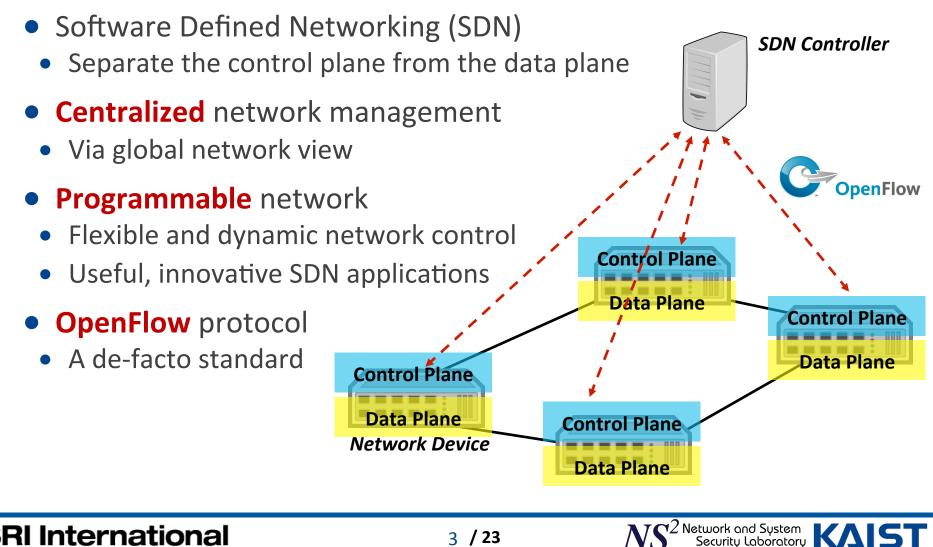


DELTA: A Security Assessment Framework for Software-Defined Networks

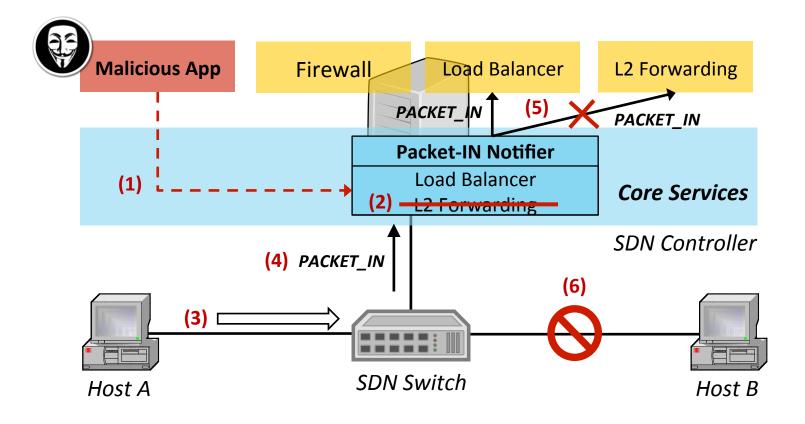
SEUNGSOO LEE†, CHANGHOON YOON⁺, CHANHEE LEE[†], SEUNGWON SHIN⁺, VINOD YEGNESWARAN[‡], PHILLIP PORRAS[‡]

+ KAIST + SRI INTERNATIONAL


Outline

1. Background and Motivation

- 2. System Design
- 3. Blackbox Fuzzing
- 4. Implementation
- 5. Evaluation
- 6. Conclusion



What is Software-defined Networking?

