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Abstract—Free cloud-based services are powerful candidates
for deploying ubiquitous encryption for messaging. In the case of
email and increasingly chat, users expect the ability to store and
search their messages persistently. Using data from a major mail
provider, we confirm that for a searchable encryption scheme
to scale to millions of users, it should be highly IO-efficient
(locality) and handle a very dynamic message corpi. We observe
that existing solutions fail to achieve both properties simulta-
neously. We then design, build, and evaluate a provably secure
Dynamic Searchable Symmetric Encryption (DSSE) scheme with
significant reduction in IO cost compared to preceding works
when used for email or other highly dynamic material.

I. INTRODUCTION

The last few years have seen incredible success in deploy-
ing seamless end-to-end encryption for messaging. Between
iMessage, WhatsApp, and SRTP for video, over 2 billion
users routinely encrypt their messages without necessarily even
noticing. Unfortunately, this trend has been largely limited to
ephemeral or semi-ephemeral communication mediums. Where
users expect messages to be available for later recall, we have
seen little progress.

The quintessential example of this is email, where messages
are searched for months or years after being received. But email
is not the only medium filling this role: Google Hangouts, Slack,
and Facebook Messenger all operate in an archive and search
paradigm—indeed the latter two are to some extent used as
an email substitute because of this. In this setting, end-to-end
encryption is not seamless: by using it, users lose the ability
to store messages in the cloud and search. Since users are
unwilling to sacrifice features for security, this is a major
impediment to deploying end-to-end encryption.

Symmetric Searchable Encryption (SSE) [5, 7, 8, 10, 15, 19]
provides a potential solution to this problem as it allows a client
to outsource an encrypted index of documents (e.g. emails)
to an untrusted server and efficiently search the index for
specific keywords. The efficiency of SSE stems from its use
of fast symmetric-key operations and its privacy guarantees

∗ Work done while at Yahoo Labs.

typically allow for some information leakage on search/access
patterns which is captured using a leakage function. The
dynamic variants of SSE (DSSE) [4, 13, 14, 20] also allow
for efficient updates to the encrypted database. The question is
whether dynamic SSE can be used efficiently in a cloud-scale
application?

Several works [4, 5] have addressed scaling SSE schemes
to a very large index—terabytes of data—but to the best of our
knowledge, none have examined deploying millions of small
indexes on shared hardware. This is the exact problem faced
by a cloud provider wishing to deploy search for encrypted
messaging or email without deploying large amounts of new
hardware.

Since SSE schemes typically use fast symmetric cryp-
tography, the primary performance issue for SSE is IO and
specifically poor locality: unlike a standard inverted index where
the list of document IDs for a given keyword k can be stored in
a single location, SSE schemes typically place each document
ID for a given keyword in a distinct random location in order
to hide the index structure. This results in a large increase in
IO usage, since searching for a keyword found in, e.g., 500
documents results in 500 random reads, rather than one single
read retrieving a list of 500 document IDs. Similarly, inserting
a batch of, e.g., 100 documents containing some 150 total
keywords requires 100× 150 = 15, 000 writes, rather than 150
writes, one per keyword.

While the same locality issues arise in SSE schemes for
very large indexes, the solution space is far more constrained
in our setting and the main techniques introduced in the
most promising approaches [4, 5] are not applicable for purely
dynamic indexes (i.e. indexes that are initially empty). As a
result, deploying existing SSE schemes for search for mail or
messaging—where every entry is inserted dynamically into an
initially empty index—-would result in an order of magnitude
increase in IO usage. Since existing mail search is already IO
bound, the cost of doing so is prohibitive. This is a marked
departure from the cost of deploying end-to-end encryption for
ephemeral communication, which comes at little operational
cost.

Unfortunately, this increased cost cannot be handled by
simply using better hardware. First, high performance storage
systems are prohibitively expensive relative to profit from
free communications services. Second, caching is relatively
ineffective as each individual index is used infrequently. Third,
even given cost effective storage (e.g. much cheaper SSDs)
and the willingness of providers to upgrade infrastructure, any
infrastructure-related improvement yields similar cost savings
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IO to insert n documents
with k keywords

IO for a search
returning n documents supports deletes

index type Static Dynamic Static Dynamic
Unencrypted Index O(k) O(k) O(1) O(1) yes
Cash et. al [4] O(k) O(nk) O(1) O(nk) dynamic only
Stefanov et. al [20] O(nk) O(nk) O(nk) O(nk) yes
This work1 O(k) O(k) O(1) O(1) partial dynamic

TABLE I: Informal description of IO costs of SSE schemes assuming n, the number of documents mapped to a given keyword,
is smaller that the block size used for storage. When inserting n documents containing k keywords into an existing index, all
existing SSE schemes write each posting (i.e. keyword, document ID pair) to a distinct random location. As a result, when adding
n documents to the index entry for a given keyword, there are n writes to distinct random locations. This is repeated for each
of the k keywords. For search, returning the complete entry in the index for a given keyword requires each of the n random
locations be read. When used for messaging or email, all insertions and searches are done against the dynamic index and any
savings in the static case do not apply.

for non-encrypted search. Existing SSE schemes simply require
considerably more resources than unencrypted search.

We now examine in detail the specific challenges for email
and then detail our proposed solution.

A. Why Email is Different

Cloud-based mail offers a unique setting. First, while storage
at this scale is cheap, access to it is not: existing mail search is
already IO bound. As a result, we must minimize the IO cost
of maintaining the index. As we will see, this is the driving
design constraint behind our work.

Second, unlike traditional settings for SSE, there is no
initial corpus of documents to index. Instead all documents
(i.e. sent and received emails) are added after database creation
via updates2—the typical user receives between 30 and 200
messages a day.3 This exacerbates the IO problem, since all
existing schemes end up performing one random write to the
disk per keyword for each new email and one random read per
document ID returned in a search. This is in marked contrast
to a standard index wherein multiple entries are packed into
one block and read/written in one shot, resulting in efficient
IO usage.

Third, the query rate is exceedingly low. For Yahoo webmail,
we see on the order of 250 searches per second total across
all users on mail content from on the order of a few hundred
million monthly active users. Searches on public metadata such
as sender, date sent, “has attachment”, etc. are far more frequent,
but searches on mail content, i.e., what would be stored in an
encrypted index, are surprisingly rare. Many schemes (e.g. [20])
assume hundreds of queries per second, where it is economical
to load the index into memory. At an average two queries per
inbox per month, storing the index in memory is neither cost
effective nor remotely practical given the sheer number of users
each needing their own separate index.

If the IO problems are resolved, however, the prospects for
encrypted mail search are actually fairly good: search for email

1We assume the obliviously updatable index is of fixed size and thus the
overhead it imposes is constant. This is the case if the key word list is fixed
or the server has limited space. Otherwise there is a cost that is logarithmic in
the size of the OUI but independent of total index size or search frequency.

2Since the server knows the contents of existing (unencrypted) email, adding
existing unencrypted email to the index is unnecessary and for some schemes
ill-advised.

