.g., via postMessage)
to the cnt.js running in the context of the embedded frames8

to produce a DOM snapshot, which could then be combined to
the DOM of the main page to produce a more comprehensive,
“deep” snapshot of the page.

It should be apparent by now that the extension-based
approach to taking synchronous webshots is sort of a “hack,” in
that it bypasses some of the restrictions imposed by the browser
on cnt.js and its inability to directly access the extension
APIs. Furthermore, screenshots cannot be made fully transparent
to the user, because every time a screenshot is taken the browser
visually indicates that a file is being downloaded (on the bottom
of the browser window). In Section VII, we will also show
that the extension-based implementation of ChromePic imposes
a higher overhead, compared to the browser instrumentation
approach described in Section IV. Overall, this demonstrates
that extensions are not suitable for meeting all of ChromePic’s
design requirements.

VI. RECONSTRUCTING ATTACKS ON USERS

In this section, we report on a number of experiments that
demonstrate how ChromePic can capture attacks on users, and
enable their post-mortem reconstruction. Specifically, we will
discuss three attacks, an in-the-wild social engineering download
attack on Android, a phishing attack, and two clickjacking attacks
proposed in [1].

8Assuming the all_frames option is set to true in the manifest file.

A. Social Engineering Download Attack

During our user study (see Section VII-B), we encountered
an in-the-wild social engineering download attack. Here is how a
user arrived to this attack: (1) The user visits www.google.com
and searches for “wolf of wall street”; (2) after scrolling the
results, the user modifies the search terms by adding the letter
“f” to the search string (see Figure 5a); (3) the search engine
suggests “wolf of wall street full movie” as the top search
suggestion, which is clicked (with a touch screen tap) by the
user; (4) the user then clicks on the top search result, which
redirects the browser to a site called fmovies[.]to; (5) as the
site loads, with no interaction from the user, an advertisement
embedded in the page forces the browser to open a new tab
where a page is loaded from us.intellectual-82[.]xyz; (6) an alert
popup window is immediately shown, which warns the user that
the device is infected by multiple viruses; (7) clicking on the
OK button makes the alert window disappear, but the user now
sees the us.intellectual-82[.]xyz page (which was previously in
the background) claiming that the Android device is “28.1%
DAMAGED because of 4 harmful viruses” (see Figure 5c) and
recommends the user to download an application called “DU
Cleaner”; (8) clicking on a “REPAIR FAST NOW” button, the
user is redirected to the Google Play store, and specifically to
information about an app called GO Speed9 (not DU Cleaner,
as stated on the attack page).

Using ChromePic, we were able to record all main steps of
the attack. In fact, the screenshots in Figure 5 were all taken
by ChromePic and confirm that using the recorded webshots,
the social engineering attack described above can indeed be
reconstructed by tracing back the user-browser interactions,
including tapping on the “REPAIR FAST NOW” button on
the attack page. Naturally, after the user clicks on this download
button and control is passed to the Google Play app, ChromePic
could not follow the next user actions (e.g., whether the app was
installed or not on the device). This is expected, as ChromePic
is meant to reconstruct all steps of web-based attacks that unfold
within the browser. The GO Speed app that the user is asked to
install seems to be benign, as it has been installed by a large
user base (more than 10M users, according to Google Play)
and an analysis of VirusTotal.com reports no anti-virus labels10.
After analyzing the DOM snapshots taken by ChromePic, we
suspect that the attackers are trying to monetize an advertisement
campaign that pays for every new “referred” installation of
the app. For instance, the attack page contains a link to
click.info-apps[.]xyz and another to tracking.lenzmx[.]com with
a URL query parameter mb_campid=du_cleaner_tier2.

9https://play.google.com/store/apps/details?id=com.gto.zero.zboost&hl=en
10sha1: 811b367c4901642ae41b4b8f0167eac2d3ac4039

8

www.google.com
fmovies[.]to
us.intellectual-82[.]xyz
us.intellectual-82[.]xyz
VirusTotal.com
click.info-apps[.]xyz
tracking.lenzmx[.]com
https://play.google.com/store/apps/details?id=com.gto.zero.zboost&hl=en

(a) (b) (c)

Fig. 6. Some of the screenshots captured by ChromePic during a phishing attack (the attack URL was first reported in PhishTank, submission #4359181).

After a mouse click, the browser is redirected (via HTTP 302
redirections) through those two sites to the final market://
URL referring to the GO Speed app. It is likely that the FakeAV-
like advertising tactics employed in this social engineering attack
are simply a way to convince more users to install the app and
(illicitly) increase revenue, in a way similar to how pay-per-install
networks [20], [46] monetize third-party software installations.

There is a small exception to be noted. ChromePic did not
take a screenshot of the alert popup window, which should have
been triggered by the user clicking on the OK button to close
the popup. The reason is that alert windows are rendered “out of
context” w.r.t. to browser tabs, and our current implementation
of ChromePic does not support taking a snapshot when users
interact with such alert windows (we plan to add support for
alert windows in future releases of ChromePic). However, it is
worth noting that by analyzing the DOM snapshots taken as the
user interacted with the attack page (at us.intellectual-82[.]xyz)
we were able to also reconstruct the content of the alert popup:

WARNING ! This Google Pixel C is infected with viruses and
your browser is seriously damaged. You need to remove viruses
and make corrections immediately. It is necessary to remove and
fix now. Don’t close this window. ** If you leave , you will be
at risk **

B. Phishing Attack

Besides tracing-back the steps followed by users who reach
an attack page, ChromePic can also assist in understanding how
the user interacted with the attack itself. For instance, in the case
of phishing attacks, our webshots capture a wealth of information
about what data was leaked by the user. To demonstrate this,
we present an example of a recent phishing attack posted on
PhishTank (submission #435918111).

