
ObliviSync: Practical Oblivious
File Backup and Synchronization

Adam J. Aviv, Seung Geol Choi, Travis Mayberry, Daniel S. Roche
United States Naval Academy

{aviv,choi,mayberry,roche}@usna.edu

Abstract—Oblivious RAM (ORAM) protocols are powerful
techniques that hide a client’s data as well as access patterns from
untrusted service providers. We present an oblivious cloud stor-
age system, ObliviSync, that specifically targets one of the most
widely-used personal cloud storage paradigms: synchronization
and backup services, popular examples of which are Dropbox,
iCloud Drive, and Google Drive. This setting provides a unique
opportunity because the above privacy properties can be achieved
with a simpler form of ORAM called write-only ORAM, which
allows for dramatically increased efficiency compared to related
work. Our solution is asymptotically optimal and practically
efficient, with a small constant overhead of approximately 4x
compared with non-private file storage, depending only on the
total data size and parameters chosen according to the usage
rate, and not on the number or size of individual files. Our
construction also offers protection against timing-channel attacks,
which has not been previously considered in ORAM protocols.
We built and evaluated a full implementation of ObliviSync
that supports multiple simultaneous read-only clients and a
single concurrent read/write client whose edits automatically
and seamlessly propagate to the readers. We show that our
system functions under high work loads, with realistic file size
distributions, and with small additional latency (as compared to
a baseline encrypted file system) when paired with Dropbox as
the synchronization service.

I. INTRODUCTION

ORAM: security and efficiency. ORAM is a protocol which
allows a client to access files (commonly abstracted as N
fixed-length blocks of data) stored on an untrusted server in
such a way that the server learns neither the contents of files
nor the access patterns of which files were accessed at which
time(s). This is traditionally accomplished by doing some type
of shuffling on the data in addition to reading/writing the
chosen block. This shuffling ensures that the server cannot
correlate logical blocks based on their storage locations.

ORAM is a powerful tool that solves a critical problem in
cloud security. Consider a hospital which uses cloud storage to
backup their patient records. Even if the records are properly
encrypted, an untrusted server that observes which patient files
are modified will learn sensitive medical information about
those patients. They will certainly learn that the patient has
visited the hospital recently, but also may learn things like

whether the patient had imaging tests done based on how
large the file is that is updated. Moreover, they might learn for
instance that a patient has cancer after seeing an oncologist
update their records. This type of inference, and more, can be
done despite the fact that the records themselves are encrypted
because the access pattern to the storage is not hidden.

Unfortunately, in order to achieve this obliviousness
ORAMs often require a substantial amount of shuffling during
every access, so much so that even relatively recent ORAM
constructions could induce a several-thousand-fold overhead
on communication [22], [18]. Even Path ORAM [23], one of
the most efficient ORAM constructions to date, has a practical
overhead of 60-80x on moderately sized databases compared
to non-private storage.

The setting: personal cloud storage. Our setting consists
of an untrusted cloud provider and one or more clients which
backup data to the cloud provider. If there are multiple clients,
the cloud provider propagates changes made by one client
to all other clients, so that they each have the same version
of the filesystem. We emphasize that although we may use
“Dropbox” as a shorthand for the scenario we are addressing,
our solution is not specific to Dropbox and will work with
any similar system. This setting is particularly interesting for
a number of reasons:

1) It is one of the most popular consumer cloud services
used today, and is often colloquially synonymous with
the term “cloud.” Dropbox alone has over 500 million
users [12].

2) The interface for Dropbox and similar storage providers
is “agnostic,” in that it will allow you to store any data as
long as you put it in the designated synchronization direc-
tory. This allows for one solution that works seamlessly
with all providers.

3) Synchronization and backup services do not require that
the ORAM hide a user’s read accesses, only the writes.
This is because (by default) every client stores a complete
local copy of their data, which is synchronized and
backed up via communication of changes to/from the
cloud provider.

Our goal. In this paper, we present an efficient solution for
oblivious storage on a personal cloud synchronization/backup
provider such as (but not limited to) Dropbox or Google Drive.

Write-only ORAM. The third aspect of our setting above
(i.e., we don’t need to hide read accesses) is crucial to the
efficiency of our system. Each client already has a copy of the
database, so when they read from it they do not need to interact
with the cloud provider at all. If a client writes to the database,

This paper is authored by an employee(s) of the United States Government and
is in the public domain. Non-exclusive copying or redistribution is allowed,
provided that the article citation is given and the authors and agency are clearly
identified as its source.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23188

the changes are automatically propagated to the other clients
with no requests necessary on their part. Therefore, the ORAM
protocol only needs to hide the write accesses done by the
clients and not the reads. This is important because [8] have
shown that write-only ORAM can be achieved with optimal
asymptotic communication overhead of O(1). In practice,
write-only ORAM requires only a small constant overhead of
3-6x compared to much higher overheads for fully-functional
ORAM schemes, which asymptotically are Ω(logN).

Note that Dropbox (and other cloud providers) do have
client software that allows retrieval of only individual files
or directories, for instance the Google Drive web interface.
However, to achieve privacy in those settings with partial syn-
chronization would require the full functionality of Oblivious
RAM that hides both reads and writes. We instead specifically
target the full-synchronization setting for two reasons:

1) It is the default behavior for the desktop clients of
Dropbox, Google Drive, OneDrive, and others, making
it a widely used, practical scenario.

2) Read-write ORAMs are subject to a well-known lower
bound of Ω(N logN)[15]. We aim to show that in a
synchronization setting substantially better performance
can be achieved that rivals the performance of insecure
storage.

Providing cloud-layer transparency. One of the most note-
worthy aspects of Dropbox-like services is their ease of use.
Any user can download and install the requisite software, at
which point they have a folder on their system that “magically”
synchronizes between all their machines, with no additional
setup or interaction from the user. In order to preserve this
feature as much as possible, our system implements a FUSE
filesystem that mounts on top of the shared directory, providing
a new virtual frontend directory where the user can put their
files to have them privately stored on the cloud. The FUSE
module uses the original shared directory as a backend by
storing blocks as individual files. We stress that substantial
work is needed to add support for filesystem features such as
filenames and sizes, since the storage of ORAMs is tradition-
ally modeled as only a flat array of N fixed-length blocks
indexed by the numbers [0, N).

Supporting variable-size files. When addressing the personal
cloud setting, a crucial aspect that must be dealt with is the
variable sizes of the files stored in such a system. Traditionally,
ORAMs are modeled as storage devices on N fixed-length
blocks of data, with the security guarantee being that any two
access patterns of the same length are indistinguishable from
each other. In reality, files stored on Dropbox are of varying
(sometimes unique) lengths. This means that a boilerplate
ORAM protocol will actually not provide obliviousness in such
a setting because the file size, in multiples of the block size,
will be leaked to the server for every access. When file sizes
are relatively unique, knowing the size will enable the server
to deduce which individual file is being accessed, or at least
substantially reduce the number of possibilities. Therefore our
solution additionally includes a mechanism for dynamically
batching together variable-length files to hide their size from
the server. Furthermore, our solution is efficient as we prove
its cost scales linearly with the total size (and not number)
of files being written, regardless of the file size distribution.

The batching aspect of our construction also allows us to
protect against timing-channel attacks (where the precise time
of an access leaks information about it), which are not usually
considered in ORAM protocols.

Summary of our contribution. To summarize, our contribu-
tions in this paper include:

1) A complete ORAM system designed for maximum ef-
ficiency and usability when deployed on a synchroniza-
tion/backup service like Dropbox.

2) A FUSE implementation of these contributions, incorpo-
rating variable size files as well as important filesystem
functionality into ORAM including the ability to store file
names, resize files and more.

3) A proof of strong security from an untrusted cloud
provider, even considering the timing side-channel.

4) Theoretical evaluation showing that the throughput of our
scheme requires only 4x bandwidth overhead compared to
that of unencrypted and non-private storage, regardless of
the underlying file size distribution1 . We also show that
our scheme has very high storage utilization, requiring
only 1.5-2.0x storage cost overhead in practice.

5) An empirical evaluation of the system that shows that
ObliviSync performs better than the theoretic results for
both throughput and latency, and ObliviSync functions
with limited overheads and delays when working with
Dropbox as the cloud synchronization service.

II. EFFICIENT OBLIVIOUSNESS FOR DROPBOX

A. Overview of Write-only ORAM

We start by describing the write-only ORAM of [8], as it
informs our construction.

The setting. To store N blocks in a write-only ORAM, the
server holds an array of 2N encrypted blocks. Initially, the
N blocks of data are shuffled and stored in random locations
in the 2N -length array, such that half of the blocks in the
array are “empty”. However, every block is encrypted with an
IND-CPA encryption scheme so the server cannot learn which
blocks are empty and which are not. The client stores a local
dictionary (or sometimes called a position map) which maps a
logical address in the range (0, N] to the location in the server
array where it is currently stored, in the range (0, 2N]. Using
this dictionary, the client can find and read any block in the
storage that it needs, but the server will not know the location
of any individual block.

Read and write operations. Since by definition a write-only
ORAM does not need to hide reads, they are performed triv-
ially by reading the local dictionary and then the corresponding
block from the ORAM. Write operations, however, require
additional work. When the client wishes to write a block to
the ORAM, it chooses k random locations in the array out of
2N , where k is a constant parameter. With high probability,
at least one out of these k locations will be empty, and the

1 The bandwidth is actually set directly according to the system parameters.
If it is too high, “dummy” write operations are performed to hide the access
pattern. Our system works as long as the bandwidth is set to 4x higher than
the actual amount of data written. Of course, the user may set the parameters
poorly due to not knowing their usage in advance, in which case the bandwidth
may be higher due to the required dummy writes. See Section II-B.