3The mean is 30 with a standard deviation of 148.

is in many ways easier than what is typically asked of encrypted
search. We analyze detailed usage numbers furnished by Yahoo
Webmail. We conclude that searchable encryption for cloud-
based email is surprisingly plausible in terms of functionality
if cost is disregarded: the size of the datasets are manageable,
search is not frequently used, and most queries are exceedingly
simple. In particular, the combination of single keyword plus
intersection on public metadata (date, sender, “has attachment”),
seems to cover the vast majority of searches. While conjunctive
queries would of course be an improvement, they are not strictly
necessary. Moreover the availability of cheap storage coupled
with the fact that search is infrequent, means the cost of index
entries for deleted files is relatively small. This allows us to
eschew many of the complexities of fully dynamic searchable
encryption because we can afford to delete entries on a best-
effort basis. The scalability issues become even easier when
one considers that end-to-end encrypted mail is likely personal
and the majority of email is not. As a result, only a small
fraction of mail will need to be encrypted or indexed using
SSE.

Why existing schemes fail Encrypted databases such as Blind
Seer [16], Cryptdb [17] and others aim to provide complex
private queries as a privacy-preserving replacement to traditional
large database applications. Just as those database clusters are
unsuited for mail search, so too are their privacy-preserving
counterparts.

The DSSE scheme of Stefanov et al. [20] provides impres-
sive privacy protections including efficient deletion of entries,
but as each individual index entry (i.e. a mapping from a word
to a single document) is stored in a random location, the IO
expansion relative to standard search is very large. This is not
scalable in the context of deploying hundreds of millions of
indexes on a few thousand servers.

This problem is not isolated to Stefanov et al.’s scheme.
Indeed, Cash et al. [4] note “One critical source of inefficiency
in practice (often ignored in theory) is a complete lack of
locality and parallelism: To execute a search, most prior
SSE schemes sequentially read each result from storage at
a pseudorandom position, and the only known way to avoid
this while maintaining privacy involves padding the server index
to a prohibitively large size.” [4]. Although one can arrive at
this from varying perspectives (disk IO, latency, or memory
requirements), it is a central problem that renders all previous
schemes unusable in this context.
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Fig. 1: IO-DSSE logical architecture: an index mapping keywords to document IDs is stored locally, then the largest entries
overflow into the obliviously updatable index. When the entry for a keyword in the OUI is full, index entries are inserted into the
Full Block Index in chunks. Keyword searches query all three indexes. Note: encryption and the obliviously updatable index
construction hide this view from the server.

While Cash and Tessaro [6] show there is a fundamental
trade-off between locality and index size, in many settings
a large increase in overall performance can be obtained by
allowing a small blow-up in index size. Cash et al. [4] offer
such an improvement: instead of storing each index entry at
a random location on disk, they store entries sequentially in
fixed-size blocks, drastically reducing the number of disk reads
by allowing many index entries for a given keyword to be
retrieved at once. Unfortunately, this technique cannot readily
be used to handle updates. The act of appending a new index
entry to an existing (partially-filled) block leaks significant
information on updates (which are frequent). This means these
techniques are not applicable to entries inserted into the index
after the initial index creation.

As a result, while Cash et al. make use of an efficient on-disk
index for the starting document corpus, all updates to the index
are stored in memory because each index entry is written to a
distinct random location. The scheme is not designed to deal
with frequent updates in an IO-efficient manner and assumes
that most of the corpus is indexed statically, at initialization.
Thus, when the scheme is used for dynamic updates, it incurs
the very same locality issues the authors identify. Bridging this
gap between locality and privacy for highly dynamic indexes
is the goal of our construction. See Table I for details.

B. Our Contribution

A logical extension of Cash et al.’s scheme is to buffer
partial blocks locally (client-side) and only upload to the server
once the block is full. However our experiments in Section IV-C
indicate that a storage-limited client (e.g. a mobile device) will
overflow its local storage in less than 100 days even for the
average user. A second approach is to offload this buffer to the
server in a way that hides when it is updated but still allows the
buffer to be searched. Oblivious RAM (ORAM) [2, 9, 11, 12, 18]
is a natural choice. Index entries would be buffered in a small
ORAM cache and then written to the full index.

ORAM, however, is not an ideal choice. First, in most
SSE schemes, access patterns for search are already leaked,
yet in ORAM we must pay for the full ORAM overhead not
just for reads and writes associated with index updates, but
for searches as well.4 Second, ORAM must remain secure
for arbitrary access patterns, while we only need to obscure
batched updates to the index (many emails/keywords can be
batched and inserted in the index at the same time).

Thus, in Section III, we construct an obliviously updatable
index (OUI), which provides for ORAM-like properties for
updates to the index (both reads and writes) but allows simple
non-oblivious reads for search. An overview of this approach
is given in Figure 1. This is accomplished by using a weaker
security requirement tailored to the SSE leakage function.
Through optimizations and batching, we achieve a 94% IO
savings vs. the generic approach using Path ORAM [21].

To summarize our contributions:

1) We examine the requirements and feasibility of search on
encrypted email and more generally, the class of IO-bound
DSSE schemes that exhibit a low query rate and high
update rate. This examination is supported with realistic
data from a large webmail provider.

2) Motivated by IO-efficient SSE for highly dynamic corpi,
we introduce the concept of an Obliviously Updatable
Index (OUI). As a proof of concept, we provide a new
construction for an OUI, with proof of security, which
offers a 94% savings compared to a naive implementation
using ORAM. We obtain our final solution by combining
this with the state-of-the-art IO-efficient SSE that indexes
the full blocks.

3) We evaluate our solution using real-world data from
100,000 mail users, showing we achieve a 99% reduction
in the IO cost vs. the state-of-the-art in SSE schemes such

4Because we need to know the content of an index entry to update it and
must read that from a server, we cannot use “write-only” [1] ORAM which
assumes reads are not observable.
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as that of Cash et al. which, for purely dynamic insertions,
write each document-keyword pair to a random location.
We also report the storage required for a typical mail user
both on the client side and the server side.

C. No free lunch

These improvements are, of course, not free. First, we must
allow for slightly more leakage in search than the scheme of [4],
since we leak when an entry in the OUI is full and needs to be
pushed to the full-block index. Second, we can only deal with
deletes from the OUI: once an entry is written to the static
index, it is stored until the index is rebuilt. Thus we do not
provide a fully dynamic index. Given the low cost of storage
relative to the size of emails and the fact that for the average
user emails are contained fully within the partial index for at
least 11 days, we believe this is an acceptable trade-off.

II. BACKGROUND

A. Hash Tables

A hash table is a data structure commonly used for mapping
keys to values. It often uses a hash function h that maps a key
to an index (or a set of indexes) in a memory array M where
the value associated with the key may be found. The keyword
is not in the table if it is not in one of those locations. More
formally, we define a hash table H = (hsetup, hlookup, hwrite)
using a tuple of algorithms.

• (h,M)← hsetup(S): hsetup takes as input an initial set
S of keyword-value pairs and outputs a hash function h
and a memory array M storing the key-value pairs.

• M′ ← hwrite(key, value,M, h): If (key, value) al-
ready exists in the table it does nothing, else it stores
(key, value) in the table. If M and h are known from the
context, we use the shorter notation hwrite(key, value).

• value ← hlookup(key,M, h): hlookup returns value if
(key, value) is in the table. Else it returns ⊥. If M and h
are known from the context, we use the shorter notation
hlookup(key).