After using ChromePic to visit the phishing URL, which
impersonates a Brazilian banking website, we simulated the
actions of a user who falls for the attack by providing fake
information (due to format-checking javascript, we had to figure
out how to provide fake but syntax-compliant data). Figure 6
shows some of the snapshots taken by ChromePic as we interacted
with the attack website. Unlike other phishing attacks, which
are often limited to stealing the victim’s login credentials, this
attack is fairly sophisticated as it attempts to reproduce the entire
banking site. Once the user logs in (by providing his/her CPF12

code), the site claims the balance of the user’s bank account has
been hidden (presumably for security purposes) and must be

11http://www.phishtank.com/phish detail.php?phish id=4359181
12https://en.wikipedia.org/wiki/Cadastro de Pessoas F%C3%ADsicas

recovered. As the user clicks on a menu bar link, the site requires
the victim to fill in a set of security codes, as shown in Figure 6b.
Notice that here the attacker is attempting to essentially steal the
user’s entire security code card13. By doing so, the attackers will
subsequently be able to perform any bank transaction operation
without being blocked by the real bank’s security mechanisms.
Finally, after the user provides the security code card information,
the phishing site also requests the user’s telephone number and
password (Figure 6c). Once this information is provided, the
site shows a “loading” animation that makes the user believe
his/her data is being verified (not shown in Figure 6 due to space
constraints). But at this point the attack has already succeeded.

C. ClickJacking Attacks

To demonstrate how ChromePic is able to also capture
clickjacking attacks, we reproduced two attacks described in [1]:
the Destabilizing Pointer Perception attack and the Peripheral
Vision attack. The (simulated) attacks, which we adapted from
publicly available code14 by the authors of [1], are available at
https://chromepic.github.io/clickjacking 15.

Destabilizing Pointer Perception: The attack is shown in Figure 7.
In this attack, the user intends to click on a “here” hyperlink.
However, as the mouse pointer approaches the link, the following
events occur: (1) a fake pointer is drawn that has a left-side
displacement error, compared to the real pointer (which is hidden);
(2) as the user brings the fake pointer on top of the link, the real
pointer is actually located on the Facebook Like button; (3)
because the Like button is rendered within a third-party frame,
the attack javascript cannot hide the mouse pointer at this time,
therefore, the attack instead draws other random mouse pointers
to confuse the user and effectively prevent the user from noticing
that the real mouse pointer is over the Like button; (4) as the
user attempts to click on “here,” the real click actually occurs
on the Like button, thus completing the clickjacking attack.

Figure 7 shows the screenshot taken by ChromePic at the
mouse down event. The center of the red circle is the exact
location where the user input event occurred. Notice that the
fake mouse pointers are captured by the screenshot, including
the pointer located over “here.” At the same time, the real mouse
pointer is not captured in the screenshot, because it is drawn by

13An English language explanation of how security code cards are used in
financial applications can be found at this link: https://www.interactivebrokers.
com/en/?f=%2Fen%2Fgeneral%2FbingoHelp.php

14http://wh0.github.io/safeclick-blast/list.html
15The original attack code is currently broken due to a missing remote file;

after analyzing the code we found an easy fix and we were able to recreate the
attacks.

9

us.intellectual-82[.]xyz
http://www.phishtank.com/phish_detail.php?phish_id=4359181
https://en.wikipedia.org/wiki/Cadastro_de_Pessoas_F%C3%ADsicas
https://chromepic.github.io/clickjacking
https://www.interactivebrokers.com/en/?f=%2Fen%2Fgeneral%2FbingoHelp.php
https://www.interactivebrokers.com/en/?f=%2Fen%2Fgeneral%2FbingoHelp.php

Fig. 7. Destabilizing pointer perception clickjacking attack.

function distract() {
 var img = document.createElement('img');
 img.className = 'random';
 img.src = 'http://i.imgur.com/EWmYMN2.png';
 img.style.top = Math.random() * 160 + 160 + 'px';
 img.style.left = Math.random() * 160 + 240 + 'px';
 playarea.appendChild(img);
 var dummy = img.clientHeight;
 img.style.top = Math.random() * 160 + 160 + 'px';
 img.style.left = Math.random() * 160 + 240 + 'px';
 setTimeout(function () {
 playarea.removeChild(img);
 }, RANDOM_MOVE_TIME);
}

Fig. 8. Reconstruction of code for generating fake pointers from ChromePic’s
DOM snapshots.

the OS, not rendered by the browser (only the fake pointers are
rendered by the browser). Nonetheless, the coordinates of the
real input event are recorded in our webshot, and it is therefore
straightforward to find the correct location of where the real
mouse pointer was located and draw the red circle accordingly
over the screenshot. Also, by analyzing the DOM snapshots
produced by ChromePic, it is easy to recover the fact that the
mouse is hidden via CSS (using cursor:none), and to also
get the full source code for the javascript functions that enable
the attack, including the creation of fake mouse pointers (see
Figure 8).

Peripheral Vision: In this attack, the objective is to attract the
user’s attention towards an area of the screen that is far from
where the mouse clicks actually occur. To this end, a game is
setup, as shown in Figure 9. In this game, the user needs to
click on the Play button on the bottom left of the screen, so
to catch the moving L or R blocks within the purple box on the
right side of the screen. Because the user’s attention is drawn to
the right side, while the clicks occur on the bottom left, the user
may not notice that at some random convenient time the attacker
may replace the Play button with a Facebook Like button. If
the mouse click occurs when the Like button is displayed, the
clickjacking attack succeeds.

Figure 9 shows two screenshots, taken at two different
mousedown events. In the screenshot on the left, the user clicks
on the real Play button. The screenshot on the right shows that
at the second mousedown event the Play button had temporarily
(for only one second) been replaced with the Like button, which
received the user’s click. As can be seen, ChromePic correctly
captured the two events (the center of the red circle represents
the exact location where the user clicked). Notice that this attack
again has a significant visual component that would be difficult
to reconstruct by analyzing only the page DOM, and that we
were able to correctly capture it thanks to ChromePic’s ability
to take screenshots synchronously with the user inputs.