2

new block is written into that location while re-encrypting the
other k− 1 locations to hide which block was changed. After
writing the block, the client also updates their dictionary to
indicate that the block now resides in its new location. The
old location for this block is implicitly marked empty because
no entry in the dictionary now points to it.

Achieving obliviousness. Since every write operation sees
the client accessing k randomly chosen blocks in the ORAM,
independent of the logical address of the block that is being
written, it cannot reveal any information about the client’s
access pattern. The only situation that can cause the client
to reveal something is if the k chosen locations do not contain
any free blocks, and it has nowhere to write the new one. Since
every block has 1/2 probability of being empty, the chance that
there are no free blocks will be 2−k, so k can be set to the
security parameter λ to give a negligible chance of failure.

Efficiency with stash on the client. However, setting k = λ
actually does not result in O(1) overhead; since λ > logN , the
overhead is Ω(logN). On average, the client finds k/2 empty
blocks during a single write, many more than are needed. If the
client instead stores a buffer of blocks that it wants to write,
and writes as many blocks from the buffer as he finds empty
blocks, k can be set much more aggressively. It is shown in
[8] that k = 3 is sufficient to guarantee with high probability
that the stash will never exceed O(logN). This makes the final
overhead for write-only ORAM 3x that of non-private storage.

Maintaining the dictionary file. The final important detail is
that the dictionary file requires O(N logN) bits of storage,
which might be too large for the client to store locally.
Fortunately it is relatively simple to store this dictionary
recursively in another ORAM [8], [23]. For some block and
databases sizes, however, it might be quite reasonable for the
client to store the entire dictionary itself. Jumping ahead, in
our system, the client locally stores the dictionary file (called
the filetable) as an important metadata structure of the entire
file system, in order to keep track of the actual position of
each file block. See the detailed discussion in Section IV-A.

B. Overview of Our System

The setting. Our ObliviSync system uses the idea of write-
only ORAM on top of any file backup or synchronization tool
in order to give multiple clients simultaneous updated access
to the same virtual filesystem, without revealing anything at
all to the cloud service that is performing the synchronization
itself, even if the cloud service is corrupted to become an
honest-but-curious adverary. Write-only ORAM is ideal for
this setting because each client stores an entire copy of the
data, so that only the changes (write operations) are revealed to
the synchronization service and thus only the write operations
need to be performed obliviously.

Improvements over write-only ORAM. Compared to the
previous write-only ORAM construction [8], we make signif-
icant advances and improvements to fit this emergent applica-
tion space:

• Usability: Users interact with the system as though it is
a normal system folder. All the encryption and synchro-
nization happens automatically and unobtrusively.

• Flexibility: We support a real filesystem and use innova-
tive methods to handle variable-sized files and changing

block	

block	

block	

Local Storage Backend

Cloud	
 Service	
 	

file	

file	

file	

block	
 file	

Write

Reads

Read/Write Client

Read Client

User Facing Frontend

Cloud Synchronized Folder

O
bliviS

ync - R
W

FU
S

E

O
bliviS

ync - R
O

FU
S

E

Fig. 1. Diagram for ObliviSync

client roles (read/write vs. read-only) to support multiple
users.

• Strong obliviousness: The design of our system not only
provides obliviousness in the traditional sense, but also
protects against timing channel attacks. It also conceals
the total number of write operations, a stronger guarantee
than previous ORAM protocols.

• Performance: Our system well matches the needs of real
file systems and matches the services provided by current
cloud synchronization providers. It can also be tuned to
different settings based on the desired communication rate
and delay in synchronization.

Basic architecture. The high-level design of ObliviSync is
presented in Figure 1. There are two types of clients in our
system: a read/write client (ObliviSync-RW) and a read-only
client (ObliviSync-RO). At any given time, there can be any
number of ObliviSync-RO’s active as well as zero or one
ObliviSync-RW clients. We note that a given device may work
as a read-only client in one period of time and as a write-
only client in other periods of time.2 Both clients consist of
an actual backend folder as well as a virtual frontend folder,
with a FUSE client running in the background to seamlessly
translate the encrypted data in the backend to the user’s view
in the frontend virtual filesystem.

We rely on existing cloud synchronization tools to keep all
clients’ backend directories fully synchronized. This directory
consists of encrypted files that are treated as generic storage
blocks, and embedded within these storage blocks is a file sys-
tem structure loosely based on i-node style file systems which
allows for variable-sized files to be split and packed into fixed-
size units. Using a shared private key (which could be derived
from a password) the job of both clients ObliviSync-RO and
ObliviSync-RW is to decrypt and efficiently fetch data from
these encrypted files in order to serve ordinary read operations
from the client operating in the frontend directory.

The ObliviSync-RW client, which will be the only client
able to change the backend files, has additional responsibilities:
(1) to maintain the file system encoding embedded within
the blocks, and (2) to perform updates to the blocks in an
oblivious manner using our efficient modification of the write-
only ORAM described in the previous subsection.

2How to make sure that only one write-only client operates at a given time
is out the scope, and in this paper, we will simply assume the existence of
the procedure to enforce it.

3

User transparency with FUSE mount. From the user’s per-
spective, however, the interaction with the frontend directory
occurs as if interacting with any files on the host system. This
is possible because we also implemented a FUSE mount (file
system in user space) interface which displays the embedded
file system within the backend blocks to the user as if it
were any other file system mount. Under the covers, though,
the ObliviSync-RO or ObliviSync-RW clients are using the
backend directory files in order to serve all data requests by the
client, and the ObliviSync-RW client is additionally monitoring
for file changes/creations in the FUSE mount and propagating
those changes to the backend.

Strong obliviousness through buffered writes. In order
to maintain obliviousness, these updates are not immediately
written to the backend filesystem by the ObliviSync-RW client.
Instead, the process maintains a buffer of writes that are staged
to be committed. At regular timed intervals, random blocks
from the backend are loaded, repacked with as much data
from the buffer as possible, and then re-encrypted and written
back to the backend folder. From there, the user’s chosen file
synchronization or backup service will do its work to propagate
the changes to any read-only clients. Moreover, even when
there are no updates in the buffer, the client pushes dummy
updates by rewriting the chosen blocks with random data. In
this way, as the number of blocks written at each step is
fixed, and these writes (either real or dummy) occur at regular
timed intervals, an adversary operating at the network layer is
unable to determine anything about the file contents or access
patterns. Without dummy updates, for example, the adversary
can make a reasonable guess about the size of the files that
the client writes; continuted updates without pause is likely
to indicate that the client is writing a large file. Note that
in some cases, revealing whether a client stores large files
(e.g., movies) may be sensitive. Further details on all of these
components can be found in Section IV. The full source code
of our implementation is available on GitHub [14].

III. SECURITY DEFINITIONS

A. Write-only Oblivious Synchronization

Block-based filesystem. Our system has more capabilities
than a standard ORAM, including support for additional
filesystem operations, so we require a modified security defini-
tion which we present here. We first formally define the syntax
of a block-based filesystem with block size B.

• create(filename): create a new (empty) file.
• delete(filename): remove a file from the system.
• resize(filename,size): change the size of a file. The size

is given in bytes, and can be greater or smaller than the
current size.

• write(filename,offset,length): write data to the identified
file according to the offset and length arguments. The
offset is a block offset. Unless the offset refers to the last
block in the file, length must be a multiple of B.

• read(filename,offset,length) → data: read data from the
identified file according to the offset and length argu-
ments. Again, offset is a block offset, and length must be
a multiple of the block size B unless the read includes
the last offset.

For simplicity, we only consider these five core operations.
Other standard filesystem operations can be implemented using
these core functionalities.

Obliviousness and more. The original write-only ORAM
definition in [8] requires indistinguishability between any two
write accesses with same data sizes. However, the definition
does not consider the time at which write operations take place.
Here, we put forward a stronger security notion for the file
system that additionally hides both the data length and the
time of non-read operations.

For example, we want to make sure all the following
operation sequences are indistinguishable:

• no write operations at all
• write(file1,1,5) and write(file2,3,3) at time 3, and

write(file1,6,9) at time 5
• write(file2,1,20) at time 5

For this purpose, we first define (L, t)-fsequences. Here,
the parameter L is the maximum number of bytes that may
be modified, and t is the latest time that is allowed. For
example, the above sequences are all (20, 5)-fsequences, since
all sequences write at most 20 bytes data in total and have the
last write before or at time 5.

Definition 1 ((L, t)-fsequence). A sequence of non-read oper-
ations for a block filesystem is a (L, t)-fsequence if the total
number of bytes to be modified in the filesystem metadata and
file data is at most L, and the last operation takes place before
or at time t.

Our goal is to achieve an efficient block filesystem con-
struction such that any two (L, t)-fsequences are indistinguish-
able.

Definition 2 (Write-only strong obliviousness). Let L and t
be the parameters for fsequences. A block filesystem is write-
only strongly-oblivious with running time T , if for any two
(L, t)-fsequences P0 and P1, it holds that:

• The filesystem finishes all the tasks in each fsequence
within time T with probability 1 − neg(λ), where is λ
is the security parameter.

• The access pattern of P0 is computationally indistinguish-
able to that of P1.