B. Oblivious RAM

We recall Oblivious RAM (ORAM), a notion introduced
and first studied in the seminal paper of Goldreich and
Ostrovsky [12]. ORAM can be thought of as a compiler that
encodes the memory into a special format such that accesses
on the compiled memory do not reveal the underlying access
patterns on the original memory. An ORAM scheme consists
of protocols (SETUP,OBLIVIOUSACCESS).

• 〈σ,EM〉 ↔ SETUP〈(1λ,M),⊥〉: SETUP takes as input the
security parameter λ and a memory array M and outputs
a secret state σ (for the client), and an encrypted memory
EM (for the server).

• 〈(M[y], σ′),EM′〉 ↔ OBLIVIOUSACCESS〈(σ, y, v),EM〉:
OBLIVIOUSACCESS is a protocol between the client and
the server, where the client’s input is the secret state σ,
an index y and a value v which is set to null in case the
access is a read operation (not a write). Server’s input
is the encrypted memory EM. Client’s output is M[y]
and an updated secret state σ′, and the server’s output is

an updated encrypted memory EM′ where M[y] = v, if
v 6= null.

Correctness Consider the following correctness experiment.
Adversary A chooses memory M. Consider the encrypted
database EM generated with SETUP (i.e., 〈σ,EM〉 ↔ SETUP〈
(1λ,M),⊥〉). The adversary then adaptively chooses mem-
ory locations to read and write. Denote the adversary’s
read/write queries by (y1, v1), . . . , (yq, vq) where vi = null
for read operations. A wins in the correctness game if
〈(Mi[yi], σi),EM

′〉 are not the final outputs of the protocol
OBLIVIOUSACCESS〈(σi−1, yi, vi),EMi−1〉 for any 1 ≤ i ≤ q,
where Mi,EMi, σi are the memory array, the encrypted memory
array and the secret state, respectively, after the i-th access
operation, and OBLIVIOUSACCESS is run between an honest
client and server. The ORAM scheme is correct if the probability
of A in winning the game is negligible in λ.

Security An ORAM scheme is secure if for any adversary
A, there exists a simulator S such that the following two
distributions are computationally indistinguishable.

• RealA(λ): A chooses M. The experiment then runs
〈σ,EM〉 ↔ SETUP〈(1λ,M),⊥〉. A then adaptively makes
read/write queries (yi, v) where v = null on reads, for
which the experiment runs the protocol 〈(M[yi], σi),EMi〉
↔ OBLIVIOUSACCESS〈(σi−1, yi, v),EMi−1〉 . Denote
the full transcript of the protocol by ti. Eventually, the
experiment outputs (EM, t1, . . . , tq) where q is the total
number of read/write queries.

• IdealA,S(λ): The experiment outputs (EM, t′1, . . . , t
′
q)↔

S(q, |M|, 1λ).

C. Path ORAM

Path ORAM [21] is a tree-based ORAM construction with
high practical efficiency. We use Path ORAM as a component
in our SSE construction. We only review the non-recursive
version of Path ORAM where the client stores the position
map locally and hence only a single binary tree T is needed
to store the data on the server.

Notations Let M be a memory array of size at most N = 2L

that we want to obliviously store on the server. We use M[i]
to denote the ith block in M. Let T denote a binary tree of
depth L on the server side that will be used to store M. The
client stores a position map position where x = position[i] is
the index of a uniformly random leaf in T . The invariant Path
ORAM maintains is that M[i] is stored in a node on the path
from the root to leaf x which we denote by P (x). We also
use P (x, `) to denote the node at level ` on path P (x), i.e.
the node that has distance ` from the root. There is a bucket
associated with each node of the tree T , and each bucket can
at most fit Z memory blocks.

The client holds a small local stash denoted by S, which
contains a set of blocks that need to be pushed into the server’s
tree.

ORAM Setup We assume that memory array M is initially
empty. Client’s stash S is empty. All the buckets in the tree
T are filled with encryptions of dummy data. The position
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OBLIVIOUSACCESS〈(σ, y, v),EM〉:

1: x← position[y]

2: position[y]
R← {0, . . . , 2L}

3: for ` ∈ {0, . . . , L} do
4: S ← S ∪ READBUCKET(P (x, `))
5: end for
6: data← Read block y from S
7: if v 6= then
8: S ← (S − {(y, data)}) ∪ {(y, v)}
9: end if

10: for ` ∈ {L, . . . , 0} do
11: S′ ← {(y′, data′) ∈ S : P (x, `) =

P (position[y′], `)}
12: S′ ← Select min(|S′|, Z) blocks from S′.
13: S ← S − S′
14: WRITEBUCKET(P (x, `), S′)
15: end for

Fig. 2: Read/Write Ops in path ORAM

map position is initialized with uniformly random values in
{0, . . . , 2L}. This encrypted tree is denoted by EM.

Read/Write Operations To read M[y] or to write a value v
at M[y], the client first looks up the leaf position x from the
position map and reads all the buckets along the path P (x). It
then updates position[y] to a fresh random value in {0, . . . , 2L}.
If it is a read operation, the encryption of (y, v) will be found
in one of the buckets on P (x), which the client decypts to
output v. It also adds all the buckets on P (x) to its local stash.
If it is a write operation, the client also adds (y, v) to its local
stash.

The client encrypts all the blocks in the stash and inserts
as many as possible into the buckets along P (x), inserting
each block into the lowest bucket in the path possible while
maintaining the invariant that each block y′ remains on the
path P (position[y′]).

Figure 2 describes the read/write operations in more detail.
The READBUCKET protocol has the server return the bucket
being read to the client who decrypts and outputs the blocks in
the bucket. The WRITEBUCKET protocol has the client encrypt
and insert all the blocks in its input set into a bucket and send
it to the server.

D. Searchable Symmetric Encryption

A database D is a collection of documents di each of
which consist of a set of keywords Wi. A document can be a
webpage, an email, or a record in a database, and the keywords
can represent the words in the document, or the attributes
associated with it. A symmetric searchable encryption (SSE)
scheme allows a client to outsource a database to an untrusted
server in an encrypted format and have the server perform
keyword searches that return a set of documents containing the
keyword. For practical reasons, SSE schemes often return a
set of identifiers that point to the actual documents. The client
can then present these identifiers to retrieve the documents and
decrypt them locally.

More precisely, a database is a set of document/keyword-set
pair DB = (di,Wi)

N
i=1. Let W = ∪Ni=1Wi be the universe of

keywords. A keyword search query for w should return all di
where w ∈Wi. We denote this subset of DB by DB(w).

A searchable symmetric encryption scheme Π consists of
protocols SSESETUP, SSESEARCH and SSEADD.

• 〈EDB, σ〉 ← SSESETUP〈(1λ,DB),⊥〉: SSESETUP takes
as client’s input a database DB and outputs a secret state
σ (for the client) and an encrypted database EDB which
is outsourced to the server.

• 〈(DB(w), σ′),EDB′〉 ← SSESEARCH〈(σ,w),EDB〉:
SSESEARCH is a protocol between the client and the
server, where the client’s input is the secret state σ and
the keyword w he is searching for. The server’s input is
the encrypted database EDB. The client’s output is the
set of documents containing w, i.e., DB(w) as well an
updated secret state σ′, and the server obtains an updated
encrypted database EDB′.