Motivating Example

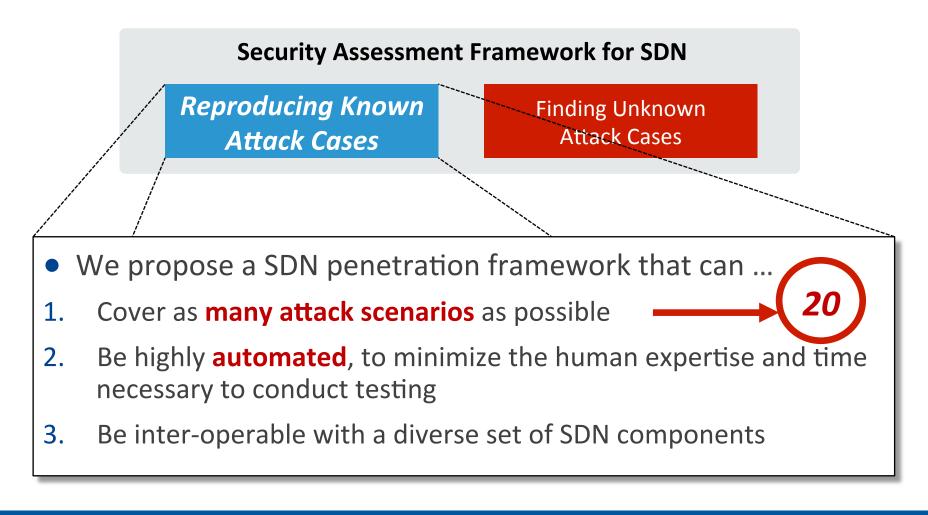
Event Listener Unsubscription attack [1]

Security Laboratory

A network operator wants to know ...

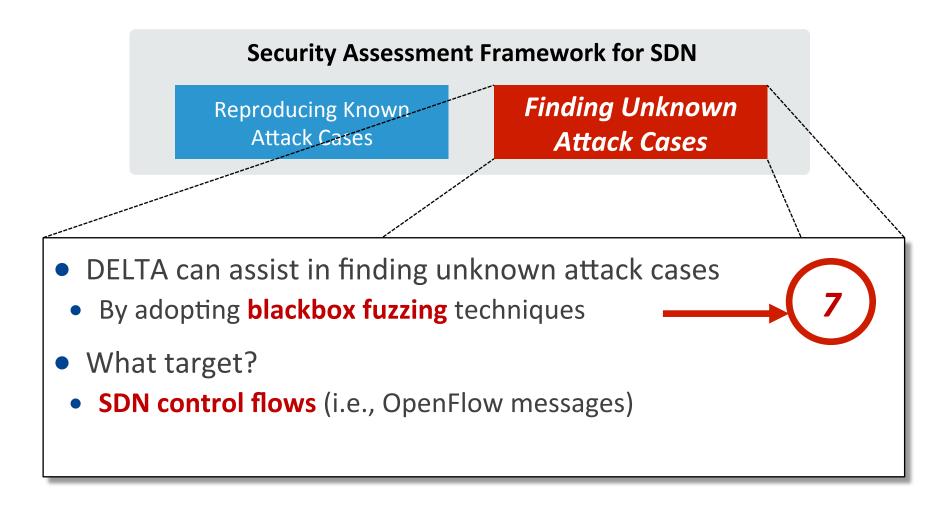
Is my SDN secure?

A Security Assessment Framework for Software-Defined Networks



- Which vulnerabilities exist now?
- How to reproduce each test case?

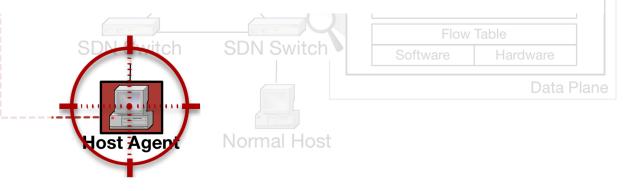
2 Network and System Security Laboratory


• Any more vulnerabilities?

DELTA: A Security Assessment Framework for SDN

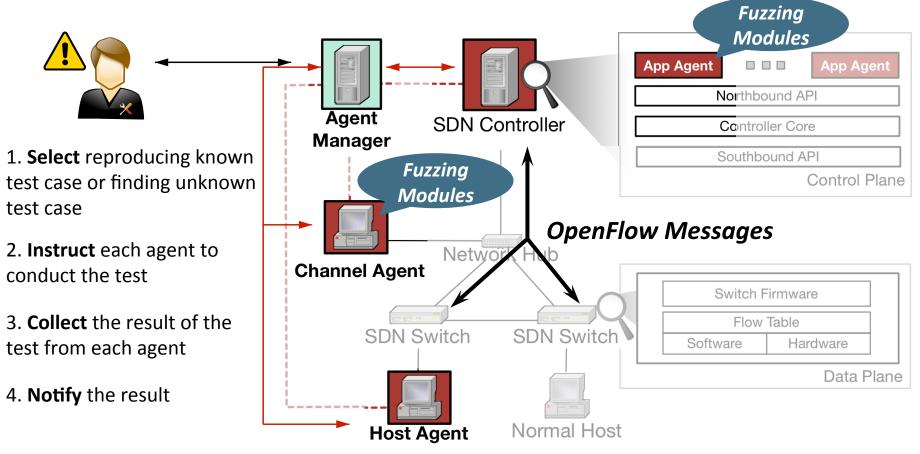
DELTA: A Security Assessment Framework for SDN