IV. SYSTEM DETAILS

As described previously, the basic design of ObliviSync
is presented in Figure 1. In this section we highlight the
implementation details further. In particular, we describe the
implementation components focusing on interesting design
challenges and user settings that can be used to tune the
performance.

A. Filesystem Description

First, we describe the data organization of the backend files
that form the storage mechanisms for the encrypted filesystem.
We note that our filesystem is specifically tailored for the
ObliviSync use case, and this design is what leads to our
practical performance gains.

4

x1 x2 x3 x4

Frontend

file X

y1 y2 y3file Y

x2

x3

Backend

file 0 file 1 file 2 file 3 file 4 file 5

x1 x4 y3y1

y2

block-id=0

block-id=1

block-id=2

Fig. 2. An example of two front-end files stored in the backend files. The
frontend file X (resp. file Y) consists of 4 (resp. 3) fragments where the last
fragment is smaller than the block size. Each fragment is stored in a block.
Each backend file contains exactly two blocks. Backend blocks are indexed
by block-ids, starting with 0. For example, the two blocks in file 0 has block-
ids 0 and 1, respectively, and the block-ids of the blocks where fragments
x1, x2, x3, x4 are located are 4, 2, 3, 8 respectively. Note the small fragments
x4 and y3 are located in the same block with block-id 8.

Files, fragments, blocks, block-ids. The user of an
ObliviSync client is creating, writing, reading, and deleting
logical files in the frontend filesystem via the FUSE mount.
The ObliviSync client, to store user files, will break down the
files into one or more fragments, and these fragments are then
stored within various encrypted blocks in the backend.

Blocks are stored in the backend directory in block pairs
of exactly two files each. (Note each block pair resides within
a single file in the backend directory, but we avoid the use of
the word “file” when possible to disambiguate from the logical
frontend files, and instead refer to these as “block pairs”.) We
explain why we chose to combine exactly two blocks in each
pair later when discussing performance optimization. Note that
it is only these encrypted block pairs in the backend directory
which are seen (and transferred) by the cloud synchronization
service.

While each block has the same size, files stored in the
frontend can have arbitrary sizes. A file fragment can be
smaller than a block size, but not larger. In particular, each
file will consist of an ordered list of fragments, only the last
of which may have size smaller than that of a full block.

While files are indicated by pathnames as in any normal
filesystem, backend blocks are indexed by numeric block-ids,
with numbering such that the two blocks that make up a block
pair are readily identified. See Figure 2 for a simple example.

Filetable, file-entries, file-ids. Since a single frontend file
consists of a series of fragments (or a single fragment if the
file is small) where each fragment is stored within a block,
ObliviSync needs to keep track of the backend blocks that
each file uses so that it may support file create/update/delete
operations effectively.

For this purpose, ObliviSync maintains a filetable, consist-
ing of file-entries. Each frontend file is one-to-one mapped
to a file-entry, which maintains some file metadata and a list
of block-ids in order to refer to the blocks that contain the
frontend file’s fragments, in order. In a sense, block-ids (resp.,

the file-entry) in our system are similar to position map entries
(resp., the position map) in traditional ORAMs. The main
difference is that in order to treat multiple front-end files, our
system maintains a filetable containing multiple file-entries.

The file-entries in the filetable are indexed by file-ids. As
files update, the file-id remains constant; however, based on the
oblivious writing procedure, the file fragments may be placed
in different backend blocks, so the block-ids may change
accordingly.

Filetable B-tree. The filetable mapping file-ids to file-entries
is implemented as a B-tree, with node size B proportional to
the size of backend blocks. In general, the height of this B-tree
is O(logB n), where n is the number of files stored. As we
will see in Section IV-G, for typical scenarios the block size
is sufficiently large so that the B-tree height can be at most 1
(i.e., the tree consists of the root node and its children), and
we will assume this case for the remainder.

The leaf nodes are added and stored alongside ordinary files
in blocks. There are two important differences from regular
files, however: leaf nodes are always exactly the size of one
full block, and they are indexed (within the root node) by their
block-id directly. This way, leaf nodes have neither a file-id
nor a file-entry.

Directory files. As is typical in most filesystems, file paths
are grouped into directories (i.e., folders), and each directory
contains the pathnames and file-ids of its contents. Observe
that the directory file only changes when a file within it is
created or destroyed, since file-ids are persistent between file
modifications. Directory files are treated just like any other
file, with the special exception that the root directory file is
always assigned file-id 0.

B. Design Choices for Performance Optimization

File-entry cache. To avoid frequent writes to the B-tree
leaves, we maintain a small cache of recent file-id to file-entry
mappings. Like the root node of the filetable B-tree, the size
of this cache is proportional to the backend block size.

When the cache grows too large, the entries that belong
in the most common leaf node among all cache entries are
removed and written to that leaf node. This allows for efficient
batching of leaf node updates and guarantees a significant
fraction of the cache is cleared whenever a leaf node is written.

In fact, if the block size is large enough relative to the
number of files, the cache alone is sufficient to store all file-
entries, and the B-tree effectively has height 0 with no leaf
nodes.

Superblock. Observe that every time any file is changed, its
file-entry must be updated in the cache, which possibly also
causes a leaf node to be written, which in turn (due to the
oblivious shuffling of block-ids on writes) requires the root
node of the filetable to be re-written as well.

Since the root node of the filetable B-tree and the file-
entry cache are both changed on nearly every operation, these
are stored specially in a single designated backend block pair
called the superblock that is written on every operation and
never changes location. Because this file is written every time,
it is not necessary to shuffle its location obliviously.

5

The superblock also contains a small (fixed) amount of
metadata for the filesystem parameters such as the block size
and total number of backend block pairs. As mentioned above,
the size of both the B-tree root node and the file-entry cache
are set proportionally to the backend block size, so that the
superblock in total has a fixed size corresponding to one block
pair; our implementation stores this always in backend file 0.

Split block: a block with small fragments. At the block
level, there can be two types of blocks: a full block where the
fragment stored within is as large as the block size and inhabits
the entirety of the block, or a split block where multiple
fragments smaller than the block size are stored within the
same block. When a large file is stored as a series of fragments,
we maintain that all fragments except possibly for the last
fragment are stored in full blocks. That is, there will be at
most one split-block fragment per file.

Introducing split blocks allows the system to use the
backend storage more efficiently. For example, without using
split blocks, 100 small fragments from 100 frontend files will
consume 100 backend blocks, but by placing multiple small
fragments into a single split block, we can reduce the number
of blocks consumed.

Looking up the data in a full block is straightforward: given
the block-id value, ObliviSync fetches the given block and
decrypts its contents. In addition to the actual data, we also
store the file-id of the file within the block itself as metadata.
This will facilitate an easy check for whether a given block
has become stale, as we will see shortly.

For a split block, however, the system also needs to know
the location of the desired fragment within the block. The
information is stored within the block itself in the block table
which maps file-ids to offsets. With the size of the file from
the filetable, it is straightforward to retrieve the relevant data.
A full block can then be simply defined as a block without
a block table, and the leading bit of each block is used to
identify whether the block is full or split.

Two blocks in a backend file. All backend blocks are grouped
into pairs of two consecutive blocks where each pair of blocks
resides within a single backend file. Importantly, we relax
slightly the indexing requirements so that small fragments are
allowed to reside in either block without changing their block-
id. This tiny block-id mismatch is easily addressed by looking
up both blocks in the corresponding backend file.

Furthermore, as we will see in the sync operation described
later, both blocks in a given pair are randomly selected to be re-
packed and rewritten at the same time. This additional degree
of freedom for small fragments is crucial for bounding the
worst-case performance of the system.

C. Read-Only Client

A read-only client (ObliviSync-RO) with access to the
shared private key is able to view the contents of any directory
or file in the frontend filesystem by reading (and decrypting)
blocks from the backend, but cannot create, destroy, or modify
any file’s contents.

To perform a read operation for any file, given the file-id of
that file (obtained via the directory entry), the ObliviSync-RO

first needs to obtain the block-id list of the file’s fragments to
then decrypt the associated blocks and read the content. This
is accomplished in the following steps:

1) Decrypt and read the superblock.
2) Check in the file-entry cache. If found, return the corre-

sponding block-id list.
3) If not found in the cache, search in the filetable via the

B-tree root (part of the superblock) to find the block-id
of the appropriate leaf node in the B-tree.

4) Decrypt and read the leaf node to find the file-entry for
the file in question, and return the corresponding block-id
list and associated metadata.

Once the block-id list has been loaded, the desired bytes of
the file are loaded by computing the block-id offset according
to the block size, loading and decrypting the block specified
by that block-id, and extracting the data in the block.

Given the file-id, it can be seen from the description above
that a single read operation in ObliviSync-RO for a single
fragment requires loading and decrypting at most 3 blocks
from the backend: (1) the superblock, (2) a B-tree leaf node
(if not found in file-entry cache), and (3) the block containing
the data. In practice, we can cache recently accessed blocks
(most notably, the superblock) for a short period in order to
speed up subsequent lookups.

D. Read/Write Client

The read/write client ObliviSync-RW encompasses the
same functionality as ObliviSync-RO for lookups with the
added ability to create, modify, and delete files.