• 〈σ′,EDB′〉 ← SSEADD〈(σ, d),EDB〉: SSEADD is a
protocol between the client and the server, where the
client’s input is the secret state σ and a document d to
be inserted into the database. The server’s input is the
encrypted database EDB. The client’s output is an updated
secret state σ′, and the server’s output is an updated
encrypted database EDB′ which now contains the new
document d.

Correctness Consider the following correctness experiment.
An adversary A chooses a database DB. Consider the en-
crypted database EDB generated using SSESETUP (i.e. 〈EDB,
K〉 ← SSESETUP〈(1λ,DB),⊥〉). The adversary then adap-
tively chooses keywords to search and documents to add to
the database. Denote the searched keywords by w1, . . . , wt.
A wins in the correctness game if 〈(DBi(wi), σi),EDBi〉 6=
SSESEARCH〈(σi−1, wi),EDBi−1〉 for any 1 ≤ i ≤ t, where
DBi,EDBi are the database and encrypted database, respec-
tively, after the ith search, and SSESEARCH and SSEADD are
run between an honest client and server. The SSE scheme is
correct if the probability of A in winning the game is negligible
in λ.

Security Security of SSE schemes is parametrized by a leakage
function L, which explains what the adversary (the server) learns
about the database and the search queries, while interacting
with a secure SSE scheme.

An SSE Scheme Π is L-secure if for any PPT adversary
A, there exists a simulator S such that the following two
distributions are computationally indistinguishable.

• RealΠA(λ): A chooses DB. The experiment then runs
〈EDB, σ〉 ← SSESETUP〈(1λ,DB),⊥〉. A then adap-
tively makes search queries wi, which the experiment
answers by running the protocol 〈DBi−1(wi), σi〉 ←
SSESEARCH〈(σi−1, wi),EDBi−1〉. Denote the full tran-
scripts of the protocol by ti. Add queries are handled
in a similar way. Eventually, the experiment outputs
(EDB, t1, . . . , tq) where q is the total number of search/add
queries made by A.

• IdealΠA,S,L(λ): A choose DB. The experiment runs
(EDB′, st0)← S(L(DB)). On any search query wi from
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A, the experiment adds (wi, search) to the history H ,
and on an add query di it adds (di, add) to H . It then
runs (t′i, sti) ← S(sti−1, L(DBi−1, H)). Eventually, the
experiment outputs (EDB′, t1, . . . , t

′
q) where q is the total

number of search/add queries made bt A.

III. OUR CONSTRUCTION

As discussed earlier, three important security/efficiency
requirements for any searchable symmetric scheme for email
to be practical are (1) dynamic updatability, (2) low latency
on search and hence high IO efficiency, and (3) no leakage on
updates (send/received email).

The SSE construction of [5] accommodates dynamic updates
and does not leak keyword patterns on updates as each new
keyword-document pair is added to the index using a freshly
random key generated by a PRF that takes a counter as input.
This meets requirements (1) and (3). They also address the
IO efficiency issue by storing document IDs in larger blocks
and hence retrieving many documents IDs using a single disk
access. This provides a partial solution to the IO efficiency and
fast search, but the solution is not suitable for a highly-dynamic
application such as mail.

In particular, the main challenge is to pack multiple updates
(i.e. a set of new keyword-document pairs) into a large block,
before pushing them into the encrypted index. The naive
solution of storing the partial blocks in the same index and
adding new keyword-document pairs on each update leaks the
update pattern which is a major drawback for an update-heavy
application such as email.

Our construction consists of two pieces: the obliviously
updatable index (OUI), a small dynamic encrypted index for
partial blocks, and the full-blocks index (FBI), a large append-
only encrypted index for full blocks.

The full-block index holds a mapping from an encrypted
keyword to a fixed-size block containing document IDs. New
entries can be added to this index only when we have a
full block. This is the basic approach taken by [5] for static
encrypted search, though they expand on it to deal with far
larger data sets than we wish to.

The main technical challenge in our construction is the
design of OUI for managing partially-filled blocks until they
are full and can be pushed to the FBI. In particular, note that
the blocks in OUI need not be full and are instead padded
to some fixed size. When a block is full of real data (i.e. no
padding) its contents are transferred to the full-block index.
This allows messages to be added and deleted from the OUI
by updating the requisite block. Of course, we must do so in
a way that does not leak which blocks are being updated, or
else we fail to meet the basic requirements for secure search
by leaking update patterns.

A. An Obliviously Updatable Index

ORAM forms a generic starting point for our obliviously
updatable index. In particular, storing partial blocks in ORAM
would allow us to update them privately. However, as a generic
approach, ORAM is an overkill. An index built on top of
ORAM would hide not only reads and writes resulting from
an index update, but also reads resulting from an index lookup.

This is stronger than the typical protection provided by SSE
schemes (which leak the “search pattern”), and in our case
(similar to prior work) this information is already revealed via
searches against the full-block index. So we gain no additional
privacy by hiding the search pattern only in the OUI and will
realize considerable efficiency gains by not doing so.

As a concrete starting point, consider a basic construction
of Path ORAM [21]. In Path ORAM, entries (called blocks
in our construction) are stored as leaves in a full binary tree.
Each time an entry is read or written, the entire path from its
leaf to root is read, the entry is remapped to a random leaf
in the tree, and the original path is rewritten with the entry
placed at as close to the lowest common ancestor of the old
and new paths as possible.

The position map which keeps track of the current leaf
position for each entry is typically stored on the server side in
its own ORAM. This leads to many round trips of interaction
for each read/update which is a non-starter for a real-time
application such as email. We note that for email, it is feasible to
store the position map client side. As shown in the experiments
in Section IV-C, this storage will not exceed 70MB in 10 years
for the 95th percentile user and for most users is closer to
35MB.

Even with the position map stored on the client side, a
read or write entails reading everything on the path from a leaf
to the root, performing some client side operations, and then
writing back along that path. In other words, in Path ORAM
(and ORAM in general), entries are shuffled both in case of
reads and writes.

At first glance, in the case of a lookup in the oblivious
index, we can simply omit the complicated machinery for a
read of the ORAM (which we only need for reads and writes
for index updates) and directly access a single entry in the tree.
We do not care if repeated index accesses to the same location
are identifiable. However, there are two issues with this. First,
the position map only stores what leaf an entry was mapped to,
not the particular point along the path from leaf to root where
it is stored. This can be fixed by storing, for each keyword,
additional information to locate the entry.

The larger issue is that the reshuffling that occurs on a
read provides privacy protections not just for the read (which
is not important for us) but for subsequent reads and writes.
If reads are not shuffled, then an observer can identify when
frequently looked up index entries are updated. As a result,
we cannot simply have a “half-ORAM”: to get completely
oblivious writes, we must at some point reshuffle the locations
we read from.

Crucially, in our obliviously updatable index, we need not
do this on every read (as in ORAM), rather we can defer the
shuffling induced by a non-oblivious read to the beginning of
an update. We call these deferred reads.

