
DELTA: A Security Assessment Framework
for So9ware-Defined Networks
SEUNGSOO LEE†, CHANGHOON YOON†, CHANHEE LEE†, SEUNGWON
SHIN†, VINOD YEGNESWARAN‡, PHILLIP PORRAS‡

† KAIST ‡SRI INTERNATIONAL

/	23	

Outline

1.   Background	and	Mo2va2on	
2.  System	Design	
3.  Blackbox	Fuzzing	
4.  Implementa=on	
5.  Evalua=on	
6.  Conclusion	

2	

/	23	

What is So9ware-defined Networking?
●  SoCware	Defined	Networking	(SDN)	
•  Separate	the	control	plane	from	the	data	plane	

●  Centralized	network	management	
•  Via	global	network	view	
●  Programmable	network	
•  Flexible	and	dynamic	network	control	
•  Useful,	innova=ve	SDN	applica=ons	
●  OpenFlow	protocol	
•  A	de-facto	standard	

Network	Device	
Control	Plane	

Data	Plane	

Control	Plane	

Data	Plane	

Control	Plane	

Data	Plane	

Control	Plane	

Data	Plane	

SDN	Controller	

3	

/	23	

●  Event	Listener	Unsubscrip=on	aSack	[1]	

MoSvaSng Example

	
Core	Services	

Malicious	App	

Packet-IN	No2fier	
	
	

SDN	Controller	

Firewall	 Load	Balancer	 L2	Forwarding	

Load	Balancer	
L2	Forwarding	

PACKET_IN	

4	

PACKET_IN	 PACKET_IN	

Host	A	 Host	B	SDN	Switch	

(1)	
(2)	

(3)	

(4)	

(5)	

(6)	

[1]	hSp://sdnsecurity.org/vulnerability/ASackList.html	

/	23	

A network operator wants to know …

5	

Is	my	SDN	secure?	

•  Which	vulnerabili2es	exist	now?	
•  How	to	reproduce	each	test	case?	
•  Any	more	vulnerabili2es?	
•  …		

A	Security	Assessment	Framework		
for	So?ware-Defined	Networks	

/	23	

DELTA: A Security Assessment Framework for SDN

6	

Reproducing	Known	
AFack	Cases	

Finding	Unknown	
ASack	Cases	

Security	Assessment	Framework	for	SDN	

●  We	propose	a	SDN	penetra=on	framework	that	can	…	
1.  Cover	as	many	aVack	scenarios	as	possible	
2.  Be	highly	automated,	to	minimize	the	human	exper=se	and	=me	

necessary	to	conduct	tes=ng	
3.  Be	inter-operable	with	a	diverse	set	of	SDN	components	

20	

/	23	

DELTA: A Security Assessment Framework for SDN

7	

Reproducing	Known	
ASack	Cases	

Finding	Unknown	
AFack	Cases	

Security	Assessment	Framework	for	SDN	

●  DELTA	can	assist	in	finding	unknown	aSack	cases	
•  By	adop=ng	blackbox	fuzzing	techniques	

●  What	target?	
•  SDN	control	flows	(i.e.,	OpenFlow	messages)	

7	

/	23	

System Design
●  Key	components	of	DELTA	

8	

Out-of-band,	dedicated	
DELTA	control	network	

●  Agent	manager	

•  The	“Control	tower”	
•  Remotely	controls	the	agents	deployed	to	the	target	network		

•  Leverages	different	agents	to	perform	various	security	test	cases		

•  Analyzes	the	test	results	collected	from	the	agents	

●  Applica=on	agent	

•  SDN	applica=ons	that	conduct	aSack	procedures	as	instructed		
by	the	manager	

•  The	known	malicious	func2ons	are	implemented	as	an	applica=on	
agent	library	

•  Fuzzing	modules	(control	flow	sequence	and	input	value)	

●  Channel	agent	

•  Is	located	between	the	controller	and	the	switch	
•  Sniffs	and	modifies	the	unencrypted	control	messages	

•  Fuzzing	modules	(control	flow	sequence	and	input	value)	

●  Host	agent	

•  A	legi=mate	network	host	par=cipa=ng	in	the	target	SDN			

•  Generates	network	traffic	as	instructed	by	the	agent	manager	
•  e.g.	DDoS,	LLDP	injec=on	etc.	