Pending writes buffer. The additional data structure stored
in ObliviSync-RW to facilitate these write operations is the
pending writes buffer of recent, un-committed changes. Specif-
ically, this buffer stores a list of (file-id, fragment, timestamp)
tuples. When the ObliviSync-RW encounters a write (or create
or delete) operation, the operation is performed by adding to
the buffer. For modified files that are larger than a block size,
only the fragments of the file that need updating are placed
in the buffer, while for smaller files, the entire file may reside
in the buffer. During reads, the system first checks the buffer
to see if the file-id is present and otherwise proceeds with the
same read process as in the ObliviSync-RO description above.
The main motivation of the buffer is to allow oblivious writing
without compromising usability. The user should not be aware
of the delay between when a write to a file occurs and when
the corresponding data is actually synced to the cloud service
provider. The function of the buffer is similar to that of “stash”
in normal ORAM constructions.

Interestingly, we note that the buffer also provides consid-
erable performance benefits, by acting as a cache for recently-
used elements. Since the buffer contents are stored in memory
un-encrypted, reading file fragments from the buffer is faster
than decrypting and reading data from the backend storage.
The buffer serves a dual purpose in both enabling obliviousness
and increasing practical efficiency.

Syncing: gradual and periodic clearing of the buffer. The
buffer within ObliviSync-RW must not grow indefinitely. In
our system, the buffer size is kept low through the use of

6

Action Buffer Backend ObliviSync-RW view ObliviSync-RO view
0. (initial) {} {f1, f2, f3} [f1, f2, f3] [f1, f2, f3]
1. Two blocks updated {f ′2, f ′3} {f1, f2, f3} [f1, f

′
2, f

′
3] [f1, f2, f3]

2. One block synced {f ′2} {f1, f2, f3, f ′3} [f1, f
′
2, f

′
3] [f1, f2, f3]

3. Both blocks synced {} {f1, f2, f3, f ′3, f ′2} [f1, f
′
2, f

′
3] [f1, f

′
2, f

′
3]

4. Stale data removed {} {f1, f ′3, f ′2} [f1, f
′
2, f

′
3] [f1, f

′
2, f

′
3]

Fig. 3. Example of ordering and consistency in updating two of three fragments of a single file. Use of the shadow filetable ensures that the ObliviSync-RO
view is not updated until all fragments are synced to the backend.

a periodic sync operations wherein the buffer’s contents are
encrypted and stored in backend blocks.

Each sync operation is similar to a single write procedure
in write-only ORAM, but instead of being triggered on each
write operation, the sync operation happens on a fixed timer
basis. We call the time between subsequent sync operations
an epoch and define this parameter as the drip time of the
ObliviSync-RW.

Also, similar to the write-only ORAM, there will be a
fixed set of backend files that are chosen randomly on each
sync operation epoch. The number of such backend files that
are rewritten and re-encrypted is defined as the drip rate.
Throughout, let k denote the drip rate. We discuss these param-
eters further and their impact on performance in Section IV-G.
Overall, each sync operation proceeds as follows:

1) Choose k backend block pairs randomly to rewrite and
decrypt them.

2) Determine which blocks in the chosen backend files are
stale, i.e., containing stale fragments.

3) Re-pack the empty or stale blocks, clearing fragments
from the pending writes buffer as much as possible.

4) Re-encrypt the chosen backend block pairs.

The detailed sync operation is described in the next section.

Consistency and ordering. In order to avoid inconsistency,
busy wait, or race conditions, the order of operations for the
sync procedure is very important. For each file fragment that is
successfully cleared from the buffer into the randomly-chosen
blocks, there are three changes that must occur:

1) The data for the block is physically written to the back-
end.

2) The fragment is removed from the buffer.
3) The filetable is updated with the new block-id for that

fragment.

It is very important that these three changes occur in
that order, so that there is no temporary inconsistency in the
filesystem. Moreover, the ObliviSync-RW must wait until all
fragments of a file have been synced before updating the file-
entry for that file; otherwise there could be inconsistencies in
any ObliviSync-RO clients.

The consistency is enforced in part by the use of a shadow
filetable, which maintains the list of old block-ids for any files
that are currently in the buffer. As long as some fragment of
a file is in the buffer, the entry in the filetable that gets stored
with the superblock (and therefore, the version visible to any
read-only client mounts), is the most recent completely-synced
version).

An example is depicted in Figure 3. Say file f consists
of three fragments [f1, f2, f3], all currently fully synced to

the backend. Now say an ObliviSync-RW client updates the
last two fragments to f ′2 and f ′3. It may be the case that, for
example, f ′3 is removed from the buffer into some backend
block before f ′2 is. (This could easily happen because f ′3 is a
small fragment that can be stored within a split block, whereas
f ′2 is a full block.) At this point, the shadow filetable will still
store the location of f3 and not f ′3, so that any ObliviSync-RO
clients have a consistent view of the file. It is only after all
fragments of f are removed from the buffer that the filetable
is updated accordingly.

One consequence is that there may be some duplicate
versions of the same fragment stored in the backend simulta-
neously, with neither being stale (as in f3 and f ′3 after step 2 in
Figure 3). This adds a small storage overhead to the system, but
the benefit is that both types of clients have a clean, consistent
(though possibly temporarily outdated) view of the filesystem.
Note that, even in the worst case, no non-stale fragment is ever
duplicated more than once in the backend.

E. Detailed Description of Buffer Syncing

Step 1: Choosing which blocks to rewrite. As in write-only
ORAM, k random backend files are chosen to be rewritten at
every sync operation with the following differences:

• Each backend file contains a pair of blocks, which implies
that k random pairs of blocks are to be rewritten.

• In addition, the backend file containing the superblock is
always rewritten.

Choosing pairs of blocks together is crucial, since as we
have mentioned above, small fragments are free to move
between either block in a pair without changing their block-
ids. In addition, the superblock must be rewritten on each sync
because it contains the filetable which may change whenever
other content is rewritten to the backend.

Step 2: Determining staleness. Once the blocks to be
rewritten are randomly selected and decrypted, the next task is
to inspect the fragments within the blocks to determine which
are “stale” and can be overwritten.

Tracking fragment freshness is vital to the system because
of the design of write-only ORAM. As random blocks are
written at each stage, modified fragments are written to new
blocks, and the file-entry is updated accordingly, but the stale
data fragment is not rewritten and will persist in the old
block because that old block may not have been selected
in this current sync procedure. Efficiently identifying which
fragments are stale becomes crucial to clearing the buffer.

A natural, but flawed, solution to tracking stale fragments
is to maintain a bit in each block to mark which fragments
are fresh or stale. This solution cannot be achieved for the

7

same reason that stale data cannot be immediately deleted —
updating blocks that are not selected in the sync procedure are
not possible.

Instead, recall from the block design that each block
also stores the file-id for each fragment. To identify a stale
fragment, the sync procedure looks up each fragment’s file-id
to get its block-id list. If the current block’s identifier is not
in the block-id list, then that fragment must be stale.

Step 3: Re-packing the blocks. Then next step after identi-
fying blocks and fragments within those blocks that are stale
(or empty) is to re-pack the block with the non-stale fragments
residing within the block and fragments from the buffer.

One important aspect to consider when re-packing the
blocks is to address the fragmentation problem, that is, to
reduce the number of blocks that small fragments use so
that there remain a sufficient number of blocks for full-block
fragments.

A naı̈ve approach would be to evict all the non-stale frag-
ments from the selected blocks and consider all the fragments
in the buffer and the evicted fragments to re-pack the selected
blocks with the least amount of internal fragmentation. While
this would be a reasonable protocol for some file systems to
reduce fragmentation, this would require (potentially) changing
all of the file-entries (in particular, the block-id list) for all frag-
ments within the selected blocks. That would be problematic
because it is precisely these old entries which are likely not
to be in the file-entry cache, and therefore doing this protocol
would require potentially changing many filetable B-tree nodes
at each step, something that should be avoided as writes are
expensive.

Instead, we take a different approach in order to address
the fragmentation problem and minimize the block-id updates
for the non-stale fragments at the same time. Our approach
has two stages: the placement of non-stale fragments and then
clearing the fragments in the buffer.

Placement of non-stale fragments. We use the following rule
when addressing the existing non-stale fragments.

Non-stale full-block fragments stay as they are, but
non-stale small fragments may move to the other
block in the same backend file.

Recall that blocks are paired in order and share a single
backend file, and so this flexibility enables small fragments
to be re-packed across two blocks to reduce fragmentation
without having to update the block-id value. Further, this
solution also avoids a “full-block starvation” issue in which
all blocks contained just a small split-block fragment. After
re-packing, the small fragments in each block pair may be
combined into a single split block, leaving the other block
in the pair empty and ready to store full block fragments
from the buffer. In other words, the re-pack procedure ensures
that existing full-block fragments do not move, but existing
small-block fragments are packed efficiently within one of the
blocks in a pair to leave (potentially) more fully empty blocks
available to be rewritten.

Pushing fresh fragments. At this point, the randomly-chosen
blocks are each either: (a) empty, (b) filled with an existing

full-block fragment, or (c) partially filled with some small frag-
ments. The block re-packing first considers any directory file
fragments in the buffer, followed by any regular file fragments,
each in FIFO order. (Giving priority status to directory files
is important to maintain low latency, as discussed in the next
section.) The synchronization process then proceeds the same
for all fragments in the buffer: for each fragment, it tries to
pack it into the randomly-selected blocks as follows:

• If it is a full-block fragment, it is placed in the first
available empty block (case (a)), if any remain.

• If it is a small fragment, it is placed if possible in the first
available split block (case (c)) where there is sufficient
room.

• If it is a small fragment but it cannot fit in any existing
split block, then the first available empty block (case (a)),
if any, is initialized as a new split block containing just
that fragment.

In this way, every buffer fragment is considered for re-
packing in order of age, but not all may actually be re-packed.
Those that are re-packed will be removed from the buffer and
their filetable entries will be updated according to the chosen
block’s block-id.