This enables considerable savings. First, since updates can
be batched (i.e., we collect a bunch of updates to various entries
locally and only commit them to the server later), we can shift
the computational and bandwidth load to idle time (e.g. when
a mobile device is plugged in and connected to wifi) at the
cost of temporary client storage. Second, repeated searches for
the same term only result in one deferred read. Third, searches
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for terms that are mapped to the same leaf also only result in
one shuffle operation. Finally, because paths overlap even for
distinct leaves, we will realize considerable savings: e.g. for
10 deferred read shuffles, we will end up transmitting the root
of the tree once instead of 10 times, the children of root twice
instead of 5 times, etc. Looking forward to our evaluation, this
results in over 90% savings in accesses compared to the simple
Path ORAM.

We note that write-only ORAM constructions [1] do not
solve our problem. Write-only ORAM is used in settings where
reads leave no record (e.g. where an adversary only has access
to snapshots of an encrypted disk, which reveals changes due to
writes but not reads.). In these settings, the initial read needed
to determine the contents of the block being appended to can
be done in the clear. We cannot do that here since we must
request the partial bock from the server before appending to it.

To summarize, our obliviously updatable index is a modified
Path ORAM scheme with the following changes:

• We keep the position map on the client slide and augment
the position map to allow us to locate index entries inside
a given path from leaf to the root.

• On non-oblivious reads: we lookup the entry directly from
its position in the tree (i.e. one disk access), but add the
leaf to the list of deferred reads.

• On batched reads and updates: we read all paths in the
set of deferred reads since the last batch updated and all
the paths associated with the updates themselves. We then
remap and edit the entries on these paths as in standard
Path ORAM and write them back to the ORAM at once.

Security Intuition Deferred shuffling for reads ensures that
when a non-deferred read/write happens, the system is in the
exact same state as it would be in full Path ORAM. Intuitively,
this models the effect of shuffling a deck of cards: no matter
what the previous state was and how the deck was rigged, the
shuffle is still good.

More formally, our approach means that after the deferred
read, the position map entries are statistically independent of
each other, and we retain the security condition for Path ORAM
that

∏M
j=1 Pr(position(aj)) = ( 1

2L

M
) for non-deferred oper-

ations. Of course, we have leaked substantial information about
the prior state of the index, but that leakage is allowed in SSE!
Rather than proving this separately, we will capture it in the
proof of security for the SSE scheme itself.

B. The Full Protocol

Next, we describe our full DSSE scheme for email which
is a combination of the OUI described above and a separate
index for full blocks. A detailed description follows.

Let H = (hsetup, hlookup, hwrite) be a hash table imple-
mentation, E = (KG,Enc,Dec) be a CPA-secure encryption
scheme and F : K ×M → C be a pseudorandom function.
Let W be the universe of all keywords, and L = log(|W |).

Setup. (Figure 3) For simplicity, we assume that the DB
is initially empty, and documents are dynamically added. If
not, one can run the SSEADD protocol we describe shortly
multiple times to populate the client and server storages with
the documents in DB.

〈σ,EDB〉 ↔ SSESETUP〈(1λ,⊥),⊥〉:

1: Client runs (hc,Mc) ← hsetup() to setup a local
hash table.

2: Server runs (hs,Ms)← hsetup() to setup an append-
only hash table.

3: for w ∈ |W | do
4: posw

R← {0, . . . , 2L}
5: countw, rw, `w ← 0, Bw ← ∅
6: Client runs Mc ← hwrite(w, [posw, `w, countw,
rw, Bw],Mc)

7: end for
8: kf ← K(1λ), ke ← KG(1λ), ka ← KG(1λ)
9: Client and server run the setup for a non-recursive

Path ORAM. Server stores the tree T , and client
stores the stash S.

10: Client outputs σ = (Mc, S, kf , ka, ke)
11: Server outputs EDB = (Ms, T )

Fig. 3: Setup for our DSSE scheme

The client generates three random keys kf , ke, and ka, one
for the PRF F , and the other two for the CPA-secure encryption
scheme.

The client and server initialize the obliviously updatable
index, i.e., a non-recursive Path ORAM for a memory of size
|W |. We denote the tree stored at the server by T , and the
corresponding stash stored at the client by S. For all references
to Path ORAM we use the notation introduced in Section II-C.
The server also sets up an initially empty full-block index, i.e.,
an append-only hash table that will be used to store full blocks
of document IDs.

For every w ∈W , the client stores in a local hash table the
key-value pair (w, [posw, `w, countw, rw, Bw]), where Bw is a
block storing IDs of documents containing w (initially empty),
posw stores the leaf position in {0, . . . , 2L} corresponding to
w (chosen uniformly at random), `w stores the level of the node
on path P (posw) that would store the block for documents
containing w (initially empty), countw stores the number of full
blocks for keyword w already stored in the append-only hash
table (initially 0), and rw is a bit indicating whether keyword
w is searched since the last push of the client’s block to Path
ORAM (initially 0).

The client’s state σ will be the hash table Mc, the stash S
for the Path ORAM, and the keys ke, kf , ka.

Search. (Figure 4) The client will store the matching documents
in the initially empty set R = ∅. To search locally, the
client first looks up w in its local hash table to obtain
[posw, `w, countw, rw, Bw], and lets R = R ∪Bw.

It then asks the server for the bucket in the tree T at node
level `w and on path P (posw), i.e., P (posw, `w). It decrypts
the blocks in the bucket using ke. If it finds a tuple (w,Ow) in
the bucket, it lets R = R ∪Ow. If rw is not yet set, the client
lets rw = 1 to indicate that w was searched for.

For i = 1, . . . , countw, the client sends Fkf (w||i) to the
server, who looks it up in the append-only hash table and
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SSESEARCH〈(σ,w),EDB = (T,Ms)〉:

1: R← ∅
2: [posw, `w, countw, rw, Bw]← hlookup(w,Mc)
3: R← R ∪Bw
4: U ← READBUCKET(P (posw, `w)
5: Read (w,Ow) from U
6: R← R ∪Ow
7: rw ← 1
8: hwrite(w, [posw, `w, countw, rw, Bw],Mc)
9: for i ∈ {1, . . . , countw} do

10: Client sends Fkf (w||i) to server
11: Server returns Ciw ← hlookup(Fkf (w||i),Ms)
12: Aiw ← Decka(Ciw)
13: R← R ∪Aiw
14: end for
15: Client outputs R

Fig. 4: Search for our DSSE scheme

returns the encrypted full block Aiw. The client decrypts using
ka and lets R = R ∪ Aiw. The client then outputs R. See
Figure 4 for details.

Update. (Figure 5) Let idd be the document identifier associ-
ated with d. For every keyword w in d, the client looks up w
in its local hash and adds idd to Bw. It then checks whether its
local storage has reached the maximum limit maxc or not. If
not, the update is done. Else, we need to push all the document
blocks to the server.

But before doing so, we need to finish the ORAM access
for all reads done since the last push. In particular, for all non-
zero rw’s, the client needs to read the whole path P (posw),
re-encrypt all the buckets using fresh randomness, update posw
to a fresh random leaf, and write the buckets back to the tree
using the Path ORAM approach.

Then, for every non-empty block Bw in its local hash, the
client performs a full ORAM write to add the documents in
Bw to the ORAM block Ow for the same keyword. If Ow
becomes full as a result, maxb documents IDs in the block
are removed and inserted into Acountw+1

w , and inserted to the
append-only hash table using a keyword Fkf (w||countw + 1).
See Figure 5 for details.