SRI International


2 Network and System Security Laboratory

System Design

• Host agent


- A legitimate network host participating in the target SDN
- Generates network traffic as instructed by the agent manager
 - e.g. DDoS, LLDP injection etc.

2 Network and System Security Laboratory

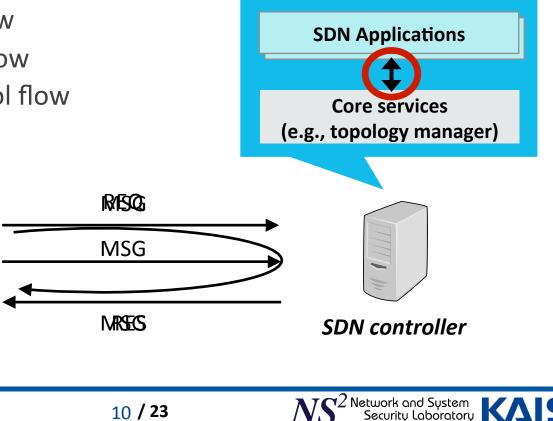
Basic Operation

Procedure for generating known and unknown test cases

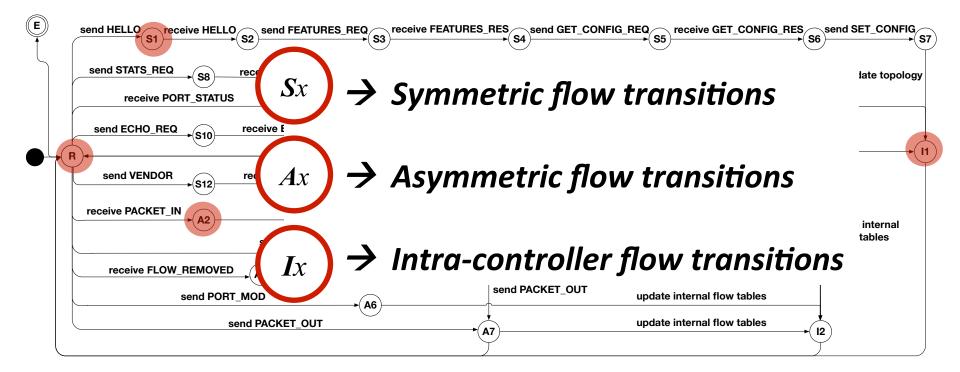
SRI International

2 Network and System Security Laboratory

Blackbox Fuzzing


 To more efficiently and systematically randomize control flows (i.e., OpenFlow messages)

10 / 23

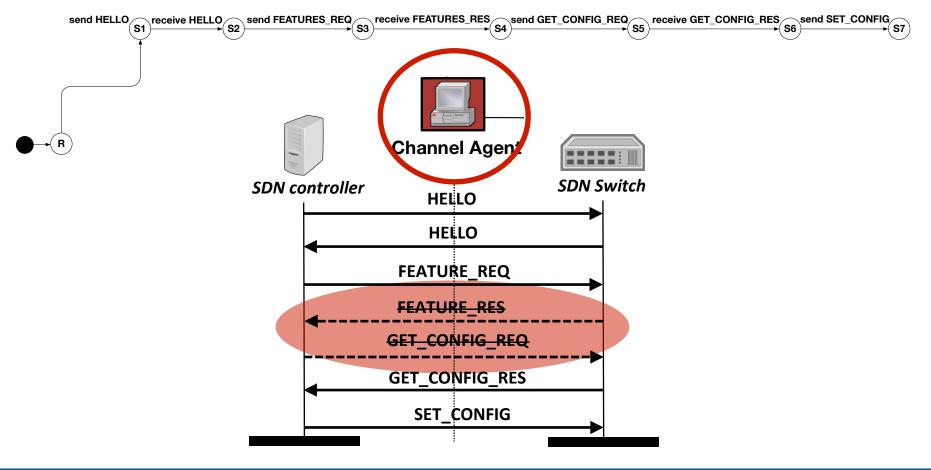

- Define **three types** of control flow operations
 - Symmetric control flow
 - Asymmetric control flow

