

Avoiding The Man on the Wire: Improving Tor's Security with Trust-Aware Path Selection

Aaron Johnson Rob Jansen Aaron D. Jaggard Joan Feigenbaum Paul Syverson

(U.S. Naval Research Laboratory) (U.S. Naval Research Laboratory) (U.S. Naval Research Laboratory) (Yale University) (U.S. Naval Research Laboratory)

Febraury 28th, 2017 Network and Distributed System Security Symposium (NDSS 2017)

1. Problem

- 2. Background
- 3. Attack on Prior Approach
- 4. Solution #1: Use Trust
- 5. Solution #2: Cluster
- 6. Trust-Aware Path Selection
- 7. Conclusion

Users Destinations

Tor is a popular system for anonymous communication.

- > 1.5 million daily users
- > 80 Gbit/s aggregate traffic

Traffic Correlation Attack

Traffic Correlation Attack

Other attacks

- Website fingerprinting
- Application-layer leaks
- Latency leaks
- Congestion attacks
- Throughput attacks
- Denial-of-Service attacks

Talk Overview

- 1. Problem
- 2. Background
- 3. Attack on Prior Approach
- 4. Solution #1: Use Trust
- 5. Solution #2: Cluster
- 6. Trust-Aware Path Selection
- 7. Conclusion

1. Clients begin all connections with a given *guard*.

- 1. Clients begin all connections with a given *guard*.
- 2. Relays define individual *exit policies*.

- 1. Clients begin all connections with a given *guard*.
- 2. Relays define individual *exit policies*.
- 3. Clients construct onion-encrypted circuits.

- 1. Clients begin all connections with a given *guard*.
- 2. Relays define individual *exit policies*.
- 3. Clients construct onion-encrypted circuits.
- 4. Clients multiplex *streams* over a circuit.

- 1. Clients begin all connections with a given *guard*.
- 2. Relays define individual *exit policies*.
- 3. Clients construct onion-encrypted circuits.
- 4. Clients multiplex *streams* over a circuit.
- 5. New circuits replace existing ones periodically.

- 1. Clients begin all connections with a given *guard*.
- 2. Relays define individual *exit policies*.
- 3. Clients construct onion-encrypted circuits.
- 4. Clients multiplex *streams* over a circuit.
- 5. New circuits replace existing ones periodically.
- 6. Clients randomly choose proportional to bandwidth.

Adversary is local and active.

Adversary is local and active.

• Adversary may run relays

Adversary is local and active.

- Adversary may run relays
- Adversary may run destination

Adversary is local and active.

- Adversary may run relays
- Adversary may run destination
- Adversary may observe subnetworks

Background: Traffic Correlation

Traffic-correlation threats

Traffic-correlation threats

• Relays

Background: Traffic Correlation

Traffic-correlation threats

• Relays

U.S.NAVAI

- Autonomous Systems (ASes): the networks that compose the Internet
- Internet Exchange Points (IXPs): facilities at which many ASes simultaneously connect

- 1. Problem
- 2. Background
- 3. Attack on Prior Approach
- 4. Solution #1: Use Trust
- 5. Solution #2: Cluster
- 6. Trust-Aware Path Selection
- 7. Conclusion

Idea: Choose Tor circuits so that no single AS or IXP appears between client and guard and between exit and destination.

Idea: Choose Tor circuits so that no single AS or IXP appears between client and guard and between exit and destination.

- 1. N. Feamster and R. Dingledine, "Location diversity in anonymity networks," in Workshop on Privacy in the Electronic Society, 2004.
- 2. M. Edman and P. Syverson, "AS-awareness in Tor path selection," in ACM Conference on Computer and Communications Security, 2009.

U.S.NA

- 3. M. Akhoondi, C. Yu, and H. V. Madhyastha, "LASTor: A lowlatency AS-aware Tor client," in IEEE Symposium on Security & Privacy, 2012.
- 4. R. Nithyanand, O. Starov, P. Gill, A. Zair, and M. Schapira, "Measuring and mitigating AS-level adversaries against Tor," in Network & Distributed System Security Symposium, 2016.

Idea: Choose Tor circuits so that no single AS or IXP appears between client and guard and between exit and destination.

- 1. N. Feamster and R. Dingledine, "Location diversity in anonymity networks," in Workshop on Privacy in the Electronic Society, 2004.
- 2. M. Edman and P. Syverson, "AS-awareness in Tor path selection," in ACM Conference on Computer and Communications Security, 2009.

U.S.NA

- 3. M. Akhoondi, C. Yu, and H. V. Madhyastha, "LASTor: A lowlatency AS-aware Tor client," in IEEE Symposium on Security & Privacy, 2012.
- 4. R. Nithyanand, O. Starov, P. Gill, A. Zair, and M. Schapira, "Measuring and mitigating AS-level adversaries against Tor," in Network & Distributed System Security Symposium, 2016.