C. Security Analysis

As noted in Section II, security of an SSE scheme is
defined with respect to a leakage function L on the database of
documents DB as well as the history of search/update operations
in the index. We first specify the leakage function for our
construction.

The Leakage Function Recall that DB = (di,Wi)
N
i=1 is the

database of document-keyword pairs and W = ∪Ni=1Wi is the
universe of keywords.

During the setup, L(DB) outputs the size of database |DB|,
i.e., the total number of initial document-keyword pairs in the
database. For simplicity we can assume this is zero initially. On
each search query wi, the leakage function L(DBi−1, H), leaks

SSEADD〈(σ, idd),EDB〉:

1: for w ∈ d do
2: [posw, `w, countw, rw, Bw]← hlookup(w,Mc)
3: Bw ← Bw ∪ {idd}
4: hwrite(w, [posw, `w, countw, rw, Bw],Mc)
5: sizec ← sizec + 1
6: end for
7: if sizec < maxc then
8: return
9: else

10: U ← {w ∈ |W | : rw == 1}
11: for w ∈ U do
12: [posw, `w, countw, rw, Bw] ← hlookup(w,

Mc)
13: for ` ∈ {0, . . . , L} do
14: S ← S ∪ READBUCKET(P (posw, `))
15: end for
16: end for
17: for (w,Ow) ∈ S do
18: O′w ← Ow ∪Bw
19: if |O′w| > maxb then
20: countw ← countw + 1
21: O′′w ← first maxb items in O′w
22: hwrite(Fkf (w||countw), O′′w,Ms)
23: O′w ← O′′w −O′w
24: end if
25: S ← (S − {(w,Ow)}) ∪ {(w,O′w)}
26: end for
27: for ` ∈ {L, . . . , 0} do
28: S′ ← {(w′, Ow′) ∈ S : P (x, `) =

P (posw′ , `)}
29: S′ ← Select min(|S′|, Z) blocks from S′.
30: S ← S − S′
31: WRITEBUCKET(P (x, `), S′)
32: for (w,Ow) ∈ S′ do
33: `w ← `
34: rw ← 0
35: Bw ← ∅
36: posw

R← {0, . . . , 2L}
37: hwrite(w, [posw, `w, countw, rw, Bw],

Mc)
38: end for
39: end for
40: sizec ← 0
41: end if

Fig. 5: Update for our DSSE scheme

the pattern of searches for wi in the history H . Note that this
does not leak wi itself, but only the location of all search/update
queries for wi in the sequence all previous read/updates. On
an update query di, the leakage function L(DBi−1, H) leaks
the total number of keywords in di, and also the total number
of keywords in di for which the number of documents in the
index has reached the multiple of our designated block-size.
Again, this does not leak what the actual keywords are and
how they are related to previous searches/updates (no leakage
of patterns). This leakage on updates simply captures the fact
that the server learns when full-blocks are pushed from the
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partial-block index to the full-block index.

Theorem 1: Our SSE Scheme is L-secure (see definition
in Section II-D), if F is a pseudorandom function, and E is a
CPA-secure encryption scheme.

Proof Sketch: First, we need to describe a simulator S that
given access to the leakage function describe above, simulates
the adversary A (i.e. untrusted server’s) view in the real world.

Description of the Simulator: The simulator initializes a
local position map that it uses for bookkeeping, just as the
honest client would.

On each update query di (or many updates if they are
batched), the simulator learns the number of keywords in di,
n. It also learns the total number of keywords in di that just
reached a full block (m) and need to be pushed to the full-block
index. It also knows (from the state it is keeping) the location
of the leaf for all deferred reads since the last update. The
simulator behaves similar to the honest client, except that he
generates the leaf location for each keyword being updated
uniformly at random and the m locations in the full-block
index where the newly filled blocks will go also uniformly at
random. It keeps record of all these locations in its position
map. Also, for all encrypted blocks it needs to send, it simply
generates fresh encryptions of dummy values using a random
encryption key it generates.

On each search query for wi, S learns (from the leakage
function) all previous occurrences of search/update for wi. If
this is the first occurrence, it chooses a random entry on the
ORAM tree for the OUI, a sequence of random locations that
have not yet been looked up in the full-block index, and also
stored these locations for bookkeeping. But if it is not the first
occurrence, S has previously stored the locations in the partial-
block and full-block index it had sent to the server. It simply
sends the same locations to the server again. This completes
the description of the simulator.

We need to show that the simulated view above is indistin-
guishable from the view of the adversary in the real execution.
We do so using a sequence of hybrids.

H0: In the first hybrid, the adversary is interacting with the
simulator described above. In other words, all ”random”
locations are generated uniformly at random and indepen-
dently, and all encrypted values are dummy values.

H1: In the second hybrid, all locations that were generated
uniformly at random are instead generated by the client
using a PRF with a random key kf not known to the
adversary.
Note that the advantage of an adversary in distinguishing
these two hybrids is bounded by the advantage of an
adversary in breaking the PRF security.

H2: In the third hybrid, all dummy encryptions are replaced by
the encryption of actual document identifiers (chosen by
the adversary) using a semantically secure symmetric-key
encryption as prescribed in the real protocol.
The advantage of the adversary in distinguishing the two
games is bounded by the security of the CPA-secure
encryption scheme used to encrypt document identifiers.

It only remains to show that the view of the adversary in
H2 is identical to the real protocols described earlier in this

Section. We consider adversary’s view for the search queries
and update queries separately. On update queries, both in the
real protocol and in H2, the location to be updated in the OUI
is generated using a PRF as described in the protocol, and so is
the location to be added to the full-block index for all keywords
that have reached a full block during this update. Similarly, in
both cases, the real document keywords used for generating
locations and the real document identifiers are encrypted. So
the two views are identical.

In case of read queries, if the keyword is being searched
for the first time, again the leaf location to be looked up in
both the real protocol and H2 are generated using a PRF, and
for repeated reads, in both cases, the exact same locations in
the OUI and the full-block index are looked up. Hence the two
views are identical. This concludes the proof sketch.

IV. EVALUATION

In this section we assess the feasibility and performance of
our SSE scheme for email, using experiments that are based on
real data. The two important requirements we focus on in our
evaluation are (1) storage usage both on the server side and
the client side, (2) IO performance on the server side. Again,
as existing (non-encrypted) mail search is already IO bound,
our primary concern is the second criteria.

A. Real World Data

Note that the performance of any SSE scheme critically
depends on two main pieces of information: (1) the distribution
and frequency of updates to the index, i.e., new keyword-
document pairs added to the search index, and (2) distribution
and frequency of the keywords being searched.

Data on Index Updates for Email Our email data comes
from Yahoo Webmail. Yahoo mail has hundreds of millions of
monthly active users and maintains a 30 day rolling window of
customer email for research. This dataset consists of the sent
and received emails of over one hundred thousand users who
opted into email collection for research. For privacy reasons,
we extract only the frequency of keywords, not the actual words
themselves and all analysis of the data itself was performed
directly on the map-reduce cluster containing the dataset: only
the counts of each token, not the tokens themselves, were
exported. On average, users receive 30 emails per day with a
standard deviation of 148. Furthermore, each message contains
an average of 143 (unstemmed) keywords in it with a standard
deviation of 140.