A key observation that will be important in our runtime
proof later is that after re-packing, either (1) the buffer is
completely cleared, or (2) all the chosen blocks are nonempty.

Step 4: Re-encrypting the chosen backend files. After
the re-packing is complete, the sync procedure re-encrypts
the superblock (which always goes at index 0), as well as
all the re-packed blocks, and stages them for writing back to
backend files. The actual writing is done all at once, on the
timer, immediately before the next sync operations, so as not
to reveal how long each sync procedure took to complete.

F. Frontend FUSE Mounts

The FUSE (file system in user space) mounts are the
primary entry point for all user applications. FUSE enables
the capture of system calls associated with I/O, and for those
calls to be handled by an identified process. The result is
that a generic file system mount is presented to the user,
but all accesses to that file system are handled by either the
ObliviSync-RW or ObliviSync-RO client that is running in the
background.

The key operations that are captured by the FUSE mount
and translated into ObliviSync-RW or ObliviSync-RO calls are
as follows:

• create(filename): create a new (empty) file in the system
in two steps. First a new file-id is chosen, and the
corresponding file-entry is added to the filetable. Then
that file-id is also stored within the parent directory file.

• delete(filename): remove a file from the system by
removing it from the current directory file and removing
the associated file-entry from the filetable.

• read(filename, offset, length) → data : read data
from the identified file by looking up its file-id in the cur-
rent directory and requesting the backend ObliviSync-RW
or ObliviSync-RO to perform a read operation over the
appropriate blocks.

8

• write(filename, offset, length) : write data to the iden-
tified file by looking up its file-id in the current directory
and then adding the corresponding fragment(s) to the
ObliviSync-RW’s buffer for eventual syncing.

• resize(filename, size) : change the size of a file by
looking up its file-entry in the current directory and
changing the associated metadata. This may also add or
remove entries from the corresponding block-id list if the
given size represents a change in the number of blocks
for that file. Any added blocks will have negative block-id
values to indicate that the data is not yet available.

Of course, there are more system calls for files than these,
such as open() or stat() that are implemented within
the FUSE mount, but these functions succinctly encompass
all major operations between the frontend FUSE mount and
backend file system maintenance.

As noted before, the FUSE mount also maintains the file
system’s directory structure whose main purpose is to link file
names to their file-id values, as well as store other expected
file statistics. The directory files are themselves treated just
like any other file, except that (1) the root directory always
has file-id 0 so it can be found on a fresh (re-)mount, and (2)
directory files are given priority when syncing to the backend.

For a file to become available to the user, it must both be
present in the backend and have an entry in the directory file.
Without prioritization of directory files, it may be the case that
some file is available without the directory entry update, thus
delaying access to the user. Conversely, the opposite can also
be true: the directory entry shows a file that is not completely
synchronized. Fortunately, this situation is easy to detect upon
open() and an IO-error can be returned which should be
handled already by application making the system call.

The FUSE module is aware of some backend settings to
improve performance, notably the block size. When a file is
modified, it is tracked by the FUSE module, but for large
files, with knowledge of the block size, the FUSE module
can identify which full fragments of that file are modified
and which remain unchanged. Only the fragments with actual
changes are inserted into the buffer to be re-packed and synced
to the backend.

G. Key parameter settings

The tunable parameters for a ObliviSync implementation
consist of:

• B: the size of each backend file (i.e., block pair)
• N : the total number of backend files
• n: the total number of frontend files (i.e., logical files)
• t: the drip time
• k: the drip rate

Backend files. The first two parameters B and N depend
on the backend cloud service. A typical example of such
parameters can be taken from the popular Dropbox service,
which optimally handles data in files of size 4MB, so that
B = 222 [11], and the maximal total storage for a paid
“Dropbox Pro” account is 1TB, meaning N = 218 files would
be the limit. Note that, as our construction always writes blocks
in pairs, each block pair is stored in a single file and the block
size in ObliviSync will be B/2.

Frontend files. The next parameter n is not really a parameter
per se but rather a limitation, as our construction requires n ≤
B2 in order to ensure the filetable’s B-tree has height at most
1. For B = 222, this means the user is “limited” to roughly
16 trillion files.

Drip time and drip rate. The drip time and drip rate are
important parameters for the buffer syncing. The drip time is
the length of the epoch, i.e., the time between two consecutive
syncs to the backend. The drip rate refers to how many block
pairs are randomly selected for rewriting on each epoch.

These two parameters provide a trade-off between latency
and throughput. Given a fixed bandwidth limitation of, say, x
bytes per second, (k+1)B bytes will be written every t seconds
for k randomly chosen backend files and the superblock, so
that we must have (k + 1)B/t ≤ x. Increasing the drip time
and drip rate will increase latency (the delay between a write in
the ObliviSync-RW appearing to ObliviSync-RO clients), but
it will increase throughput as the constant overhead of syncing
the superblock happens less frequently.

We will consider in our experimentation section (see Sec-
tion VI) the throughput, latency, and buffer size of the system
under various drip rate and drip time choices. Our experiment
indicates that for most uses, the smallest possible drip time
t that allows a drip rate of k ≥ 3 files per epoch should be
chosen.

V. ANALYSIS

A. Time to write all files

In this subsection we will prove the main Theorem 1 that
shows the relationship between the number of sync operations,
the drip rate, and the size of the buffer. Recall from the
preceding subsection the parameters B (block pair size), N
(number of backend block pairs), and k (drip rate). Specifically,
we will show that, with high probability, a buffer with size s
is completely cleared and synced to the backend after O

(
s

Bk

)
sync operations. This is optimal up to constant factors, since
only Bk bytes are actually written during each sync.

Theorem 1. For a running ObliviSync-RW client with param-
eters B,N, k as above, let m be the total size (in bytes) of
all non-stale data currently stored in the backend, and let s
be the total size (in bytes) of pending write operations in the
buffer, and suppose that m+ s ≤ NB/4.

Then the expected number of sync operations until the
buffer is entirely cleared is at most 4s/(Bk).

Moreover, the probability that the buffer is not entirely
cleared after at least 48s

Bk + 18r sync operations is at most
exp(−r).

Before giving the proof, let us summarize what the this
theorem means specifically.

First, the condition m + s ≤ NB/4 means that the
guarantees hold only when at most 25% of the total backend
capacity is utilized. For example, if using Dropbox with 1TB
of available storage, the user should store at most 250GB
of files in the frontend filesystem in order to guarantee the
performance specified in Theorem 1.

9

Second, as mentioned already, the expected number of sync
operations is optimal (up to constant factors), as the total
amount of data written in the frontend cannot possibly exceed
the amount of data being written to the backend.

In the number of syncs 48s/(Bk) + 18r required to clear
the buffer with high probability, one can think of the parameter
r as the number of “extra” sync operations required to be
very sure that the buffer is cleared. In practice, r will be
set proportionally to the security parameter. A benefit of our
construction compared to many other ORAM schemes is that
the performance degradation in terms of the security parameter
is additive and not multiplicative. Put another way, if it takes
1 extra minute of syncing, after all operations are complete,
in order to ensure high security, that extra minute is fixed
regardless of how long the ObliviSync-RW has been running
or how much total data has been written.

Finally, a key observation of this theorem is that it does not
depend on the distribution of file sizes stored in the frontend
filesystem, or their access patterns, but only the total size of
data being stored. The performance guarantees of our system
therefore allow arbitrary workloads by the user, provided they
can tolerate a constant-factor increase in the backend storage
size.

We now proceed with the proof of Theorem 1.

Proof: There are N blocks of backend storage. Each
stores some combination of at most two split blocks and full
blocks. Full blocks have size B

2 each, and split blocks contain
multiple fragments summing to size at most B

2 each.

Suppose some sync operation occurs (selecting k block
pairs from the backend, removing stale data and re-packing
with new fragments from the buffer), and afterwards the buffer
is still not empty. Then it must be that case that the k block
pairs that were written are at least half filled, i.e., their total
size is now at least kB

2 . The reason is, if any block pair had
size less than B

2 , then it could have fit something more (either
a full block or a fragment) from the buffer. But since the buffer
was not emptied, there were no entirely empty blocks among
the k block pairs.

Furthermore, because m < NB
4 while the buffer is not

empty, the expected size of a single, randomly-chosen pair of
blocks is less than B

4 . By linearity of expectation, the expected
size of k randomly selected block pairs is less than kB

4 .

Combining the conclusions from the preceding paragraphs
we see that, on any sync operation that does not empty the
buffer completely, the k randomly selected block pairs go from
expected size less than kB

4 , to guaranteed size greater than kB
2 .

This means the expected decrease in buffer size in each sync
is at least kB

4 . Starting with s bytes in the buffer, the expected
number of syncs is therefore less than s

kB/4 = 4s
Bk .

Now we extend this argument to get a tail bound on the
probability that the buffer is not emptied after T = 48s/(Bk)+
18r sync operations, for some r ≥ 0.

Call a sync operation productive if it results in either
the buffer being cleared entirely, or the size of the buffer
decreasing by at least kB

8 . And define Y to be a random
variable for the total size of the k randomly-selected blocks
for a single operation.

From above, a sync is guaranteed to be productive when-
ever Y ≤ 3kB

8 (because the total size after the sync will be at
least kB

2). We also know from above that E[Y] = kB
4 . Using

the Markov inequality, we have

Pr

[
Y ≤ 3kB

8

]
= 1− Pr

[
Y >

3kB

8

]
≥ 1− kB/4

3kB/8
=

1

3
.