VII. PERFORMANCE EVALUATION

In this section, we present a set of experiments dedicated to
measuring the overhead introduced by webshots.

Fig. 9. Two screenshots that capture the peripheral vision clickjacking attack.

A. Experimental Setup

Our ChromePic browser is built upon Chromium’s codebase
version 50.0.2626.2. Our source code modifications amount to
approximately 2,000 lines of C++, and will be available at
https://chromepic.github.io/chromepic-browser/.

We evaluate ChromePic on both Android 6.0 on a Google
Pixel-C tablet with an Nvidia X1 quad-core CPU and 3GB of
RAM, as well as on two machines running Linux Ubuntu 14.04:
a Dell Optiplex 980 desktop machine with a quad-core Intel
Core-i7 processor and 8GB of RAM, and a Dell Inspiron 15
laptop with a Core-i7 CPU and 8GB of RAM.

B. User Study Setup

User Study 1: To evaluate the overhead imposed by our code
changes to Chromium, we perform a user study involving 22
distinct users (with IRB approval). Specifically, we compile our
ChromePic browser for both Linux and Android, and ask the
study participants to use the devices described earlier for generic
Internet browsing activities. Users were allowed to freely browse
any site of their choosing. The only restriction we imposed was
to avoid visiting any website containing personal data, such as
online banking sites, their Facebook page, etc., to avoid recording
any sensitive information. Each user was asked to perform one or
more browsing sessions on different devices, with each session
lasting approximately 15 minutes. Each user completed no more
than two separate browsing sessions per device (a few users
used only the Android and Linux laptop devices, and did not
browse on the desktop Linux machine). Overall, we collected
363 minutes of browsing activity on the Android tablet from
16 different users, 346 minutes on the Linux laptop from 15
users, and 286 minutes on the Linux desktop from 11 users
(more than 16.5 hours of browsing overall), which included
several thousands input events per device. The users visited more
than 1,600 different web pages (i.e., URLs) on 204 distinct web
sites (i.e., different effective second-level domains, including
google.com, youtube.com, amazon.com, and several other highly
popular sites), producing close to 6,000 webshots overall. Table I
reports a summary of the data we collected.

For this study, the browser was setup so that webshots are
active only on randomly selected pages. Namely, every time the
user navigates to a new page, the browser “flips a coin” and
decides if the webshot logging capabilities should be activated
or not (other experiments described later had the webshot logs
always on). The reason for this is that we wanted to measure
and compare the time needed by the browser to process input
events with and without our code changes, to demonstrate that
our webshots do not impose any other input processing delay,

10

https://chromepic.github.io/chromepic-browser/
google.com
youtube.com
amazon.com

TABLE I. DATA COLLECTED DURING User Study 1

Platform # Users Browsing time Sites visited Pages visited Pages visited WebShot events
(minutes) (webshots on) (webshots off)

Android 16 363 92 480 479 2428
Linux laptop 15 346 80 777 746 2145

Linux desktop 11 286 65 369 404 1376
Total 22 (unique) 995 204 (unique) 1626 1629 5949

besides the actual time to record the logs. We comment on the
results of this experiment in Section VII-C (see also Figure 11).

User Study 2: We also performed a smaller targeted user study
involving 4 different users browsing on the Linux laptop device
(with webshots always on). In this study, we asked the users
to login into sites such as Facebook, Gmail, Twitter, Google
Drive, etc., using a “temporary” account we created only for this
study, which therefore contains no true personal information. This
experiment aimed at evaluating ChromePic’s overhead during
activities such as writing emails, writing Facebook/Twitter posts,
writing a GoogleDoc text document, etc. Overall, we collected 53
minutes of browsing time. The experimental results are discussed
in Section VII-C.

User Study 3: Finally, we performed a separate small user study
involving 6 users to evaluate the performance of ChromePicExt,
the extension-based implementation that attempts to record brows-
ing snapshots similar to the webshots recorded by ChromePic
(see Section V). We discuss the related results in Section VII-C.

C. ChromePic Performance Measurements

User Study 1: In Table II, we report a breakdown of the overhead
measurement results performed on browsing traces collected
during our User Study 1. Specifically, we report the 50th
percentile (i.e., the median) and 98th percentile of the time
required for taking screenshots, “deep” DOM snapshots, and for
the total webshots time. All numbers are in milliseconds.

To better explain how the measurements in Table II are
obtained, let u(t0) be a user input event that occurs at
time t0, which triggers a webshot. Also, let tsn be the
time at which the screen_taken notification is sent in
Figure 3 from the GL module to the Browser IO Thread.
Namely, this is the time when the screenshot has actually
been captured, and the user input can be processed (see
Section IV-D). On the other hand, let tsc be the time when
the CopyFromCompositingSurfaceFinished callback
is called. We define the screenshot notification time as (tsn− t0),
the screenshot callback time as (tsc − t0).

Similarly, let td be the time at which the DOM snapshot
has been saved, and the user input can be further processed, as
discussed in Section IV-E (see also Figure 2), and δf be the
time taken to save the DOM snapshot to file using the MHTML
format. The DOM snapshot time with file write is computed as
(td − t0), whereas DOM snapshot time w/o file write is equal
to (td − δf − t0), which therefore excludes the time needed
to copy the snapshot to file. The reason why we measure this
latter quantity is that with some more engineering effort the
DOM snapshot file saving process could be moved to a separate
Renderer process thread, thus effectively decreasing the overhead
imposed by the DOM snapshot logging.