/	23	

Basic OperaSon
●  Procedure	for	genera=ng	known	and	unknown	test	cases	

9	

1.	Select	reproducing	known	
test	case	or	finding	unknown	
test	case	

2.	Instruct	each	agent	to	
conduct	the	test	

3.	Collect	the	result	of	the	
test	from	each	agent	

4.	No2fy	the	result	

OpenFlow	Messages	

Fuzzing	
Modules	

Fuzzing	
Modules	

/	23	

Blackbox Fuzzing
●  To	more	efficiently	and	systema2cally	randomize	control	flows	
(i.e.,	OpenFlow	messages)	

●  Define	three	types	of	control	flow	opera=ons	
•  Symmetric	control	flow	
•  Asymmetric	control	flow	
•  Intra-controller	control	flow	

10	

SDN	controller	SDN	Switch	

REQ	

RES	

MSG	

MSG	

MSG	

Core	services		
(e.g.,	topology	manager)	

SDN	Applica2on	SDN	Applica2ons	

/	23	

OperaSonal State Diagram

1.  Inferring	current	state	
2.  Manipula=ng	the	control	flow	sequence	or	input	values	

11	

r

S1 S2 S3 S4
receive HELLOsend HELLO send FEATURES_REQ receive FEATURES_RES

S5
send GET_CONFIG_REQ

S6
receive GET_CONFIG_RES

S7
send SET_CONFIG

I1

update topology

A1
receive PORT_STATUS

S8send STATS_REQ
S9receive STATS_RES

A3

update topology

deliver to applications

update topology

A2
receive PACKET_IN deliver to applications

A4

send FLOW_MOD

S14

A7

send PACKET_OUT

S15
receive BARRIER_RESsend BARRIER_REQ

I2
send PACKET_OUT

update internal flow tables
update internal

flow tables

update internal flow tables

A5receive FLOW_REMOVED update internal flow tables

S10send ECHO_REQ S11
receive ECHO_RES

R

eE

S12 S13
send VENDOR receive VENDOR

A6
send PORT_MOD update internal flow tables

send FLOW_MOD

	à		Symmetric	flow	transiSons	
	

	à		Asymmetric	flow	transiSons	
	

	à		Intra-controller	flow	transiSons	

Sx

Ax

Ix

/	23	

Randomizing Control Flow Sequence
●  In	the	case	of	symmetric	control	flows	

12	

S1 S2 S3 S4
receive HELLOsend HELLO send FEATURES_REQ receive FEATURES_RES

S5
send GET_CONFIG_REQ

S6
receive GET_CONFIG_RES

S7
send SET_CONFIG

R

SDN	Switch	SDN	controller	 HELLO	

HELLO	

FEATURE_REQ	

FEATURE_RES	

GET_CONFIG_REQ	

GET_CONFIG_RES	

SET_CONFIG	

/	23	

●  In	the	case	of	asymmetric	control	flows	

Core	Services	Packet-IN	
No2fier	

App	A	

Randomizing Control Flow Sequence

13	

A3

A2
receive PACKET_IN deliver to applications

R

SDN	Switch	

SDN	controller	

SDN	Switch	
Host	A	 Host	B	

App	B	 App	C	 App	D	

(1)	Message	

(2)	

App	D	 App	C	 App	B	 App	A	

/	23	

Randomizing Input Values
●  Between	an	SDN	controller	and	an	SDN	switch	
●  Between	applica=ons	

14	

A3

A2
receive PACKET_IN deliver to applications

A4

R

send FLOW_MOD

SDN	Switch	

SDN	controller	

FLOW_MOD	

e.g.)	ADD	(0x0000)	
à	(Undefined)	(0x0005)	

/	23	

ImplementaSon
●  Supports	four	different	SDN	controllers	
•  3	open	source	controllers	(ONOS,	OpenDaylight,	and	Floodlight)	
•  1	commercial	controller		

●  OpenFlow	v1.0	and	v1.3	supported	

15	

ONOS	 OpenDaylight	 Floodlight	 A	commercial	one	
	Version	 1.2	 1.3	 1.4	 1.5	 Hydrogen	 Helium	 Lithium	 Beryllium	 0.91	 1.0	 1.1	 1.2	 2.3.0	
	Release	Date	 6/5/15	9/18/15	12/16/15	3/10/16	 2/4/14	 9/29/14	 6/29/15	 2/22/16	 12/8/14	 12/30/14	4/17/15	2/7/16	 2016	
	Supported	 ✓	 ✓	 ✓	 ✓	 ✓	 ✓	 ✓	 -	 ✓	 ✓	 ✓	 ✓	 ✓	