Astoria [Nithyanand et al. 2016]:

- 1. For new circuit, consider all pairs of guards and exits
	- a. If pair exists without same AS on both sides, choose randomly among such pairs proportionally to bandwidth
	- b. Else, choose pairs to minimize the maximum probability that any given AS can perform traffic correlation
- 2. Reuse existing circuit created for destination in same AS

Astoria [Nithyanand et al. 2016]:

- 1. For new circuit, consider all pairs of guards and exits
	- a. If pair exists without same AS on both sides, choose randomly among such pairs proportionally to bandwidth
	- b. Else, choose pairs to minimize the maximum probability that any given AS can perform traffic correlation
- 2. Reuse existing circuit created for destination in same AS

Problems:

- Adversaries need not only observe at an AS.
- 2. Location-based path selection leaks information about client and destination locations.

Chosen-Destination Attack on Astoria

Chosen-Destination Attack on Astoria

1. Client makes initial connection to malicious website.

Chosen-Destination Attack on Astoria

1. Client makes initial connection to malicious website.

Chosen-Destination Attack

Chosen-Destination Attack on Astoria

1. Client makes initial connection to malicious website.

U.S. NAVA

2. Client connects to sequence of malicious servers in other ASes to download resources linked in webpage.

Chosen-Destination Attack

Chosen-Destination Attack on Astoria

1. Client makes initial connection to malicious website.

U.S.NAVAI

2. Client connects to sequence of malicious servers in other ASes to download resources linked in webpage.

Chosen-Destination Attack

Chosen-Destination Attack on Astoria

1. Client makes initial connection to malicious website.

U.S.NAVAI

2. Client connects to sequence of malicious servers in other ASes to download resources linked in webpage.

Chosen-Destination Attack

Chosen-Destination Attack on Astoria

1. Client makes initial connection to malicious website.

U.S.NAVA

- 2. Client connects to sequence of malicious servers in other ASes to download resources linked in webpage.
- 3. Client eventually reveals guard(s) by choosing malicious middle relay.

Chosen-Destination Attack

Chosen-Destination Attack on Astoria

1. Client makes initial connection to malicious website.

U.S.NAVA

- 2. Client connects to sequence of malicious servers in other ASes to download resources linked in webpage.
- 3. Client eventually reveals guard(s) by choosing malicious middle relay.
- 4. Guard(s) and pattern of exits leaks client AS.

Chosen-Destination Attack

- 5 popular Tor client ASes
- Entropy over 400 popular Tor client ASes vs. number of random attack destination ASes
- Attack can succeed in seconds

- 1. Problem
- 2. Background
- 3. Attack on Prior Approach
- 4. Solution #1: Use Trust
- 5. Solution #2: Cluster
- 6. Trust-Aware Path Selection
- 7. Conclusion

Problem: Adversaries need not only observe at an AS.

Trust belief: probability distribution on adversary *location*

Tor relays

• *Virtual links*: client-guard and destination-exit links Trust policy:

- Trust belief per adversary
- Weight per adversary indicating concern level

A.D. Jaggard, A. Johnson, S. Cortes, P. Syverson, and J. Feigenbaum, "20,000 In League Under the Sea: Anonymous Communication, Trust, MLATs, and Undersea Cables", In Proceedings on Privacy Enhancing Technologies, Vol. 2015, Number 1, April 2015.

Trust Factors

- Relays: operator, uptime, country
- Links: AS, IXP, undersea cable, country

Trust Sources

- Default (provided by Tor)
- Trusted authorities (e.g. EFF)
- Social networks

- 1. Problem
- 2. Background
- 3. Attack on Prior Approach
- 4. Solution #1: Use Trust
- 5. Solution #2: Cluster
- 6. Trust-Aware Path Selection
- 7. Conclusion

Problem: Location-based path selection leaks information about client and destination locations.

Cluster Locations

- Locations are ASes (could also be IP prefixes)
- Tor clusters client and destination locations
- Cluster members act like the cluster representative
- Distance between locations is sum over guards/exits of expected weight of adversaries that appear on one virtual link but not the other

Modified k-means to choose balanced clusters

- 1. Problem
- 2. Background
- 3. Attack on Prior Approach
- 4. Solution #1: Use Trust
- 5. Solution #2: Cluster
- 6. Trust-Aware Path Selection
- 7. Conclusion

TrustAll

• All users use TAPS.

TrustOne

- Most users use "vanilla" Tor instead of TAPS.
- Exits may be chosen as in vanilla Tor to blend in (guards are chosen much less frequently).
- Tighter security parameters because load-balancing won't be as affected.

Guard selection

U.S. NAVAL RESEA

- 1. Score guards.
- 2. Randomly choose guard with score close enough to highest.

Guard selection

U.S. NAVAL

- Score guards.
- 2. Randomly choose guard with score close enough to highest.

Guard selection

U.S. NAVAL RESEA

- 1. Score guards.
- 2. Randomly choose guard with score close enough to highest.

Guard selection

U.S. NAVAI

- 1. Score guards.
- 2. Randomly choose guard with score close enough to highest.