The total webshot time is computed as (max{tsn, td} − t0),
according to the discussion provided in Section IV. This time

0 50 100 150 200 250 300

Event Duration (ms) - mouse, key press deltas and webshot overheads
0.0

0.2

0.4

0.6

0.8

1.0

Mouse click deltas (1278)
Key press deltas (1089)
Laptop webshots (2117)
Tablet webshots (2428)
Desktop webshots (1361)

Fig. 10. Time needed to take webshots and comparison with mouse-down/up
and key-down/up time deltas (the number of events on which the CDFs are
computed are in parenthesis).

could be further reduced to (max{tsn, (td − δf)} − t0) by
offloading the DOM file saving process to a separate Renderer
process thread (we leave this implementation task to future
releases of ChromePic).

Figure 10 shows the distribution of the total time needed to
log the webshots on different devices, while Table II reports a
breakdown of the webshot times into their components (50th- and
98th-percentiles). On both Linux devices (laptop and desktop)
98% of all webshots are logged in less than 120ms. This is a
very good result, because any latency below 150ms is practically
unnoticeable to users [47]. On Android, 98% of webshots are
logged in less than 264ms, with a median time of around 78ms.
While the 98th-percentile time is higher than our 150ms target,
it is still a low overhead that is on the very low end of the
“noticeable” latency classification provided in [47]. Also, our
results indicate that 82.02% of all webshots on Android can
be taken in less than 150ms. Furthermore, notice that the total
overhead is driven by the DOM snapshot time, including saving
the DOM to file, rather than the screenshot notification time.
From Table II, we can see that the 98th-percentile of the total
webshot logging time for Android could be reduced to roughly
203ms if file saving was delegated to a separate thread in the
Renderer process. In addition, in this setting 89.33% of the
webshots on Android would take less than 150 ms.

To further put our results into perspective, we also compared
the time needed to take webshots to the time in between mouse-
down/up and key-down/up events. In other words, we measure
the time that it takes for a user to lift her finger from the mouse
button or from a key. The mouse-down/up and key-down/up time
deltas are measured on the Linux desktop, with webshots turned
off. As we can see from Figure 10, the distribution (CDF) of
webshot overhead times on the Linux laptop and desktop are
always to the left of the mouse-down/up and key-down/up time
deltas curves. Because we start the webshot log at the down
event, this means that in the vast majority of cases when a mouse
click or a key press occurs, the webshot will be fully logged

11

TABLE II. User Study 1 - PERFORMANCE OVERHEAD (50TH- AND 98TH-PERCENTILE)

Platform Total Total Screenshot Screenshot DOM snapshot time DOM snapshot time
with file write (ms) w/o file write (ms) notification time (ms) callback time (ms) with file write (ms) w/o file write (ms)

Android 78.05, 263.06 59.53, 203.01 13.02, 25.88 65.67, 109.97 77.55, 261.81 58.86, 202.38
Linux laptop 39.16, 118.43 33.32, 109.55 5.38, 27.68 36.17, 71.05 38.95, 118.26 33.12, 109.38

Linux desktop 22.36, 93.19 19.02, 76.11 2.74, 23.80 38.95, 118.04 22.11, 85.86 18.74, 70.53

0 50 100 150 200 250 300 350 400

Event Duration (ms) - mouse and key events
0.0

0.2

0.4

0.6

0.8

1.0

Webshots enabled (1369)
Webshots disabled (1412)

Fig. 11. Comparison of “natural” input event processing time with and without
webshots enabled (the number of events on which the CDFs are computed are
in parenthesis).

by the time the user raises her finger. Also, the Android tablet
curve is almost entirely to the left of the mouse-down/up and
key-down/up curves, showing that even on Android the webshots
can be taken efficiently.

Another result worth noting is that our screenshot code
optimizations, described in Section IV-D, yield a very significant
overhead improvement, as can be seen by comparing the
notification time and callback time in Table II.

To verify that our webshots do not negatively impact the
subsequent “natural” input processing times, in Figure 11 we
also compare the amount of time taken by the browser to process
a user input in two different cases: when webshots are disabled
(dashed line), and when the input is processed right after a
webshot has been logged (solid line). Specifically, let t0 be the
time when the Browser sends a user input u to the Renderer, and
ti be the time when the Renderer confirms to the Browser that the
input has been processed (we use Chromium’s LatencyInfo
objects to measure this). Also, let t′i be the “input processed”
confirmation time related to events that triggered a webshot, and
δw be the time delta needed to log a webshot. The first (dashed)
curve measures (ti − t0), which represents the “natural” input
processing time. Similarly, the second (solid) curve measures
(t′i − δw − t0), which represents the time needed by the browser
to process the input after a synchronous webshot has been taken
(see Figure 2). As can be seen, the two curves are very similar,
indicating no unexpected delay to the natural input processing
time due to webshot events. In other words, the webshots do
not cause any other delays, besides the actual time to take the
webshots, δw.

User Study 2: As discussed in Section VII-B, we separately
measured the overhead for user activities on popular web sites,
such as Facebook, Twitter, Gmail, Google Drive, etc. We recorded
thousands of user input events, 1,910 of which triggered a
webshot. Of these webshots, 50% were processed in less than
66ms, and 98% took less than 240ms. Furthermore, 80% of all
the webshot took less than 150ms. After closely analyzing the

measurements, we found that the slight increase in overhead,
compared to User Study 1, was due to DOM snapshots on Gmail,
due to how the page is structured (e.g., Gmail pages embedded
a larger number of iframe’s and had a larger DOM size).
Specifically, the 98th-percentile for the total webshot time on
Gmail was around 245ms. The times on all other popular sites
(Facebook, Twitter, Google Docs, etc.) were in line or even lower
than those obtained in User Study 1. For instance, on Facebook
the 98th-percentile was less than 120ms. Overall, if we exclude
Gmail from this experiment, 98% of the webshots can be taken
in 108ms.

