
DARK HAZARD: LEARNING-BASED,
LARGE-SCALE DISCOVERY OF HIDDEN
SENSITIVE OPERATIONS IN ANDROID
APPS

Xiaorui Pan, Xueqiang Wang, Yue Duan*,
XiaoFeng Wang, Heng Yin*
Indiana University Bloomington, *University of California Riverside

§  Automated Runtime Analysis

§  The problem?

Ø  Hidden Sensitive Operations (HSO):
Malware (or benign) apps conducted
sensitive operations only on certain
conditions (trigger) to hide from
automated runtime analysis

Hacking Team Remote Control System

§  Hidden Sensitive Operations (HSO)

Ø  Anti-emulator
Ø  QEMU property
Ø  Performance difference

Ø  Anti-sandbox
Ø  FireEye Sandbox Profiled

Ø  Logic bomb
Ø  time, location

Ø  Anti-runtime analysis
Ø  Determine the absense of a human user

§  Traditional Approaches

Ø  Academia solutions
Ø  Morpheus ACSAC 14

Ø  High false positive as a detection tool

Ø  TriggerScope S&P 16
Ø  Precise but heavyweight: symbolic execution
Ø  Need to know the types of trigger in advance

Ø  Currently limited to time, location, SMS

Ø  Industry solutions
Ø  Signature based
Ø  manual analysis

§  Our approach

Ø  Lightweight program analysis
Ø  Features based on unique observations

Ø  Scalability

Ø  >330K applications

Ø  Semi-supervised learning

Ø  First step towards a more general approach
Ø  Not limited to certain types of triggers or sensitive

operations

§  Observations

Ø  Data and semantic dependency between
conditions and paths in HSO are weak,

Ø  Conditions only serve as guard of
malicious behaviors

 AntiEmulator am = new AntiEmulator();
 if (am.isEmu()){
 ...
 deceptionCode2(…);
 return false;

 }

 ...//begin to root the phone if necessary
 ...//begin to monitor user behaviors

Observations

Ø  Normal case

§  Observations(2)

Ø  Behavior difference between two paths
Ø  AntiEmulator am = new AntiEmulator();
 if (am.isEmu()){

 ...

 deceptionCode2(…);

 return false;

 }

 ...//begin to root the phone if necessary

 no sensitive behaviors

 root exploit & monitor

§  Observations (3)

Ø  Source of trigger conditions

 com.android.dvci.core:
 am.isEmu()

Build.FINGERPRINT

Build.TAGS
Build.PRODUCT
Build.DEVICE
Build.BRAND

Build.MANUFACTURE
getDeviceId()

getLine1Number()
getSubscriberId()

. . .

§  Architecture

§  Features

Ø  Data and semantic dependency between
Condition and Paths

Ø  Data Dependency (DF1 DF2) : k/n
Ø  Semantic relevance: Implicit Relation (IR1 IR2)

Ø  Based on semantic relevance
Ø  And Frequency Analysis

§  Features

Ø  Behavior Differences
Ø  Data distance (DD)

Ø  We also want to know data relations between two
paths

§  Features

Ø  Behavior differences
Ø  Activity distance (AD)
Ø  Group APIs or system keys based upon similarity of their

functionalities
Ø  Android official documentation
Ø  Pscout
Ø  DroidSIFT
Ø  other system properties & settings.

Ø  Jaccard distance

Features

Ø  Source of trigger conditions
Ø  SI (System input)
Ø  System properties (OS or hardware traces of a mobile

device) or environment parameters (time, locations, user
inputs, etc.)

Ø  SUSI

§  Dataset

Ø  Ground Truth:
Ø  One HSO branch in each of 213 malwares

Ø  Found by known HSO trigger signatures
Ø  Non-HSO branches in 213 benign apps

Ø  Manual confirm and VirusTotal scan

Ø  Unknown Apps from the wild
Ø  124,207 Google Play Apps
Ø  214,147 VirusTotal Apps

§  Evaluation

Ø  Ground Truth
Ø  Cross-validation

Ø  Apps in the wild

Ø  Random Sampling
Ø  Precision: 98.4%
Ø  Recall not available

§  Performance

Ø  Random 3000 apps from Google-play average
size of 8.43MB

Ø  765.3 s per app
Ø  Dell desktop with 3.3GHz i5 processor
and 16GB RAM

Ø  Timeout: 60 mins
Ø  8.4% timeout

Ø  Compared with TriggerScope
Ø  5.2 times faster, on their dataset
Ø  35 apps which is publicly available
Ø  42.0 s VS 219.2 s

§  Understanding HSO

Ø  Landscape
Ø  Overall, 63,372 (18.7%) of 338,354 contain HSO
Ø  3,491 unique HSO instances

§  HSO and PHA

§  Triggers

§  Evolution

Video trigger

§  Click interval

Takeaways

Ø  Promising to combine machine learning and
lightweight program analysis
Ø  Towards scalability

Ø  First step towards generic evasion detection
techniques
Ø  Verify the feasibility

Ø  By >330k apps, prevalence of HSO in the wild
Ø  Urgency of countermeasures

 Thank you!

 Questions ?

§  Trapdoor on view

Limitations

Ø  Further Evasion
Ø  Intrinsic limitation of static analysis
Ø  Coverage

Ø  Native code
Ø  Server side

Future work

Ø  UI Context
Ø  User perception, app description context

§  Condition Path Graph(CPG)