<	Supported	applicaSon	agents	>	

/	23	

EvaluaSon

1.   Fuzz-tes2ng	Effec2veness		
	(Finding	unknown	aSacks)	

2.   Test	Coverage	and	Flexibility		
	(Reproducing	known	aSacks)	

16	

/	23	

Use Case 1: Finding Unknown A]acks
●  How	to	detect	a	vulnerability	
•  Based	on	defined	test	criteria		

●  Effec2veness	of	fuzz	tes=ng	
•  7	unknown	aVack	cases	found	

17	

1.  A	controller	crash	
2.  An	applica=on	crash	
3.  Internal-storage	poisoning	
4.  A	switch	disconnec=on	
5.  Switch-performance	downgrade	
6.  Error-packet	genera=on	
7.  Inter-host	communica=on	

disconnec=on	
<	Test	Criteria	>	

<	Unknown	aFack	classificaSon	>	

Unknown	AFack	Name	 Flow	 Target	
Sequence	and	Data-Forge	 Asymmetric	 Floodlight	
Stats-Payload-Manipula=on	 Symmetric	 Floodlight,	OpenDaylight	
Echo-Reply-Payload-Manipula=on	 Symmetric	 OpenDaylight	
Service-Unregistra=on	 Intro-controller		 OpenDaylight	
Flow-Rule-Obstruc=on	 Intro-controller		 ONOS	
Host-Tracking-Neutraliza=on	 Intro-controller		 ONOS	
Link-Discovery-Neutraliza=on	 Intro-controller		 Floodlight	

/	23	

Use Case 1: Finding Unknown A]acks
●  Sequence	and	Data-Forge	ASack	
•  Target:	asymmetric	control	flow	and	Floodlight	v1.2	

18	

Switch SwitchHost Agent

Agent
Manager

Normal Host

Channel Agent

Topology
Manager

Other
Applications

 Core ServicesPACKET_IN
Notifier

Floodlight Instance

Other
Services

Controller

Network Hub

Fuzzing
Modules

App
Agent

Link
Discovery

Network Hub

1.	Select	Asymmetric	control	flow	

Switch SwitchHost Agent

Agent
Manager

Normal Host

Channel Agent

Topology
Manager

Other
Applications

 Core ServicesPACKET_IN
Notifier

Floodlight Instance

Other
Services

Controller

Network Hub

Fuzzing
Modules

App
Agent

Network Hub
3.	Randomize	the	control	flow		
sequence	first	
4.	Generate	packets	
5.	Randomize	the	contents		
of	the	PACKET_IN	message	

PAKCET_IN	

Modified		
PAKCET_IN	

2.	Start	fuzz	tes=ng	

/	23	

Use Case 1: Finding Unknown A]acks
●  Results	of	the	Sequence	and	Data-Forge	aSack	experiment	
(Floodlight	v1.2)	

19	

1.  A	controller	crash	
2.  An	applica=on	crash	
3.  Internal-storage	poisoning	
4.   A	switch	disconnecSon	
5.  Switch-performance	downgrade	
6.  Inter-host	communica=on	

disconnec=on	
7.  Error-packet	genera=on	

<	Test	Criteria	>	

/	23	

Use Case 2: Reproducing Known A]acks [1]
Flow	Type	 AFack	

Code	
AFack	Name	 Controller	

ONOS	 OpenDaylight	 Floodlight	
Symmetric	Flows	 SF-1	 Switch	Table	Flooding	 X	 X	 O	

SF-2	 Switch	Iden=fica=on	Spoofing	 X	 O	 O	
SF-3	 Malformed	Control	Message	 X	 O	 O	
SF-4	 Control	Message	Manipula=on	 O	 O	 O	

Asymmetric	Flows	 AF-1	 Control	Message	Drop	 O	 O	 O	
AF-2	 Control	Message	Infinite	Loop	 O	 O	 O	
AF-3	 PACKET_IN	Flooding	 O	 O	 O	
AF-4	 Flow	Rule	Flooding	 O	 O	 O	
AF-5	 Flow	Rule	Modifica=on	 O	 O	 O	
AF-6	 Switch	Firmware	Misuse	 O	 O	 O	
AF-7	 Flow	Table	Clearance	 O	 O	 O	
AF-8	 Eavesdrop	 O	 O	 O	
AF-9	 Man-In-The-Middle	 O	 O	 O	