User Study 3: For comparison purposes, we also measured
the performance of taking screenshots using the extension-
based approach discussed in Section V. These have been done
on the desktop machine, and the results should therefore be
compared to the third row of Table II. Also, notice that in
this experiment we are only considering the screenshot time
(as explained in Section V, it is not easy to take synchronous
“deep” DOM snapshots via the extension API). We found that
50% of screenshots require at least 140ms and 98% of them
require 243ms. This is in contrast with the 2.74ms and 23.80ms,
respectively, that are required by the browser-based version of
ChromePic. Furthermore, the extension times are much larger
than the total time needed to take a full webshot (including the
DOM) on the desktop machine using the instrumented browser
solution (see Table II). This reinforces our conclusion that an
extension-based solution is not only cumbersome, as discussed
in Section V, but also much less efficient.

D. Storage Requirements

Table III shows the storage requirements for archiving the
webshots produced during User Study 1. After a straightforward
compression process (converting screenshots to JPG and using
lossless compression for DOM snapshots), the webshots take
a maximum of 1.03MB per minute of browsing on the Linux
laptop. Android logs required only 0.85MB/minute of storage, and
0.92MB/minute on the desktop machine. This space requirements
could be further reduced by using lossy compression on the
DOM-embedded images, for instance by converting them to a
low- or medium-quality JPG.

Let’s now consider a scenario in which ChromePic is deployed
in a corporate network setting. Assume that in average users
spend half of their working time (4 hours/day) browsing, while
the other half is spent on other tasks (meetings, development,
design, data analysis, etc.). If we assume 22 business days per
month, and 1.03MB of storage needed per minute of browsing
(i.e., the maximum amount we observed), a single user would
produce less than 6GB of webshot logs per month. In a corporate
network with 1,000 users, this would result in less than 6TB of
storage for an entire month of browsing logs for the network, or
72TB for an entire year of logs. Considering that a multi-TB
hard drive currently costs only a few hundreds US dollars, an
entire year of webshot logs could be archived for only a few

12

TABLE III. AVERAGE STORAGE REQUIREMENTS (MBS/MINUTE)

Platform Uncompressed Compressed
Screenshots DOM Screenshots DOM

Android 6.80 11.62 0.31 0.54
Linux laptop 4.66 11.33 0.15 0.88

Linux desktop 2.31 8.07 0.09 0.83

thousand US dollars. In alternative, considering that business-
grade cloud-based storage services are currently priced at less
than $0.03/GB per month, archiving one entire year worth of
webshots for the entire corporate network in the cloud would
cost less than $2,200 per month16.

VIII. DISCUSSION

There exist some corner cases in which it is not possible
to “freeze” the state of the DOM/rendering immediately after
a user input arrives. For instance, if a user input arrives while
the Render Thread is already executing another task, such as
a long-running javascript program that affects the DOM, the
processing of the user input will have to wait until javascript
terminates, and until its own Task is scheduled for execution
(see Section IV-E). The net effect is that the DOM snapshot
will reflect the state of the DOM after the already running
javascript code terminates. Notice, however, that this is also true
for “natural” input processing. Namely, the input will apply to
the modified DOM, regardless of whether a webshot is taken or
not. Therefore, our snapshots correctly reflect the state of the
DOM at the time when the input becomes effective. Similarly,
because screenshots need to wait for the compositor to redraw,
the exact instant in time in which the screenshot is taken is
determined by the cc::scheduler (see Section IV-D). If an
animation is in progress on the page, it may be possible for the
screenshot to be one (or a very small number of) frame(s) “off”
w.r.t. the user input. Again, this also holds for “natural” input
processing (i.e., even if webshots were disabled), because the
input may become effective after a redraw.

In Section IV-E, we mentioned that once the out-of-process-
iframes (OOPIFs) [41] project is completed and becomes active
by default, we will need to slightly adapt our code for taking
DOM snapshots. In fact, we believe that OOPIFs would allow
us to further decrease the time needed to take a snapshot. The
reason is as follows. Assume the user interacts (e.g., clicks
on a link) with a page that embeds several iframes (e.g., to
display different ads). In the current implementation, both the
main page and iframes are processed in the same Renderer
process. Therefore, the DOM of the main page and all iframes
has to be produced at once, synchronously with the input (see
Section IV-E). But with OOPIFs we could produce all these
partial DOM snapshots in parallel by simply sending a “take
DOM snapshot” IPC message to the main page and all iframes
at the same time.

Because ChromePic continuously logs user-browser inter-
actions and takes screenshots, the recorded logs may contain
sensitive user information. To mitigate privacy concerns, the logs
could be securely stored using methods similar to previously
proposed approaches [12], [34]. Furthermore, the solutions
proposed in [28] could also be readily applied to ChromePic’s
output. For instance, ChromePic could employ a customizable

16Estimated using http://calculator.s3.amazonaws.com/index.html (with Cold
HDD)

whitelist of sites on which webshots should be turned off. To
be more strict, ChromePic could be prevented from logging any
events on pages loaded via HTTPS that have a valid (not self-
signed) TLS certificate. Furthermore, a “helper” application (or
a separate browser thread) could be responsible for continuously
gathering and encrypting the browser logs. This application
would encrypt logs related to different tabs separately, using
unique keys that could be stored in a key escrow [8]. The key
escrow could be owned by the user or, in enterprise environments,
by the machine’s administrator, and the keys released only when
a security investigation is called for. In addition, because each
tab can be stored separately and encrypted with a different key,
investigators could be selectively given access only to some tabs
rather than the entire browsing history. The decision on whether
to authorize the decryption of a tab would depend on the specific
investigation, but could for instance be based on the time frame
in which the attack is suspected to have happened, and on the
list of domains that have been visited within the tab, which can
be recorded as meta-data and encrypted with a “global” key.
In addition, audit logs could be protected from tampering by
using existing file system features, such as append-only files
and immutability [24]. We leave the engineering of this key
escrow-based system to future work.