- 1. Score exit routers.
- 2. Reuse circuit with exit score close enough to highest, else randomly choose such an exit.
- 3. If needed, randomly choose middle and construct circuit.

Guard selection

U.S. NAVAI

- 1. Score guards.
- 2. Randomly choose guard with score close enough to highest.

- 1. Score exit routers.
- 2. Reuse circuit with exit score close enough to highest, else randomly choose such an exit.
- 3. If needed, randomly choose middle and construct circuit.

Guard selection

U.S. NAVAI

- 1. Score guards.
- 2. Randomly choose guard with score close enough to highest.

- 1. Score exit routers.
- 2. Reuse circuit with exit score close enough to highest, else randomly choose such an exit.
- 3. If needed, randomly choose middle and construct circuit.

Guard selection

U.S. NAVAI

- 1. Score guards.
- 2. Randomly choose guard with score close enough to highest.

- 1. Score exit routers.
- 2. Reuse circuit with exit score close enough to highest, else randomly choose such an exit.
- 3. If needed, randomly choose middle and construct circuit.

Guard selection

U.S. NAVAI

- 1. Score guards.
- 2. Randomly choose guard with score close enough to highest.

- 1. Score exit routers.
- 2. Reuse circuit with exit score close enough to highest, else randomly choose such an exit.
- 3. If needed, randomly choose middle and construct circuit.

TAPS Experiments: Path Simulations

TrustAll

U.S.NAV

• Users engage in typical Web behavior (browse, search, social network, etc.), accessing 135 destination IPs

TrustOne

• User visits a single IRC chat server

Pervasive adversary "The Man" (possible default)

- Each AS/IXP organization independently compromised with probability 0.1
- Each relay family compromised with probability .02 ≤ *p* ≤ .1 decreasing with uptime of relays

TAPS Experiments: Path Simulations

U.S.NAVAI

Time to first compromised connection from most popular client AS (6128) over 7 days

Simulated network

- 400 relays
- 1380 clients: 1080 Web, 120 bulk, 180 ShadowPerf
- 500 file servers
- 1 simulated hour

TAPS simulation

- Implemented TAPS in Tor
- TrustAll algorithm
- The Man trust policy
- scoring relays to select from ($\alpha^{\omega}=0.2$ in path simulations) • Varied α^{ω} parameter of bandwidth fraction of highest-

TAPS Experiments: Shadow Simulations

U.S.NAVAL

- 1. Problem
- 2. Background
- 3. Attack on Prior Approach
- 4. Solution #1: Use Trust
- 5. Solution #2: Cluster
- 6. Trust-Aware Path Selection
- 7. Conclusion

Conclusion

U.S.NA\

- Tor can be deanonymized via timing correlation.
- We present an attack on previous defense.
- We propose the Trust-Aware Path Selection (TAPS) algorithm that is not vulnerable to our attack.
- We demonstrate TAPS can improve user security without major cost in performance.

Cross-Circuit Attack on Astoria

U.S.NA

- 1. Client makes initial connection to honest website (1).
- 2. Client downloads linked resource from other server. Needs to use different guard for (2) than used for (1).
- 3. Malicious AS can perform correlation attack across circuits using known download pattern for website.

Cross-Circuit Attack

- Repeatedly simulated Astoria visits to Alexa top 5000 websites from top 400 Tor client Ases
- Median frequency cross-circuit attack: 0.2
- Median frequency of direct-circuit attack: 0.03

U.S. NAVAI

U.S. NAVAI

U.S. NAVAI

U.S. NAVA

- GUARDSECURITY(*client_loc*, *guard*): Expected weight of adversaries not between *client_loc* and *guard*
- EXITSECURITY(*client_loc*, *dst_loc*, *guard*, *exit*): Expected weight of adversaries unable to perform correlation attack

U.S. NAVA

- GUARDSECURITY(*client_loc*, *guard*): Expected weight of adversaries not between *client_loc* and *guard*
- EXITSECURITY(*client_loc*, *dst_loc*, *guard*, *exit*): Expected weight of adversaries unable to perform correlation attack

U.S.NAVA

- GUARDSECURITY(*client_loc*, *guard*): Expected weight of adversaries not between *client_loc* and *guard*
- EXITSECURITY(*client_loc*, *dst_loc*, *guard*, *exit*): Expected weight of adversaries unable to perform correlation attack

U.S. NAVA

- GUARDSECURITY(*client_loc*, *guard*): Expected weight of adversaries not between *client_loc* and *guard*
- EXITSECURITY(*client_loc*, *dst_loc*, *guard*, *exit*): Expected weight of adversaries unable to perform correlation attack

TAPS Experiments: Path Simulations

U.S.NAVAI

Fraction of compromised connections from most popular AS (6128) over 7 days

TAPS Experiments: Countries

Streams compromised by any country for typical usage over 7 days from most popular AS (6128) (except from US where AS 6128 is).

U.S.NAVAL

Aggregate relay throughput