For all keyword data, we strip HTML from the messages
and use the standard tokenizer and stopword list from Apache
Lucene.5 No stemming or other filtering was applied. Between
this and the fact that the dataset spanned more than just English,
our data represents an upper bound for the “index everything”
approach. We identified a total of 62,131,942 keywords in our
dataset across all 100K users’ email. As the estimated number
of words in the English language is in the order of one million,
there is ample room for stemming and filtering to drastically
reduce this. Nevertheless, we stick with this number for our
experiments as an empirical worst case measurement.

5We used the list StopAnalyzer.ENGLISH_STOP_WORDS_SET.
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Approximating query data For two reasons, we do not have
access to comprehensive query data. First, there is no such
dataset of users’ queries for which users explicitly opted in.
Second, existing mail search supports more than single keyword
queries and as such queries are often in natural language. It is
unclear how to appropriately generate keyword searches from
such data. As such, for the sake of experiments, we assume
search terms are selected uniformly at random from the set of
all indexed words.

Given the low number of queries, we anticipate that the
overall effect of this is minimal. The primary concern in our
evaluation is the effect of the large number of updates on
storage and performance requirements.

B. IO Performance of IO-DSSE

We now examine the IO performance of IO-DSSE relative
to the operating conditions we observe at Yahoo. Our goal is
to measure the ability of our scheme to scale out to millions of
concurrent instances on arbitrary (and likely proprietary) cloud
infrastructure. As a result, we model such an system abstractly
as a key value store and measure the number of reads and
writes against it. We implement our scheme in Python against
this abstraction.

Our measurements are taken over 30 days of traffic
generated using the sampled distribution of keywords discussed
above and is repeated for 50 iterations. We assume that the
system pushes all client-side email messages to the server
every day. This models a mobile device that has access to a
free Internet connection when at home. Given that we fix the
distribution of keywords, we are left with three variables: the
number of searches, the number of emails per day, and the
number of keywords per email.

For simplicity, we fix the number of keywords at 350 (this is
two standard deviations above the average), and vary the number
of email messages starting with the average and incrementing
by the standard deviation. This has the net effect of changing
the total number of updates per day which (along with the
distribution of keywords) is the actual controlling variable for
performance. Similarly, we fix the number of searches at one
per day, modeling an active user (at Yahoo the average user
searches message content once per month.).

Finally, we somewhat arbitrarily fix the Path ORAM
parameters, assuming a height of 17 at 4 buckets per level
with each ORAM entry containing a block of 500 identifiers
(at 64 bits per file ID, this gives us blocks that approximately
fit in a 4KB disk block). Real deployments should tune these
parameters dependent on system architecture and testing. We
stress again that our goal is not to see how our system handles
large indexes—individual mail inboxes are at most tens of
gigabytes—but to measure the resources used by a small index.
This allows us to see how costly it is to deploy in a setting with
hundreds of millions of inboxes and thus indexes supported by
a minimal number of servers.

Our experiment measures the actual IO savings of our
scheme against:

• An encrypted index which, for updates, stores each
keyword-document pair at a random location. This repre-

sents the state of the art schemes under purely dynamic
insertion [5, 20], which perform identically.

• Our solution but with a naive implementation of an
Obliviously Updatable Index built with Path ORAM.

Because we are mainly concerned with the IO cost, it was
not necessary to implement the comparison systems. For the
current state of the art encrypted index, the number of random
writes will simply be equal to the number of inserted keywords,
and the number of random reads equal to the number of search
results. This provides a lower bound on the number of accesses
required for all of the DSSE schemes we compare with.

For a solution that uses the Path ORAM scheme as the OUI,
the cost of a search is dominated by one ORAM read and one
ORAM write. An ORAM “read” would be recorded as many
reads by our code as each level in the path generates a distinct
access. Thus, instead of one non-deferred read as in our scheme,
we charge oramHeight reads and oramHeight writes. By
read or write, we mean the access of a single key-value pair
in the underlying server-side data structure.

A third approach we could compare against is a variant
of Cash et al. scheme [4] where full-blocks are stored on the
server-side, and partial blocks are stored locally on the client
side. This would exhibit better performance than our scheme
in the short term, because it reduces IO costs compared to an
OUI. However, when the client-side storage becomes full, the
blocks need to be pushed to the index even if they are only
partially full and indeed maybe almost empty. As we will see
in the storage discussion, this does not work in practice as
the client would need to regularly push partially-filled blocks
to the static index, hence defeating the IO efficiency gains of
packing many documents identifiers into one block.

Using our implementation, we measure:

Total IO savings: The total amount of IO saved compared to
the existing approach of SSE schemes (including [5, 20]
under purely dynamic insertion). This includes both search
and update.

IO savings for search: The amount of savings on read due
to search, ignoring deferred reads. This represents the
immediate cost of a search and also the associated latency
savings.

IO savings vs. ORAM: Total IO savings when using an OUI
vs. ORAM. This is the savings due to our optimized
obliviously updatable index that does not require full
ORAM security.

The results show (see Figure 6) a 99% percent reduction
in the IO cost of our scheme compared to a scheme that does
one random read per search result and one random write per
keyword-document pair. This is slightly different from the naive
estimate for the savings of simply batching IO into contiguous
blocks of 500 (our chosen block size), i.e., x−

x
500

x = 0.998 due
to both the overhead of access to our obliviously updatable
index and the fact that entries will not be packed perfectly,
instead being added in smaller groups as they arrive. However,
some entries will still be in the stash locally and therefore will
not be read from the index. These two issues appear to roughly
cancel out.

We show a 94% percent reduction in the reads required
by the server for a search query for our scheme vs. simply
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Fig. 6: Experimental and simulated results. IO savings for IO-DSSE vs existing approach and vs an obliviously updatable index
constructed with PATH ORAM.

construction an obliviously updatable index with ORAM. This
shows that optimizations stemming from the relaxation of
ORAM’s security properties are effective.

This is both an important cost saving and a large reduction
in the latency of serving the first page results. These results
are exactly as predicted, since we do one read instead of 17
(the length of a full path for the chosen parameters) and save
17−1

17 = .941. Finally, our experiments show a 20% to 82%
reduction in the IO needed to return a search result. Since search
terms are selected uniformly at random from the set of results,
many searches have only 1 or 2 documents associated with them,
needing only the small corresponding number of reads from the
naive index vs. one read from the obliviously updatable index
in our scheme. For those, our scheme offers little advantage. As
we increase the number of received messages, the total number
of indexed documents and therefore the expected number of
results per search increases and our scheme becomes more
efficient. The variance in the number of results per search term
also accounts for the variance in the measured results. We again
note that, given the relative infrequence of searches against the
index compared to updates, this is not the crucial metric to
optimize for.

C. Simulated Long-term Storage Usage

We now examine the storage requirements for IO-DSSE
both on the server side (i.e. how large the obliviously updatable
index needs to be) and on the client side in terms of stored
metadata. The necessary size of the obliviously updatable index
is a function of the distribution of keywords, the rate of arrival
of keywords, and the amount of available local storage that
can be used to buffer results on the client.