IX. RELATED WORK

The analysis of security incidents is often hindered by the
lack of necessary logs. As mentioned in [21], “it is all too often
the case that we tend to lack detailed information just when we
need it the most.” The existing logging functionalities provided
by modern operating systems and browsers are often insufficient
to precisely reconstruct an attack. Below we discuss previous
works that aim to enhance logging and improve the ability to
investigate security incidents.

Enhanced Logging. To enable the analysis of security incidents,
Kornexl et al. [19] propose a network “Time Machine,” whose
goal is to efficiently record detailed information extracted from
network traffic. The purpose of this system is to support forensic
analysis and network troubleshooting. To increase efficiency and
allow for storing network traffic information for long periods of
time, Time Machine only records the first portion of each network
connection. Even with partial recordings, [19] demonstrates that
this approach enables the analysis of security incidents. Krishnan
et al. [21] propose a virtualization-based forensic engine to
keep track and record access to data objects read from disk.
The proposed system follows the chain of access operations on
the objects as they are copied into memory and accessed by
different processes. The output is an audit log that enables the
reconstruction of the sequence of data changes. Ma et al. [25]
develop a low cost audit logging system for Windows, which
aims to enable accurate attack investigation and significant log
reduction.

The instrumentation of Chrome has been proposed in the
past in different security contexts. For example, Bauer et al. [5]
propose an information-flow tracking system that allows for
enforcing fine-grained browser security policies. Excision [2], is
an instrumentation of Chrome that aims at detecting and blocking
the inclusion of malicious third-party content into web pages.
To this end, Excision keeps track of the origin of third-party
content to be loaded as part of the page.

13

http://calculator.s3.amazonaws.com/index.html

Our ChromePic system is different, in that it ams to introduce
fine-grained logging in Chromium to enable the recording and
post-mortem investigation of web-based attacks, with particular
focus on attacks on users that have a significant visual component.

Record-and-Repaly Systems. ReVirt’s main goal is to enable
whole-system record-and-reply [11]. To this end, it uses a
virtualization-based approach to log detailed information about
a VM’s guest system execution instruction-by-instruction. This
enables deterministic replay of the entire system, thus also
allowing an exact replay of previously recorded intrusions. Other
whole-system record-and-replay engines, such as PANDA [10],
share similar goals. Whole-system record-and-replay is expensive
and difficult to deploy on resource-constrained mobile devices. To
obviate these problems, Neasbitt et al. propose WebCapsule [28],
which aims to enable browser-level record-and-replay. WebCap-
sule is implemented by instrumenting Blink, Chrome’s rendering
engine. Because recording occurs at a higher level, compared
to [11], WebCapsule does not allow for fully deterministic replay.
On the other hand, WebCapsule is portable to multiple platforms,
including mobile devices.

ChromePic is different from the above systems, in that it does
not aim to enable replay. Rather, our system aims to introduce
very low overhead, and to record enough detailed information
about the state of the browser to enable an accurate reconstruction
of web-based attacks towards users, such as social engineering
and phishing.

Automated Incident Investigation. WebWitness [30] is an incident
investigation system that leverages deep packet inspection
to reconstruct the steps followed by users who reach social
engineering or drive-by malware download pages. The system
relies on full network packet traces to performs a (network-based)
analysis of both the content of web pages and the way in which
the content is requested (e.g., by analyzing referrers and HTTP
redirections), and is able to reconstruct the web browsing path
that brought the user to the final attack page. Unlike WebWitness,
which is purely based on an analysis of network traces using a
set of heuristics and inference methods, ClickMiner [29] aims
to reconstruct the path to an attack page by replaying network
traces into an instrumented browser.

BackTracker [18] is a system for automatically reconstructing
the sequence of steps followed by an attacker to compromise a
machine. Given an initial detection point, such as a malicious file
identified by a security analyst, BackTracker traces back processes
and files that have a causal relation to the detection point,
by leveraging OS-level logs. The final result is a dependency
graph that explains what system objects affected (or caused)
the presence of the malicious file on disk, thus potentially
revealing the attacker’s entry point into the system. Taser [13]
and RETRO [17] use OS-level logs and perform forward tracking
to identify and recover form intrusions, whereas other recent
works [22], [23], [26] have focused on improving accuracy in
backward- and forward-tracking of intrusions, and on reducing
the space for OS logs.

Our work is different from the systems discussed above,
in that ChromePic’s main goal is to produce highly efficient
fine-grained browser logs. In the future, these logs could be
used to enable and improve the accuracy of automated incident
investigation systems.

X. CONCLUSION

In this paper, we presented ChromePic, a web browser
equipped with a novel forensic engine whose goal is to greatly
enhance the browser’s logging capabilities. ChromePic enables a
fine-grained post-mortem reconstruction and trace-back of web
attacks without incurring the high overhead of record-and-replay
systems. ChromePic works by recording a detailed snapshot of
the state of a web page, including a screenshot of how the page
is rendered and a “deep” DOM snapshot, at every significant
interaction between the user and web pages. If an attack is later
suspected, these fine-grained logs can be processed to reconstruct
the attack and trace back the sequence of steps the user followed
to reach the attack page.

We developed ChromePic by implementing several careful
modifications and optimizations to the Chromium code base, to
minimize overhead and make always-on logging practical. Using
both real-world and simulated web attacks, we demonstrated that
ChromePic can successfully capture and aid the reconstruction
of attacks on users. Our evaluation included the analysis of an
in-the-wild social engineering download attack on Android, a
phishing attack, and two different clickjacking attacks, as well
as a user study aimed at accurately measuring the overhead
introduced by our forensic engine. The experimental results
showed that browsing snapshots can be logged very efficiently,
making snapshot logging events practically unnoticeable to users.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
National Science Foundation, under grant No. CNS-1149051, and
by the United States Air Force and Defense Advanced Research
Agency (DARPA), under Contract No. FA8650-15-C-7562.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation
or DARPA.