SDN Switch

Intra-controller control flow

Operational State Diagram

- 1. Inferring current state
- 2. Manipulating the control flow sequence or input values

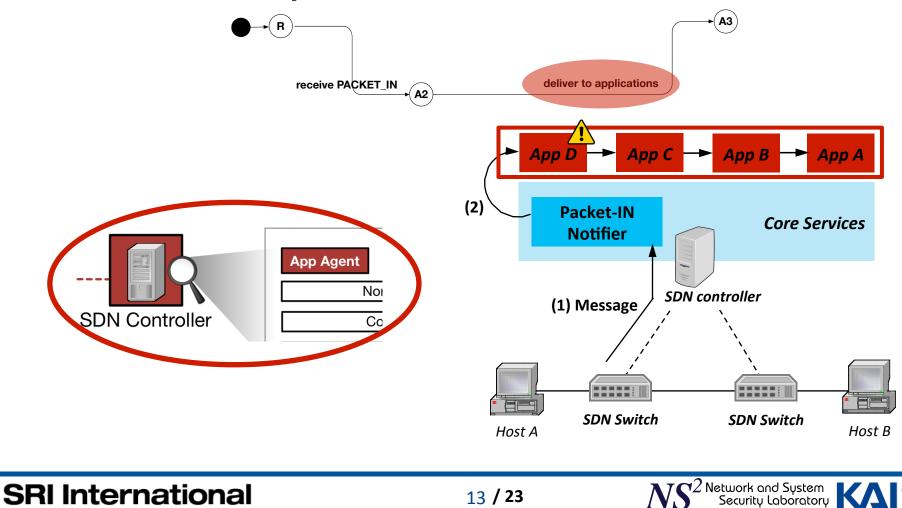

SRI International

2 Network and System \parallel

Securitu Laboratoru

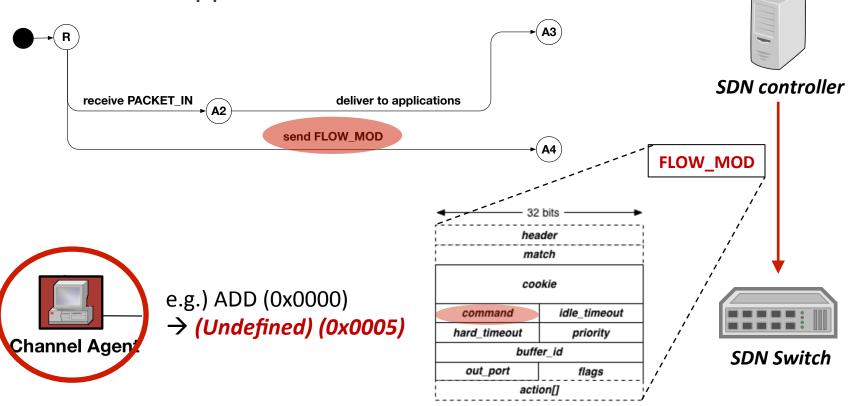
Randomizing Control Flow Sequence

• In the case of **symmetric** control flows


SRI International

12 / 23

2 Network and System Security Laboratory


Randomizing Control Flow Sequence

• In the case of **asymmetric** control flows

Randomizing Input Values

- Between an SDN controller and an SDN switch
- Between applications

SRI International

Security Laboratory

Implementation

- Supports four different SDN controllers
 - 3 open source controllers (ONOS, OpenDaylight, and Floodlight)
 - 1 commercial controller
- OpenFlow v1.0 and v1.3 supported

< Supported application agents >

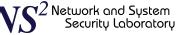
	ONOS			OpenDaylight			Floodlight			A commercial one			
Version	1.2	1.3	1.4	1.5	Hydrogen	Helium	Lithium	Beryllium	0.91	1.0	1.1	1.2	2.3.0
Release Date	6/5/15	9/18/15	12/16/15	3/10/16	2/4/14	9/29/14	6/29/15	2/22/16	12/8/14	12/30/14	4/17/15	2/7/16	2016
Supported	1	~	1	√	1	1	1	-	1	1	✓	1	1