Intra-controller	
Flows	

CF-1	 Internal	Storage	Misuse	 O	 O	 O	
CF-2	 Applica=on	Evic=on	 O	 O	 N/A	
CF-3	 Event	Listener	Unsubscrip=on	 N/A	 O	 O	

Non	Flow	
Opera2ons	
	

NF-1	 System	Command	Execu=on	 O	 X	 O	
NF-2	 Memory	Exhaus=on	 X	 O	 O	
NF-3	 CPU	Exhaus=on	 X	 O	 O	
NF-4	 System	Variable	Manipula=on	 O	 O	 O	

20	[1]	hSp://sdnsecurity.org/vulnerability/ASackList.html	

O:	Successful	
X:	Unsuccessful	
N/A:	Not	available	

/	23	

Use Case 2: Reproducing Known A]acks

●  Flexibility	of	DELTA	
•  3	open	source	controllers	and	1	commercial	controller	
•  For	example:	Applica=on	Evic=on	ASack	

21	

ACTIVE	

INACTIVE	

/	23	

Conclusion
●  We	categorize	known	vulnerabili=es	that	can	mislead	network	

opera=ons	into	three	control	flow	types	and	non	flow	opera=ons	
●  We	propose	an	automated	security	assessment	framework	for	

SDN	capable	of	reproducing	those	vulnerabili=es	
●  We	incorporate	blackbox	fuzzing	techniques	into	our	framework	

to	detect	new	unknown	aVack	scenarios	
●  We	show	the	flexibility	of	system	design	by	evalua=ng	it	against	

three	popular	open-source	SDN	controllers	and	the	commercial	
controller	

●  DELTA	is	now	available	as	on	OFFICIAL	ONF	Sponsored	Open	
Source	Project	hVps://github.com/OpenNetworkingFounda2on/
delta	

22	

/	23	

Q&A

23	

/	23	

Appendix: Performance

24	

Control	Flow	Type	 Average	Running	Time	
Asymmetric	Control	Flow	 82.5	sec	
Symmetric	Control	Flow	 80.4	sec	
Intra-controller	Control	Flow	 75.2	sec	

AFack	Name	 Controller	
ONOS	 ODL	 Floodlight	

Switch	Table	Flooding	 -	 -	 5400	sec	
Switch	Iden=fica=on	Spoofing	 16.09	sec	 16.34	sec	 15.96	sec	
Malformed	Control	Message	 21.50	sec	 12.33	sec	 11.09	sec	
Control	Message	Manipula=on	 28.10	sec	 19.27	sec	 18.60	sec	
Control	Message	Drop	 12.55	sec	 8.47	sec	 3.13	sec	
Control	Message	Infinite	Loop	 3.38	sec	 8.12	sec	 3.21	sec	
PACKET_IN	Flooding	 12.59	sec	 17.79	sec	 11.96	sec	
Flow	Rule	Flooding	 43.65	sec	 23.28	sec	 43.20	sec	
Flow	Rule	Modifica=on	 40.43	sec	 40.24	sec	 20.35	sec	
Switch	Firmware	Misuse	 20.52	sec	 20.25	sec	 20.20	sec	
Flow	Table	Clearance	 20.60	sec	 20.32	sec	 20.17	sec	
Eavesdrop	 33.62	sec	 33.18	sec	 33.14	sec	
Man-In-The-Middle	 17.80	sec	 17.19	sec	 7.88	sec	
Internal	Storage	Misuse	 2.60	sec	 3.14	sec	 2.14	sec	
Applica=on	Evic=on	 22.57	sec	 13.33	sec	 N/A	
Event	Listener	Unsubscrip=on	 N/A	 13.22	sec	 13.11	sec	
System	Command	Execu=on	 0.028	sec	 0.095	sec	 0.127	sec	
Memory	Exhaus=on	 23.54	sec	 23.20	sec	 23.16	sec	
CPU	Exhaus=on	 23.43	sec	 23.36	sec	 23.35	sec	
System	Variable	Manipula=on	 3.39	sec	 4.86	sec	 3.17	sec	
Total	 346.38	sec	 317.98	sec	 274.84	sec	

Finding	unknown	aFack	microbenchmark		

Reproducing	known	aFacks	microbenchmark		

About	5	minutes	