REFERENCES

[1] D. Akhawe, W. He, Z. Li, R. Moazzezi, and D. Song, “Clickjacking
revisited: A perceptual view of ui security,” in 8th USENIX Workshop on
Offensive Technologies (WOOT 14), Aug. 2014.

[2] S. Arshad, A. Kharraz, and W. Robertson, “Include me out: In-browser
detection of malicious third-party content inclusions,” in Proceedings of
the 20th International Conference on Financial Cryptography and Data
Security (FC), 2 2016.

[3] L. Ballard, “No more deceptive download buttons,” 2016, https://security.
googleblog.com/2016/02/no-more-deceptive-download-buttons.html.

[4] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site
request forgery,” in Proceedings of the 15th ACM Conference on Computer
and Communications Security, ser. CCS ’08, 2008.

[5] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian, “Run-time
monitoring and formal analysis of information flows in Chromium,” in
Proceedings of the 22nd Annual Network and Distributed System Security
Symposium, Feb. 2015.

[6] Chrome, “Background pages,” https://developer.chrome.com/extensions/
background pages.

[7] ——, “Extensions,” https://developer.chrome.com/extensions.
[8] D. E. Denning and D. K. Branstad, “A taxonomy for key escrow encryption

systems,” Commun. ACM, vol. 39, no. 3, pp. 34–40, 1996.
[9] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’06, 2006.

14

https://security.googleblog.com/2016/02/no-more-deceptive-download-buttons.html
https://security.googleblog.com/2016/02/no-more-deceptive-download-buttons.html
https://developer.chrome.com/extensions/background_pages
https://developer.chrome.com/extensions/background_pages
https://developer.chrome.com/extensions

[10] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Repeatable
reverse engineering with panda,” in Proceedings of the 5th Program
Protection and Reverse Engineering Workshop, ser. PPREW-5, 2015.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen, “Revirt:
Enabling intrusion analysis through virtual-machine logging and replay,”
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, Dec. 2002.

[12] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M. Levy,
“Keypad: An auditing file system for theft-prone devices,” in Proceedings
of the Sixth Conference on Computer Systems, ser. EuroSys ’11. ACM,
2011, pp. 1–16.

[13] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The taser intrusion
recovery system,” in Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles, ser. SOSP ’05, 2005.

[14] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko,
P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, N. Provos, M. Z.
Rafique, M. A. Rajab, C. Rossow, K. Thomas, V. Paxson, S. Savage, and
G. M. Voelker, “Manufacturing compromise: The emergence of exploit-
as-a-service,” in ACM Conference on Computer and Communications
Security, ser. CCS ’12, 2012.

[15] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and C. Jackson,
“Clickjacking: Attacks and defenses,” in Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12), 2012.

[16] S. Institute, “A multi-level defense against social engineering,”
2003, https://www.sans.org/reading-room/whitepapers/engineering/
multi-level-defense-social-engineering-920.

[17] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion recovery
using selective re-execution,” in Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’10, 2010.

[18] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, ser.
SOSP ’03, 2003.

[19] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer, “Building
a time machine for efficient recording and retrieval of high-volume network
traffic,” in Proceedings of the 5th ACM SIGCOMM Conference on Internet
Measurement, ser. IMC ’05, 2005.

[20] P. Kotzias, L. Bilge, and J. Caballero, “Measuring pup prevalence and pup
distribution through pay-per-install services,” in 25th USENIX Security
Symposium (USENIX Security 16), Aug. 2016.

[21] S. Krishnan, K. Z. Snow, and F. Monrose, “Trail of bytes: Efficient support
for forensic analysis,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, ser. CCS ’10, 2010.

[22] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance via
binary-based execution partition,” in NDSS, 2013.

[23] ——, “Loggc: garbage collecting audit log,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
ser. CCS ’13, 2013.

[24] Linux Man Pages, “Chattr,” http://man7.org/linux/man-pages/man1/chattr.
1.html.

[25] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,” in
Proceedings of the 31st Annual Computer Security Applications Conference,
ser. ACSAC 2015, 2015.

[26] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting,” in NDSS, 2016.

[27] Mozilla Developers Network, “Using images,” https://developer.mozilla.
org/en-US/docs/Web/API/Canvas API/Tutorial/Using images.

[28] C. Neasbitt, B. Li, R. Perdisci, L. Lu, K. Singh, and K. Li, “Webcapsule:
Towards a lightweight forensic engine for web browsers,” in Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15, 2015.

[29] C. Neasbitt, R. Perdisci, K. Li, and T. Nelms, “Clickminer: Towards
forensic reconstruction of user-browser interactions from network traces,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’14, 2014.

[30] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “Webwitness:
Investigating, categorizing, and mitigating malware download paths,” in
Proceedings of the 24th USENIX Conference on Security Symposium, ser.
SEC’15, 2015.

[31] ——, “Towards measuring and mitigating social engineering software
download attacks,” in Proceedings of the 25th USENIX Conference on
Security Symposium, ser. SEC’16, 2016.

[32] J. Palme, A. Hopmann, and N. Shelness, “Mime encapsulation of aggregate
documents, such as html (mhtml),” 1999, https://tools.ietf.org/html/rfc2557.

[33] J. Saltzer and M. Schroeder, “The protection of information in computer
systems,” http://web.mit.edu/Saltzer/www/publications/protection/.

[34] B. Schneier and J. Kelsey, “Secure audit logs to support computer forensics,”
ACM Trans. Inf. Syst. Secur., vol. 2, no. 2, pp. 159–176, May 1999.