Client storage Because the local client is trusted, we are under
no constraints as to how the storage is laid out and need not
obscure its access pattern. As a result, it does not make a

difference if all of the storage is used holding an entry for a
single keyword appearing in two million emails or one million
keywords each in one email. To a first approximation, client
storage is directly proportional to the number of documents
keyword pairs (as we store less than 8 bytes per unique
keyword). As shown in Figure 6, we use 62.7MB ± 13.2KB
for a 95th percentile user and 33.4MB ± 11.8KB for a 50th

percentile user.

Server storage for partial-block index Of course, once the
client’s storage is full, we must evict entries into the obliviously
updatable index, starting with the most full. For OUI, keyword
distribution comes into play. At some point the index will be
full of infrequent words and we will be forced to evict partial
blocks into the full-block index. The main questions we need
to answer are 1) how often does this happen and 2) how large
of a partial-block index we need to ensure it does not happen
too soon.

To measure this directly would involve experiments span-
ning the expected lifetime of a user’s mail account, which
is prohibitive to evaluate with a real implementation. Instead,
we conduct a Monte Carlo style simulation. We draw words
at random, according to the measured distribution of tokens
described in the previous section and measure how long it
takes before we are forced to evict a partially full block from
the OUI. Our simulator merely keeps track of how space is
allocated locally (client-side) and in the OUI and at what point
each becomes full and forces an eviction. The simulator does
not provide actual search results as the intention here is to
assess storage requirements.

We assume a local store of 128MB and 64-bit email
identifiers. We assume the cost of adding a new keyword
to the index is 100 bits. Rather than specifying a fixed size
for the OUI, we simply measure how many blocks would be
needed to fit the entire index.
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Fig. 7: Simulated long term storage for IO-DSSE. Left: the size of the obliviously updatable index needed (i.e. server side storage)
as time goes on for users of different activity levels. Right: the size of the client’s storage under the same conditions.

Our simulation validates that the general approach of
splitting the index into a partial-block and full-block index
is viable, showing that even for a 95th percentile user, 2GB
of partial-block index is sufficient to hold ten years worth of
email or nearly 100 years of email for the average user.

As the graph in Figure 6 shows, however, there appears
to be no upper bound on the size of the index, short of the
total number of observed words. This validates the following
intuition: evicting frequent words from the OUI when the block
is full ultimately does not free enough space for infrequent
words. That space will immediately be occupied by (in many
cases the same) frequent word. The long tail of keywords
causes problems. To accommodate this, providers must either
(1) limit the number of indexed words (e.g. to English words),
or (2) limit the amount of indexed email. In the case of a
limited set of keywords, the obliviously updatable index would
have a fixed size.

Deletes Recall, we can only delete emails from the obliviously
updatable index, so any index entries that have been evicted
from the OUI are permanent. How long does this give us to
fully delete a message (i.e. all index entries resulting from
that message’s arrival)? For a 95th percentile user, the most
frequent word is evicted 6724.8± 3.22490 times in 3650 days
or 2 evictions per day. For such a user, all index entries for an
email can only be deleted within a day of arrival. For the 50th

percentile user, on the other hand, where the most frequent
word is evicted 319.4±0.843274 times in 3650 days, all index
entries for an email can be removed if the email is deleted
within an expected 11 days of arrival.

V. RELATED WORK AND ATTACKS

A. Related work on searchable encryption

Searchable encryption has been studied in an extensive line
of works [5, 7, 8, 10, 15, 19]. Very few works have focused
on efficiency or locality. Cash et al. [5] provide the best
such approach. As we stressed in the introduction, however,
this approach does not help in the dynamic case: all existing

techniques insert each document ID associated with a given
keyword into a random location in the index.

B. Attacks

Recently Zang et al. [22] construct a highly effective query
recovery attack on SSE schemes. The attack leverages the
fact that an attacker who can insert entries into the index can
construct them such that the subset of attacker files returned
uniquely identifies the queried keyword. Effectively, this is a
more efficient version of the attacker inserting one unique file
per possible keyword which contains only that single keyword.
As this attack requires an adversary to insert files into the index,
it cannot be mounted by an adversary who wishes to passively
surveil many users. None-the-less, our scheme is subject to the
attack, and indeed if used for email, highly susceptible due to
the ease with which an attacker can insert files. This makes
the scheme useful for end-to-end encryption settings which
protect against dragnet surveillance. However, it should not be
used in scenarios where greater protection against an actively
malicious mail server is needed. Also, as the attack depends
only on observing retrieved files, there appears to be no simple
countermeasures. Forward private SSE schemes [3] do thwart
the adaptive version of the attack that requires injecting fewer
files, but again at a large locality cost. Moreover as Zang et
al. make clear, the non-adaptive attack still works even with
forward privacy and that attack is readily mountable in the
setting of email.

We are hopeful that some method of injecting noise into the
results or merely detecting when this attack has been mounted
will be developed. As these techniques likely operate over
the logical structure of the index, our scheme should be fully
compatible with them. But absent such countermeasures, SSE
in the email setting is only secure against passive adversaries
regardless of its IO efficiency.

VI. EXTENSIONS AND CONCLUSIONS

Encrypted search for email or similar messaging systems
represents a major obstacle for E2E encrypted applications. All
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existing built solutions place a prohibitively high IO cost on
updating the index on message arrival: requiring one random
write per document-keyword pair and one random read per
search. Using a hybrid approach where updates are done to
a dynamic ORAM-like index and then evicted to a chunked
index typically used for static searchable encryption, we are
able to reduce the total IO usage by 99%, and by building a
dynamic index that does not protect read privacy, we are able
to achieve a 94% reduction in the upfront costs of search.

Our approach, of course, is still more expensive than non-
encrypted search, and deploying for email is, in the end, a cost-
benefit analysis between the value of protecting user privacy
and the operating cost. But this is at least now a trade-off that is
far easier to make given our performance improvements. Indeed,
without such a reduction in IO cost, the cost of encrypted search
for email is too high.

Achieving this comes at some cost. First, we must slightly
relax the leakage function for searchable encryption: an attacker
learns when entries are moved from the partial to full-block
index, and we leak slightly more to an active attacker. Second, at
present, we only support deletes from the obliviously updatable
index, and third, we only provide single keyword search.

Future work and extensions The techniques of Cash et. al [5]
can readily be applied to our approach to get conjunctive search.
We can simply use their (or any other similar) scheme directly
for the full-block index. In their scheme, a keyword is associated
with a key used specifically for computing intersection tags
xtag based on indexes and set of all such tags xSET is stored
by the server. Because no additional data is associated with
the index entries on the server, and tags can safely be added
to xSET without additional leakage, this technique can be
applied to our approach simply by having the server store the
tag set.

To deal with deletes, it is possible to incrementally rebuild
the index. Instead of appending to the full index on eviction,
we can with some small probability overwrite a block in the
full index with one evicted from the partial index, storing
the overwritten block locally and then incrementally feeding
the non-deleted entries back. Thus the entire index would
periodically be refreshed. However, careful analysis of the
specific rate of deletion is needed to check if this approach
provides any practical benefit.

Finally, it is an interesting question whether similar relax-
ations to ORAM security can be used to build an obliviously
updatable index with something other than Path ORAM and
with even better efficiency.
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