That is, each sync is productive with probability at least 1
3 .

Next, define a random variable X to be the number of
productive syncs among a series of T = 48s/(Bk)+18r sync
operations. Importantly, if X ≥ 8s/(Bk), then the buffer will
be cleared at the end of T syncs.

We see that X is the sum of T i.i.d. Bernoulli trials, each
with probability p = 1

3 . Therefore the Hoeffding bound from
[16] tells us that, for any ε > 0,

Pr
[
X <

(
1
3 − ε

)
T
]
≤ exp(−2ε2T).

Setting ε = 1
6 works to bound the probability that X <

8s/(Bk), since 8s
Bk <

1
6

(
48s
Bk + 18r

)
for any r > 0. The theo-

rem follows from exp(−2ε2T) = exp
(
− 1

18 ·
(
48s
Bk + 18r

))
<

exp(−r).

B. Security

Theorem 2. Let λ be the security parameter. Consider
ObliviSync-RW with parameters B,N, k as above, and with
drip time t. For any L and t as fsequence parameters,
ObliviSync-RW is strongly-secure write-only filesystem with
running time T = t+ 48Lt

Bk + 18λt.

Proof: We need to show the following:

• ObliviSync-RW finishes all tasks in each sequence within
time T with probability 1− neg(λ).

• For any two (L, t)-fsequences P0 and P1, both access
patterns are computationally indistinguishable from each
other.

The first condition is achieved according to Theorem 1,
since one sync operation occurs every t seconds.

It is left to show that the second condition also holds.
Obliviousness mostly follows from the original write-only
ORAM security. To achieve strong obliviousness, we stress
that ObliviSync-RW always writes encrypted data in k files at
the backend chosen independently and uniformly at random.
In particular:

• If there is too much data to be synchronized, the remain-
ing data is safely stored in the temporary buffer so that the
data will be eventually synchronized. Theorem 1 makes
sure this must happen with overwhelming probability.

• If there is too little (or even no) data to be synchronized,
the system generates what amounts to dummy traffic (re-
packing the k chosen block pairs with the same data they
stored before).

Therefore, the second condition is also satisfied.

There is an important assumption in both theorems above,
namely that the client is actually able to execute the sync

10

operation with the given drip rate k within each epoch with
drip time t. If the parameters k and t are set too aggressively,
it may be the case that the sync operation takes longer than
t seconds to complete, and this fact would be noticed by the
cloud server or indeed any network observer. While the leakage
in such cases is relatively minor (an indication that, perhaps,
the client’s system load is higher than normal), it is nonetheless
important for security to ensure t and k are set appropriately
to avoid this situation of a sync operation “blowing through”
the epoch.

VI. EXPERIMENTS

We fully implemented ObliviSync using python3 and
fusepy [2], and the source code of our implementation is
available on GitHub as well as a video demonstration [14]
and a Dockerfile for quick setup and testing.

To evaluate ObliviSync, we performed a series of experi-
ments to test its performance at the extremes. In particular, we
are interested in the following properties:

• Throughput with fixed-size files: If the user of ObliviSync
were to insert a large number of files all at once, the buffer
will immediately be filled to hold all the insertions. How
long does it take (in number of epochs) for each of the
files to sync to the read end?

• Throughput with variable-size files: If the users were to
insert a large number of variable size files all at once,
instead of fixed-sized ones, how does the throughput
change? This experiment will verify Theorem 1, which
states that the performance of our system depends on the
total number of bytes (instead of the total number of files)
in the pending write buffer.

• Latency: If the user of ObliviSync-RW were to insert a
large number of files one at a time, how long does it take
for each of the files to appear to a different ObliviSync-RO
user?

• The size of pending writes buffer: We also investigate
how much space the pending writes buffer uses while the
system is working under different loads with realistic file
sizes. Recall the pending writes buffer works similarly as
the stash in the write-only ORAM, and it is important
that this buffer does not grow too large.

• Functionality with Dropbox backend: Finally, we per-
formed throughput and latency experiments with Drop-
box as the backend storage mechanism for ObliviSync,
and compare its performance to that of EncFS [13] on
Dropbox. EncFS is a per-file encrypted file system tool
that provides no obliviousness.

A. Throughput with Fixed-size Files

We first consider the throughput in our system. In partic-
ular, we are interested in the performance as it relates to the
availability of backend blocks.

To limit the factors in these experiments, we use the
following parameters:

• N = 1024; we used 1024 backend files (i.e., block pairs).

��

����

����

����

����

����

����

����

����

�� ���� ���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�

�
�
�
�
�
�
�

������������

���
���
���
����

Fig. 4. Throughput for different drip rates. We used 1024 backend files, each
with 1MB, and attempted to insert 920 frontend files all at once, where each
frontend file is also 1MB. The results are the mean of three runs. With drip
rate 3 (the solid line for k = 3), it takes about 120 epochs on average to sync
25% of the frontend files. In addition, the graph shows the situation shifts as
the backend files become more full and it becomes harder to clear the buffer.

• n = 920; we attempted to insert 920 frontend files (or
90% full).

• B = 1 MB; each backend file is 1MB in size.

In our experiments, each frontend file is 1MB and thus fills
up two full blocks (including any metadata). There is also two
additional block pairs in the system for the superblock and
the directory entry. Overall, the entire backend storage for the
system was N ·B = 1GB.

In the throughput experiment, we established an empty
ObliviSync-RW and attached an ObliviSync-RO to the back-
end. We then wrote 920 two-block size files all at once to the
ObliviSync-RW FUSE mounted frontend. We then manually
called the synchronize operation that performs the oblivious
writing to the backend. By monitoring the ObliviSync-RO
FUSE mounted frontend, we can measure how many epochs
are required to fully synchronize all the files.

Bandwidth overhead: 2x until 25% of the load. In Figure 4,
we graph the number of epochs (i.e., the number of timed sync
operations) it takes for that percentage of files to synchronize
and appear at the read-end. We conducted the experiments
for different drip rates (k), i.e., the number of backend files
randomly selected at each epoch for writing. The results
presented are the average of three runs for drip rates set to
3, 6, 9, and 12.

As one interesting data point, the graph shows that with
drip rate 3 (the solid line for k = 3), it takes about ∼ 120
epochs on average to sync 25% of the frontend files. Note
that the number of bytes that would be transferred to the
cloud storage during 120 epochs is 120 · (k + 1) · B = 480
MB, and 25% of the frontend files amounts to 250 MB.
So, the experiment shows that the system needs only 2x
bandwidth overhead, when the front-end files occupies at most
25% of the total cloud storage, with the parameters chosen
in this experiment. This is better performance than what is
shown in Thoerem 1, which provably guarantees 4x bandwidth
overhead.

Linear costs until 33% of the load. Looking closely at the
graph, particularly k = 3 trend-line, there are two regimes:
linear and super-linear synchronization. In the linear regime

11

��

���

���

���

���

���

���

���

���

���

����

����

�� ����� ���� ����� ���� �����

�
�
�
�

�
�
�
�
�
�
�

������������

��������������
�����������

Fig. 5. Comparing throughput of inserting realistic workload of variable
sizes files to the same sized insert of fixed size files. The experiment were
performed with parameters N = 1024, B = 1MB, k = 3. In the set of
fixed-size files, each frontend file is 1 MB. There are 4,179 files in the set
of variable-size files. Both set is 250 MB in total. For both sets, the system
takes about 100 epochs to sync the 250 MB of frontend data.

there are enough empty blocks that on each epoch, progress
is very likely to be made by clearing files from the buffer
and writing new blocks to the backend. In the super-linear
regime, however, there are no longer enough empty blocks
to reliably clear fragments from the buffer. For k = 3, this
regime seems to take over around 40%∼60%, and the trend-
line’s slope begins to increase dramatically. This is because
each additional block written further exacerbates the problem,
so it takes an increasing amount of time to find the next empty
block to clear the buffer further.

The inflection point, between linear and super-linear, is
particularly interesting. Apparent immediately is the fact that
the inflection point is well beyond the 25% theoretic bound;
even for a drip rate of k = 3, it manages to get at least 1/3
full before super-linear tendencies take over. Further, notice
that for higher drip rates, the inflection point occurs for higher
percentage of fullness for the backend. This is to be expected;
if you are selecting more blocks per epoch, you are more likely
to find an empty block to clear the buffer. But we hasten to
point out that there is a trade-off in practice here.

B. Throughput with Variable-size Files

As mentioned above, an important performance property
of ObliviSync is that the rate of synchronization is dependent
on the total number of bytes in the pending write buffer and
the fullness of the backend blocks: it does not depend on the
sizes of the individual files.

To show this property clearly, we performed a similar
throughput experiment as described previously, i.e., with N =
1024, B = 1MB, and k = 3, except we inserted variable size
files that are drawn from realistic file distributions [10], [25]:

• The variable size files, in total, were 0.25GB, the same
size as the fixed size files.

• The files contained 4,179 files, much larger than 250 for
the case of fixed-size files.

• Interestingly, one of the variable size files was signifi-
cantly larger, 144MB, roughly the length of a short, TV-
episode video.

��

��

��

��

��

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�

�
�
�
�
�
�

����������

���
���
���
����

Fig. 6. Latency for different drip rates. The experiment were performed
with parameters N = 1024, B = 1MB. The drip rates k varies with k =
3, 6, 9, 12. The 920 frontend files, each with 1 MB, were written one after
another. For example, the point (0.7, 2) of the solid line with k = 3 means
that once 700 files have been written, it took about 2 epochs to sync the 701st
file.