[35] The Chromium Project, “Blick scheduler,” https:
//docs.google.com/document/d/16f RIhZa47uEK
OdtTgzWdRU0RFMTQWMpEWyWXIpXUo/edit#heading=h.
srz53flt1rrp.

[36] ——, “Compositor thread architecture,” https://www.chromium.org/
developers/design-documents/compositor-thread-architecture.

[37] ——, “GPU accelerated compositing in Chrome,”
https://www.chromium.org/developers/design-documents/
gpu-accelerated-compositing-in-chrome.

[38] ——, “How chromium displays web pages,” https://www.chromium.org/
developers/design-documents/displaying-a-web-page-in-chrome.

[39] ——, “Inter-process communication,” https://www.chromium.org/
developers/design-documents/inter-process-communication.

[40] ——, “Multi-process architecture,” https://www.chromium.org/developers/
design-documents/multi-process-architecture.

[41] ——, “Out-of-process iframes,” http://www.chromium.org/developers/
design-documents/oop-iframes.

[42] ——, “Proposal for frame capture con-
tent API,” https://docs.google.com/document/d/
1gRndVmVn7gWJ-rbIHaaOMNsCjSIBn4CAJbZuwLM2ROE/edit.

[43] ——, “The rendering critical path,” https://www.chromium.org/developers/
the-rendering-critical-path.

[44] ——, “Scheduling js timer execution,” https://docs.google.com/document/
d/163ow-1wjd6L0rAN3V U6t12eqVkq4mXDDjVaA4OuvCA/edit#.

[45] ——, “Threading,” https://www.chromium.org/developers/
design-documents/threading.

[46] K. Thomas, J. A. E. Crespo, R. Rasti, J.-M. Picod, C. Phillips, M.-A.
Decoste, C. Sharp, F. Tirelo, A. Tofigh, M.-A. Courteau, L. Ballard,
R. Shield, N. Jagpal, M. A. Rajab, P. Mavrommatis, N. Provos,
E. Bursztein, and D. McCoy, “Investigating commercial pay-per-install
and the distribution of unwanted software,” in 25th USENIX Security
Symposium (USENIX Security 16), Aug. 2016.

[47] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying interactive
user experience on thin clients,” Computer, vol. 39, no. 3, pp. 46–52,
March 2006.

[48] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
“Cross site scripting prevention with dynamic data tainting and static
analysis.” in NDSS, vol. 2007, 2007, p. 12.

15

https://www.sans.org/reading-room/whitepapers/engineering/multi-level-defense-social-engineering-920
https://www.sans.org/reading-room/whitepapers/engineering/multi-level-defense-social-engineering-920
http://man7.org/linux/man-pages/man1/chattr.1.html
http://man7.org/linux/man-pages/man1/chattr.1.html
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Using_images
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Using_images
https://tools.ietf.org/html/rfc2557
http://web.mit.edu/Saltzer/www/publications/protection/
https://docs.google.com/document/d/16f_RIhZa47uEK_OdtTgzWdRU0RFMTQWMpEWyWXIpXUo/edit#heading=h.srz53flt1rrp
https://docs.google.com/document/d/16f_RIhZa47uEK_OdtTgzWdRU0RFMTQWMpEWyWXIpXUo/edit#heading=h.srz53flt1rrp
https://docs.google.com/document/d/16f_RIhZa47uEK_OdtTgzWdRU0RFMTQWMpEWyWXIpXUo/edit#heading=h.srz53flt1rrp
https://docs.google.com/document/d/16f_RIhZa47uEK_OdtTgzWdRU0RFMTQWMpEWyWXIpXUo/edit#heading=h.srz53flt1rrp
https://www.chromium.org/developers/design-documents/compositor-thread-architecture
https://www.chromium.org/developers/design-documents/compositor-thread-architecture
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
https://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
https://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
https://www.chromium.org/developers/design-documents/inter-process-communication
https://www.chromium.org/developers/design-documents/inter-process-communication
https://www.chromium.org/developers/design-documents/multi-process-architecture
https://www.chromium.org/developers/design-documents/multi-process-architecture
http://www.chromium.org/developers/design-documents/oop-iframes
http://www.chromium.org/developers/design-documents/oop-iframes
https://docs.google.com/document/d/1gRndVmVn7gWJ-rbIHaaOMNsCjSIBn4CAJbZuwLM2ROE/edit
https://docs.google.com/document/d/1gRndVmVn7gWJ-rbIHaaOMNsCjSIBn4CAJbZuwLM2ROE/edit
https://www.chromium.org/developers/the-rendering-critical-path
https://www.chromium.org/developers/the-rendering-critical-path
https://docs.google.com/document/d/163ow-1wjd6L0rAN3V_U6t12eqVkq4mXDDjVaA4OuvCA/edit#
https://docs.google.com/document/d/163ow-1wjd6L0rAN3V_U6t12eqVkq4mXDDjVaA4OuvCA/edit#
https://www.chromium.org/developers/design-documents/threading
https://www.chromium.org/developers/design-documents/threading

	Introduction
	WebShots
	What is a WebShot?
	Input Events that Trigger a WebShot

	Use Cases
	System Details
	Background
	ChromePic Overview
	Identifying the Target Renderer Process
	Taking Screenshots Efficiently
	Taking ``Deep'' DOM Snapshots Efficiently

	Alternative Implementation using Extensions
	ChromePicExt Overview
	Our Approach

	Reconstructing Attacks on Users
	Social Engineering Download Attack
	Phishing Attack
	ClickJacking Attacks

	Performance Evaluation
	Experimental Setup
	User Study Setup
	ChromePic Performance Measurements
	Storage Requirements

	Discussion
	Related Work
	Conclusion
	References