Evaluation

- **1. Fuzz-testing Effectiveness** (Finding unknown attacks)
- 2. Test Coverage and Flexibility (Reproducing known attacks)

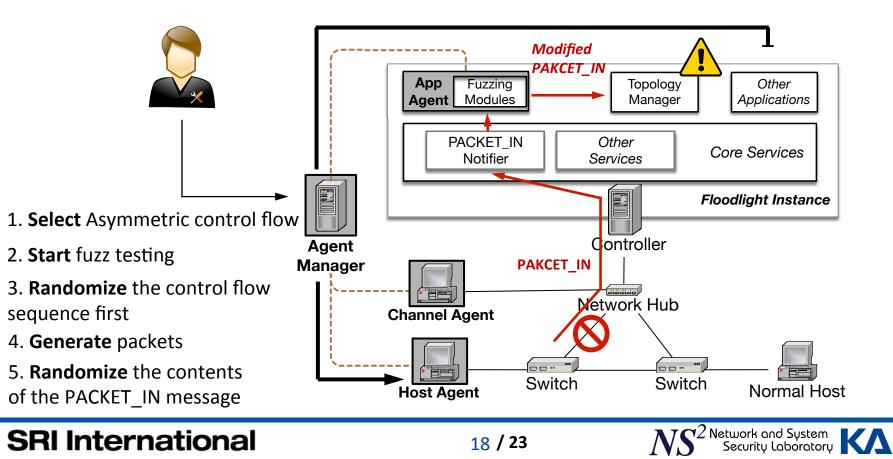
Use Case 1: Finding Unknown Attacks

- How to detect a vulnerability
 - Based on defined test criteria
- **Effectiveness** of fuzz testing
- 7 unknown attack cases found


- 1. A controller crash
- 2. An application crash
- 3. Internal-storage poisoning
- 4. A switch disconnection
- 5. Switch-performance downgrade
- 6. Error-packet generation
- Inter-host communication disconnection

< Test Criteria >

Unknown Attack Name	Flow	Target		
Sequence and Data-Forge	Asymmetric	Floodlight		
Stats-Payload-Manipulation	Symmetric	Floodlight, OpenDaylight		
Echo-Reply-Payload-Manipulation	Symmetric	OpenDaylight		
Service-Unregistration	Intro-controller	OpenDaylight		
Flow-Rule-Obstruction	Intro-controller	ONOS		
Host-Tracking-Neutralization	Intro-controller	ONOS		
Link-Discovery-Neutralization	Intro-controller	Floodlight		


< Unknown attack classification >

Use Case 1: Finding Unknown Attacks

- Sequence and Data-Forge Attack
 - Target: asymmetric control flow and Floodlight v1.2

Use Case 1: Finding Unknown Attacks

 Results of the Sequence and Data-Forge attack experiment (Floodlight v1.2)

rException: null

nelHandler•N

After

lightcontroller.topology.TopologyManager.processPacketInMessage(

lightcontroller.topology.TopologyManager.receive(TopologyManager

In] Switch 00:0a:f0:92:1c:21:3d:c0 disconnected

Network and System Security Laboratory

[appagent] [Packet-In listener as follows:	[appagent] Packet-In listener as follows:
		[appagent] 1 [appagent] application
		appagent] 2 [topology] application
		[appagent] 3 [devicemanager] application
[appagent] 4		[appagent] 4 [loadbalancer] application
[appagent] 5	5 [firewall] application	[appagent] 5 [firewall] application
[appagent] (6 [forwarding] application	[appagent] 6 [forwarding] application
[appagent] 7	7 [appagent] application	[appagent] 7 [linkdiscovery] application

70 serve

- 1. A controller crash
- 2. An application crash
- 3. Internal-storage poisoning
- 4. A switch disconnection
- 5. Switch-performance downgrade
- 6. Inter-host communication disconnection
- 7. Error-packet generation

< Test Criteria >

Use Case 2: Reproducing Known Attacks [1]