As in the prior throughput experiment, we connected an
ObliviSync-RW and ObliviSync-RO to a shared backend direc-
tory. We loaded the file set completely into the ObliviSync-RW,
and then counted how many epochs it takes for the data to
appear in the ObliviSync-RO FUSE file.

Good performance for variable-size files. The primary
result is presented in Figure 5. The two trend-lines are nearly
identical, and in fact, after three runs, the average number of
epochs needed to synchronize the two file loads is the same,
100 epochs. This clearly shows that our systems is dependent
on the total number of bytes to synchronize and not the size
of the individual files.

C. Latency

In this experiment, we are interested in the latency of
our system. As before, we performed the experiment with
N = 1024 and B = 1MB, and we had ObliviSync-RW
and ObliviSync-RO clients with a shared backend, writing to
ObliviSync-RW FUSE mount and measuring synchronization
rate to the ObliviSync-RO FUSE mount. To measure latency,
we only add one frontend file at a time. For example, the
second frontend file gets written right after the first frontend
file is completely synced. We measured how long it took for
each file to synchronize in terms of the number of manual
synchronizations (or epochs) required. Again, we varied the
drip rate.

About 1 epoch to sync, even for high fill rates. The results in
Figure 6 are the average of three runs in each drip rate. Again,
there are two general regimes to the graph, a linear one and a
super-linear one, and the transitions between them are, again,
better than our theoretic 25% bound. First, for lower fill rates,
the time to complete a single file synchronization is roughly
one epoch.

At higher fill rates, it starts to take more epochs, on average,
to sync a single file; however, even for the most conservative
k = 3, it only takes at most 5 epochs even for very high
fill rates. For more aggressive drip rates, k = 9, 12 the
impact of higher filler rates is diminished, still only requiring
about 2 epochs to synchronize a single file. This is to be

12

expected as selecting more backend files for writing increased
the likelihood of finding space to clear the buffer.

D. The Size of Pending Writes Buffer

In this experiment, we investigate how much space the
pending writes buffer requires while the system is working.
To do so, we consider more realistic file sizes and file write
patterns under high thrashing rates, contrary to most of the
previous experiments where each frontend file has two full-
block fragments.

We inserted frontend files of varied size based on known
file size distributions such that the backend was filled to 20%,
50%, or 75%. The file sizes were based on prior published
work in measuring file size distributions. In particular, we
followed a lognormal distribution, which has been shown to
closely match real file sizes [10], fit with data from a large-
scale study of file sizes used in a university setting [25]. The
same distribution was used in the variable file size experiment
previously.

We also generated a series of writes to these files such that,
on average, 1MB of data was updated on each write. This
could occur within a single file or across multiple files. We
selected which file to thrash based on distributions of actual
write operations in the same study [25], used to generate the
original file sizes. Roughly, this distribution gives a stronger
preference to rewriting smaller files. We did not write exactly
1MB of data in each batch, but rather kept the average of each
batch size as close to 1MB as possible in accordance with the
experimental write size distribution. In particular, there were
batches were a file larger than 1MB was written. As before,
we used N = 1024 and B = 1MB. We used the drip rate
k = 3 to show the most conservative setting of ObliviSync.
We averaged the results of three independent runs.

Reasonable buffer size: at most 2 MB. The primary result
is presented in Figure 7 where we measure the number of
bytes in the buffer on each synchronization. In the graph,
the point (x, y) means for y fraction of observed execution
time, the size of the buffer was greater than x. For example,
when the backend is filled with 20% (the solid line), only for
0.2 fraction of the observed execution time, the buffer size is
roughly greater than 218 bytes. In addition, the buffer size is
always larger than 215, and the buffer never grows larger than
about 2 MB, which corresponds to only 4 blocks.

Clearly, as the fill rate increases, the amount of uncommit-
ted data in the buffer increases; however, the relationship is not
strictly linear. For example, with 20% full and 50% full, we
see only a small difference in the buffer size for this extreme
thrashing rate. The synchronization is able to keep up with
the high thrashing rate for two main reasons: first, on each
synchronization, it is generally able to clear something out of
the buffer; and second, some writes occur on the same files
and on small files (as would be the case in a real file system),
which allows these writes to occur on cached copies in the
buffer and the smaller files to packed together efficiently into
blocks, even partially full ones.

At a fill rate of 75%, however, there is a noticeable
performance degradation. Because most of the blocks selected
at each epoch are either full or do not have enough space, due

��

����

����

����

����

����

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ���

�
�
�
�
��
���
�

�
�
��
�
���
�

�
�
��
�
��
��
�
�
�
�

�������������������

��������
��������
��������

Fig. 7. Buffer size under realistic file distributions. The experiment was
performed with parameters N = 1024, B = 1MB, k = 3. The point (x, y)
means for y fraction of observed execution time, the size of the buffer was
greater than x. For example, when the backend is filled with 20% (the solid
line with 20% full), only for 0.2 fraction of the entire execution time, the
buffer size is roughly greater than 218 bytes. In addition, the buffer size is
always larger than 215.

to fragmentation, the buffer cannot always be cleared at a rate
sufficient to keep up with incoming writes. Thus, the size of
the buffer doubles in comparison with the other workloads.

E. Measurements on Dropbox

Here, we measure the performance of ObliviSync on a real
cloud synchronization service, namely Dropbox.

We performed both a latency and throughput measurement,
just as before, using 1MB backend files, but this time the
backend directory was stored within a Dropbox synchronized
folder with measurements taken across two computers on our
institution’s network that had access to the synchronized folder.

In these experiments, we used a drip rate of k = 3 and
a drip time t = 10 seconds. We experimented with lower
drip times, but found that due to rate limiting of the Dropbox
daemon on the synchronized folders, a longer drip time is
required in order to to ensure that we do not blow through
the epoch boundary.

In both the latency and throughout experiments described
below, we established a dropbox connection on two com-
puters on our institution’s network. We designated one com-
puter as the writer and one the reader. On the writer,
it ran ObliviSync-RW and ObliviSync-RO, on a shared
backend folder stored within the Dropbox synchronization
folder. The writer computer measured the amount of time
it took for the ObliviSync-RW to synchronize to the local
ObliviSync-RO mount. Meanwhile, the reader computer ran a
ObliviSync-RO mount only and monitored the file systems for
the appearance of synchronized files. The difference between
the ObliviSync-RO mount on the write computer and the
ObliviSync-RO mount on the read computer is the propagation
delay imposed by Dropbox. Additionally, as we do not have
insight into how the Dropbox daemon chooses to synchronize,
it is also possible that other factors are coming into play, such
as taking incremental snapshots of deleted files.

Baseline: EncFS. Additionally, we wish to provide a base-
line comparison of the overhead of ObliviSync, and so we
performed similar experiments using EncFS [13] as the data

13

��

����

����

����

����

����

����

����

����

�� ����� ����� ����� ����� ���� ����� ����� ����� ����� ����

�
�
�
��
�

�
�
��
�

�
��
�
�
�
�
�
�
��
��
�
�
�

������������

������������������
����������������

�������������
������������

Fig. 8. Throughput of writing 0.25GB of 1MB files all at once for ObliviSync
and EncFS on Dropbox synchronized backend between two machines running
on the same network. We used a drip time of 10 seconds for ObliviSync
(t = 10) and a drip rate of 3 (k = 3) for a conservative estimate.

protection mechanism. Much like ObliviSync, EncFS using a
FUSE mount to display an encrypted file system that is stored
in a backend folder, but EncFS provides no oblivious protec-
tion. Instead files are simply stored individually encrypted, so
the total number of files is revealed as well as their sizes and
full access patterns.

Throughput over Dropbox. The throughput measurement
occurred much like as described earlier in the section. For
both EncFS and ObliviSync, we inserted a large number of
files, namely 20% full or ∼200MB, and then we measured
how long it takes for the buffer to clear and all files to become
available. Like before, we used a read and write computer, and
we measured the difference in the local and remote propagation
delays of file synchronization. The primary result is presented
in Figure 8.

For EncFS on the write computer, the propogation delay
for all the files is nominal with files appearing nearly imme-
diately. On the read computer, there is a propagation delay
associated with Dropbox remote synchronization, and all files
are accessible within 100 seconds. For ObliviSync on the write
computer, we see a very similar throughput trend-line as in the
prior experiments. In total, it takes just under 800 seconds (or
80 epochs) for all the files to synchronize. Interestingly, on the
read computer, the propagation delay is relatively small, with
respect to the overall delay, and files are accessible within
an additional epoch or two. In total, these results clearly
demonstrate that ObliviSync is functional and efficient to use
over cloud synchronization services like Dropbox.

Latency over Dropbox. Figure 9 shows the primary result
of running ObliviSync and EncFS using Dropbox as the cloud
synchronization service. The EncFS write line is nearly 0 (s)
as immediately upon writing the file it becomes available to
write computer. However on the read computer, it takes a
little under 5 seconds for the synchronization with Dropbox to
complete for the same file to be accessible. This measurement
forms a baseline of performance for the rate of DropBox
synchronization without ObliviSync.

For ObliviSync, on the write computer, we see an expected
performance metric of just under 10 seconds for each file to
be visible to the read mount. The reason it is under 10 seconds
and not exactly 10 seconds, as the setting of the drip time, is

��

��

���

���

���

���

���

���

�� ����� ����� ����� ����� ���� ����� ����� ����� ����� ����

�
�
�
��
�

�
�
��
�

�
��
�
�
�
�
�
�
��
��
�
�
�

����������

�����������������
�����������������

�������������
������������

Fig. 9. Latency of writing 1MB files one at a time for ObliviSync and
EncFS on Dropbox synchronized backend between two machines running on
the same network. We used a drip time of 10 seconds for ObliviSync (t = 10)
and a drip rate of 3 (k = 3) for a conservative estimate. The variations in the
trend lines are likely due to jigger in the network.

that a write occurring between epoch timers will take less than
an epoch to sync. The propagation rate to the read computer
takes a similar time as that of EncFS (∼ 5 seconds); however,
there is higher variance as more files need to be transferred
by the Dropbox service per epoch (namely 4 = k+ 1 with the
superblock). Still, this added variance is within 3x in terms of
epochs: it takes at most 30 seconds for a file to sync (or 3
epochs of waiting), which is very reasonable considering the
built-in overhead of the system.

VII. RELATED WORK

ORAM. ORAM protects the access pattern from an observer
such that it is impossible to determine which operation is
occurring, and on which item. The seminal work on the topic
is by Goldreich and Ostrovsky [15], and since then, many
works have focused on improving efficiency of ORAM in
both the space, time, and communication cost complexities
(for example [22], [18], [23], [17], [19] just to name a few;
see the references therein). Blass et al. introduced write-only
ORAMs [8]. In a write-only ORAM, any two write accesses
are indistinguishable, and they achieved a write-only ORAM
with optimal O(1) communication complexity and only poly-
logarithmic user memory. Based on their work, we construct
a write-only ORAM that additionally supports variable-size
data and hides the when the data items are modified. We point
out also that variable-sized blocks in traditional read/write
ORAMs were also considered recently by [21], but with higher
overhead than what can be achieved in the write-only setting.

Protecting against timing side-channels. Side-channel at-
tacks that use network traffic analysis in order to learn private
information have been considered in contexts other than secure
cloud storage. Proposed systems for location tracking [20] and
system logging [9] use buffering and random or structured
delays to protect against such attacks in a similar way to our
work.

Personal cloud storage. A personal cloud storage offers
automatic backup, file synchronization, sharing and remote
accessibility across a multitude of devices and operating sys-
tems. Among the popular personal cloud storages are Dropbox,
Google Drive, Box, and One Drive. However, privacy of cloud
data is a growing concern, and to address this issue, many

14

personal cloud services with better privacy appeared. Among
the notable services are SpiderOak [5], Tresorit [6], Viivo [7],
BoxCryptor [1], Sookas [4], PanBox [3], and OmniShare [24].
All the solutions achieve better privacy by encrypting the file
data using encryption keys created by the client. We stress
that however there has been no attempt to achieve the stronger
privacy guarantee of obliviousness.

VIII. CONCLUSION

In this paper, we report our design, implementation, and
evaluation of ObliviSync, which provides oblivious synchro-
nization and backup for the cloud environment. Based on the
key observation that for many cloud backup systems, such as
Dropbox, only the writes to files are revealed to cloud provider
while reads occur locally, we built upon write-only ORAM
principles such that we can perform oblivious synchronization
and backup while also incorporating protection against timing
channel attacks. When the drip-rate and drip time parameters
are set properly according to the usage pattern, this overhead
is just 4x both in theory and in practice.

We also consider practicality and usability. ObliviSync is
designed to seamlessly integrate with existing cloud services,
by storing encrypted blocks in a normal directory as its
backend. The backend can then be stored within any cloud
based synchronization folder, such as a user’s Dropbox folder.
To be stored within the backend encrypted blocks, we designed
a specialized block-based file system that can handle variable
size files. The file system is presented to the user in a
natural way via a frontend FUSE mount such that the user-
facing interface is simply a folder, similar to other cloud
synchronization services. Any modifications in the frontend
FUSE mount are transparently and automatically synchronized
to the backend without leaking anything about the actual writes
that have occurred.

In evaluating our system, we can prove that the perfor-
mance guarantees hold when 25% of the capacity of the
backend is used, and our experimental results find that, with
realistic workloads, much higher capacities can in fact be toler-
ated while maintaining very reasonable efficiency. Importantly,
ObliviSync can be tuned to the desired application based on
modifying the drip rate and drip time to meet the application’s
latency and throughput needs.

Although ObliviSync works well in practice already, there
are still interesting and difficult open problems in this domain.
While we have optimized the efficiency for the client, cloud
service providers may be hesitant to encourage systems such
as ObliviSync because they will eliminate the possibility of
deduplication between users, where common files are stored
only once by the service provider. Furthermore, as our system
only allows one ObliviSync-RW client at any given time, an
important use-case of collaborative editing is not permitted
here. It may be necessary to overcome challenges such as these
in order to bring oblivious cloud storage into mainstream use.
Acknowledgments: This work was supported in part in part by
ONR awards N0001416WX01489 and N0001416WX01645,
and NSF award #1618269, #1406177, and #1319994. We
would also like to thank Blair Mason for his early contribution.

REFERENCES

[1] Boxcrpytor. https://www.boxcryptor.com/en.

[2] fusepy. https://github.com/terencehonles/fusepy.
[3] Panbox. http://www.sirrix.de/content/pages/Panbox.htm.
[4] Sookasa. https://www.sookasa.com/.
[5] Spideroak. https://spideroak.com/.
[6] Tresorit. https://www.tresorit.com/.
[7] Viivo. https://www.viivo.com/.
[8] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarli-

oglu. Toward robust hidden volumes using write-only oblivious RAM.
In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14,
pages 203–214. ACM Press, November 2014.

[9] Kevin D. Bowers, Catherine Hart, Ari Juels, and Nikos Triandopoulos.
PillarBox: Combating next-generation malware with fast forward-secure
logging. In Proceedings of the 17th International Symposium on
Research in Attacks, Intrusions and Defenses: (RAID 2014), pages 46–
67, Gothenburg, Sweden, 2014.

[10] A. B. Downey. The structural cause of file size distributions. In Mod-
eling, Analysis and Simulation of Computer and Telecommunication
Systems, 2001. Proceedings. Ninth International Symposium on, pages
361–370, 2001.

[11] Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto,
Ramin Sadre, and Aiko Pras. Inside Dropbox: Understanding personal
cloud storage services. In Proceedings of the 2012 ACM Conference
on Internet Measurement Conference, IMC ’12, pages 481–494, New
York, NY, USA, 2012. ACM.

[12] Dropbox, Inc. Celebrating half a billion users, 2016.
https://blogs.dropbox.com/dropbox/2016/03/500-million/.

[13] EncFS. https://vgough.github.io/encfs/.
[14] ObliviSync github repository. https://github.com/oblivisync/oblivisync.
[15] Oded Goldreich and Rafail Ostrovsky. Software protection and simu-

lation on oblivious RAMs. J. ACM, 43(3):431–473, 1996.
[16] Wassily Hoeffding. Probability inequalities for sums of bounded

random variables. J. Amer. Statist. Assoc., 58:13–30, 1963.
[17] Jonathan L. Dautrich Jr., Emil Stefanov, and Elaine Shi. Burst ORAM:

minimizing ORAM response times for bursty access patterns. In
Proceedings of the 23rd USENIX Security Symposium, pages 749–764,
2014.

[18] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security
of hash-based oblivious RAM and a new balancing scheme. In Pro-
ceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 143–156. SIAM, 2012.

[19] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. Constant
communication ORAM with small blocksize. In ACM CCS 15, pages
862–873. ACM Press, 2015.

[20] Thomas Ristenpart, Gabriel Maganis, Arvind Krishnamurthy, and Ta-
dayoshi Kohno. Privacy-preserving location tracking of lost or stolen
devices: Cryptographic techniques and replacing trusted third parties
with DHTs. In Proceedings of the 17th USENIX Security Symposium
(SECURITY 2008), pages 275–290, Berkeley, CA, USA, 2008.

[21] Daniel S. Roche, Adam J. Aviv, and Seung Geol Choi. A practical
oblivious map data structure with secure deletion and history indepen-
dence. In 2016 IEEE Symposium on Security and Privacy, May 2016.

[22] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Obliv-
ious RAM with o((logn)3) worst-case cost. In Dong Hoon Lee and
Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS,
pages 197–214. Springer, December 2011.

[23] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an
extremely simple oblivious RAM protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 299–310.
ACM Press, November 2013.

[24] Sandeep Tamrakar, Long Nguyen Hoang, Praveen Kumar Pendyala,
Andrew Paverd, N. Asokan, and Ahmad-Reza Sadeghi. OmniShare:
Securely accessing encrypted cloud storage from multiple authorized
devices. CoRR, abs/1511.02119, 2015.

[25] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. File size
distribution on UNIX systems: Then and now. SIGOPS Oper. Syst.
Rev., 40(1):100–104, January 2006.

15

	Introduction
	Efficient Obliviousness for Dropbox
	Overview of Write-only ORAM
	Overview of Our System

	Security Definitions
	Write-only Oblivious Synchronization

	System Details
	Filesystem Description
	Design Choices for Performance Optimization
	Read-Only Client
	Read/Write Client
	Detailed Description of Buffer Syncing
	Frontend FUSE Mounts
	Key parameter settings

	Analysis
	Time to write all files
	Security

	Experiments
	Throughput with Fixed-size Files
	Throughput with Variable-size Files
	Latency
	The Size of Pending Writes Buffer
	Measurements on Dropbox

	Related Work
	Conclusion
	References