Flow Type	ow Type Attack Attack Name			Controller					
,,	Code		ONOS	OpenDaylight	Floodlight				
Symmetric Flows	SF-1	Switch Table Flooding	Х	Х	0				
	SF-2	Switch Identification Spoofing	Х	0	0				
	SF-3	Malformed Control Message	Х	0	0				
	SF-4	Control Message Manipulation	0	0	0				
Asymmetric Flows	AF-1	Control Message Drop	0	0	0				
	AF-2	Control Message Infinite Loop	0	0	0				
	AF-3	PACKET_IN Flooding	0	0	0				
	AF-4	Flow Rule Flooding	0	0	0				
	AF-5	Flow Rule Modification	0	0	0				
	AF-6	Switch Firmware Misuse	0	0	0				
	AF-7	Flow Table Clearance	0	0	0				
	AF-8	Eavesdrop	0	0	0				
	AF-9	Man-In-The-Middle	0	0	0				
Intra-controller	CF-1	Internal Storage Misuse	0	0	0				
Flows	CF-2	Application Eviction	0	0	N/A				
	CF-3	Event Listener Unsubscription	N/A	0	0				
Non Flow	NF-1	System Command Execution	0	Х	0				
Operations	NF-2	Memory Exhaustion	X	0	0				
	NF-3	CPU Exhaustion	X	0	0				
	NF-4	System Variable Manipulation	0	0	0				

O: Successful X: Unsuccessful N/A: Not available

Security Laboratory

[1] http://sdnsecurity.org/vulnerability/AttackList.html

Use Case 2: Reproducing Known Attacks

- Flexibility of DELTA
 - 3 open source controllers and 1 commercial controller
 - For example: Application Eviction Attack

SRI International

2 Network and System Security Laboratory

Conclusion

- We categorize known vulnerabilities that can mislead network operations into three control flow types and non flow operations
- We propose an automated security assessment framework for SDN capable of reproducing those vulnerabilities
- We incorporate blackbox fuzzing techniques into our framework to detect new unknown attack scenarios
- We show the **flexibility** of system design by evaluating it against three popular open-source SDN controllers and the commercial controller
- DELTA is now available as on OFFICIAL ONF Sponsored Open Source Project https://github.com/OpenNetworkingFoundation/ delta

Q&A

Appendix: Performance

Control Flow Type	Average Running Time	Attack Name	Controller			
Asymmetric Control Flow	82.5 sec		ONOS	ODL	Floodlight	
Symmetric Control Flow	80.4 sec	Switch Table Flooding	-	-	5400 sec	
Intra-controller Control Flow	75.2 sec	Switch Identification Spoofing	16.09 sec	16.34 sec	15.96 sec	
	75.2 300	Malformed Control Message	21.50 sec	12.33 sec	11.09 sec	
Finding unknown attacl	k microbenchmark	Control Message Manipulation	28.10 sec	19.27 sec	18.60 sec	
	(mei obeneimark	Control Message Drop	12.55 sec	8.47 sec	3.13 sec	
		Control Message Infinite Loop	3.38 sec	8.12 sec	3.21 sec	
		PACKET_IN Flooding	12.59 sec	17.79 sec	11.96 sec	
		Flow Rule Flooding	43.65 sec	23.28 sec	43.20 sec	
		Flow Rule Modification	40.43 sec	40.24 sec	20.35 sec	
		Switch Firmware Misuse	20.52 sec	20.25 sec	20.20 sec	
		Flow Table Clearance	20.60 sec	20.32 sec	20.17 sec	
		Eavesdrop	33.62 sec	33.18 sec	33.14 sec	
		Man-In-The-Middle	17.80 sec	17.19 sec	7.88 sec	
		Internal Storage Misuse	2.60 sec	3.14 sec	2.14 sec	
		Application Eviction	22.57 sec	13.33 sec	N/A	
		Event Listener Unsubscription	N/A	13.22 sec	13.11 sec	
		System Comments		0.127 sec		
		Memory Exhause About 5 minutes			23.16 sec	
		CPU Exhaustion	23.43 5	23.36 sec	23.35 sec	
Reproducing known atte	acks microbenchmark	System Variable Manipulation	3.39 sec	4.86 sec	3.17 sec	
		Total	346.38 sec	317.98 sec	274.84 sec	

SRI International

24 / 23

