
Measuring small subgroup attacks
against Diffie-Hellman

Luke Valenta∗, David Adrian†, Antonio Sanso‡, Shaanan Cohney∗,
Joshua Fried∗, Marcella Hastings∗, J. Alex Halderman†, Nadia Heninger∗

∗University of Pennsylvania
†University of Michigan

‡Adobe

February 28, 2017



This work

I Revisit decades-old small subgroup attacks in Diffie-Hellman

I Looked at hosts and implementations in the wild

I Punch line: Nobody implements the countermeasures!

I Emerged from Logjam [ABDGGHHSTVVWZZ 2015]



Textbook (Finite-Field) Diffie-Hellman Key Exchange
[Diffie Hellman 1976]

p a prime (so F∗
p is a cyclic group)

g < p group generator (often 2 or 5)

ga mod p

gb mod p

Images from XKCD



Textbook (Finite-Field) Diffie-Hellman Key Exchange
[Diffie Hellman 1976]

p a prime (so F∗
p is a cyclic group)

g < p group generator (often 2 or 5)

ga mod p

gb mod p

gab mod p gab mod p

Encgab(data)

Images from XKCD



Textbook (Finite-Field) Diffie-Hellman Key Exchange
[Diffie Hellman 1976]

p a prime (so F∗
p is a cyclic group)

g < p group generator (often 2 or 5)

ga mod p

gb mod p

gab mod p gab mod p

Encgab(data)

Images from XKCD
NH: “There are dragons swimming under the placid surface of this beautiful
mathematical lake.”



Background: groups, subgroups, and generators
Cyclic group

Order = #elements in group

generator



Background: groups, subgroups, and generators
Cyclic group

Order = #elements in group

generator



Background: groups, subgroups, and generators
Cyclic group

Order = #elements in group

generator



Background: groups, subgroups, and generators
Cyclic group

Order = #elements in group

generator



Background: groups, subgroups, and generators
Cyclic group

Order = #elements in group

generator



Background: groups, subgroups, and generators
Cyclic group

Order = #elements in group

generator



Background: groups, subgroups, and generators
Subgroup

Order = #elements in subgroup

generator



Background: groups, subgroups, and generators
Subgroup

Order = #elements in subgroup

generator



Background: groups, subgroups, and generators
Subgroup

Order = #elements in subgroup

generator



Background: groups, subgroups, and generators
Subgroup

Order = #elements in subgroup

generator



Background: groups, subgroups, and generators
Small subgroup

Order = #elements in subgroup

generator



Background: groups, subgroups, and generators
Small subgroup

Order = #elements in subgroup

generator



Background: groups, subgroups, and generators
Small subgroup

Order = #elements in subgroup

generator



Background: groups, subgroups, and generators
Small subgroup

Order = #elements in subgroup

generator



Existence of small subgroups → small subgroup attacks.

g generates correct subgroup of order q

g3 generates subgroup of order 3

[Lim Lee 1997]
g3

gb, Encgb
3

(data)

compute b mod 3

Repeat for many small subgroups =⇒ find b using Chinese
Remainder Theorem



Existence of small subgroups → small subgroup attacks.

g generates correct subgroup of order q

g3 generates subgroup of order 3

[Lim Lee 1997]
g3

gb, Encgb
3

(data)

compute b mod 3

Repeat for many small subgroups =⇒ find b using Chinese
Remainder Theorem



Small subgroup attacks

Made much worse with...

I Many small subgroups (i.e., p-1 has many small factors)

I Short secret exponents (common optimization)

I Reused Diffie-Hellman values (common optimization)



Countermeasures

The countermeasures against these attacks are well known, and
built into every DH standard:

I Use a “safe” prime p = 2q + 1, where q is prime

1. Verify 2 ≤ y ≤ p− 2 (otherwise, may leak 1 bit)

I Use a subgroup of large prime order q mod p

1. Verify 2 ≤ y ≤ p − 2

2. Verify 1 = yq mod p



Inspiration for our work

The attacks and defenses are known. Why is this work interesting?

“The Internet is vast, and filled with bugs.”

—Adam Langley, Crypto 2013

Theorem (Murphy’s law)

Anything that can go wrong, will go wrong.

Corollary

If it is possible for an implementation to have made a mistake,
someone has.



Inspiration for our work

The attacks and defenses are known. Why is this work interesting?

“The Internet is vast, and filled with bugs.”

—Adam Langley, Crypto 2013

Theorem (Murphy’s law)

Anything that can go wrong, will go wrong.

Corollary

If it is possible for an implementation to have made a mistake,
someone has.



Inspiration for our work

The attacks and defenses are known. Why is this work interesting?

“The Internet is vast, and filled with bugs.”

—Adam Langley, Crypto 2013

Theorem (Murphy’s law)

Anything that can go wrong, will go wrong.

Corollary

If it is possible for an implementation to have made a mistake,
someone has.



Standards mandate smaller subgroups
Leaves room for implementation mistakes

NIST SP800-56a: Recommendation for Pair-Wise
Key Establishment Schemes Using Discrete
Logarithm Cryptography

I No extra benefit from using small subgroups when already
using short exponents

I DSA needs small subgroups, but not DH



Fast internet scanning lets us study behavior of
publicly accessible hosts.

Widely deployed RFC5114 groups follow NIST
recommendations*:

Group Host Counts

Name p (bits) q (bits) HTTPS SMTP IKEv1 IKEv2

Group 22 1024 160 3% ≈ 0% 17% 13%
Group 23 2048 224 ≈ 0% 33% 17% 13%
Group 24 2048 256 ≈ 0% ≈ 0% 18% 14%

Total — — 40.6M 3.4M 1.9M 1.3M

Group 23: Can recover 201 bits of exponent in ≈ 242 work

*: Scans from November 2016



Hosts don’t validate group order.

Hosts accepting. . .

DHE Hosts
Non-Safe

Primes

HTTPS 11M 14%
IKEv1 2.6M 13%
IKEv2 1.3M 14%

SSH 11M ≈ 0%



Hosts don’t validate group order.

Hosts accepting. . .

DHE Hosts
Non-Safe

Primes
0

HTTPS 11M 14% 0.6%
IKEv1 2.6M 13% *
IKEv2 1.3M 14% *

SSH 11M ≈ 0% 3%

*: Did not scan: 0 causes unpatched Libre/Openswan to restart IKE daemon.



Hosts don’t validate group order.

Hosts accepting. . .

DHE Hosts
Non-Safe

Primes
0 1

HTTPS 11M 14% 0.6% 3%
IKEv1 2.6M 13% * 28%
IKEv2 1.3M 14% * 0%

SSH 11M ≈ 0% 3% 25%

*: Did not scan: 0 causes unpatched Libre/Openswan to restart IKE daemon.



Hosts don’t validate group order.

Hosts accepting. . .

DHE Hosts
Non-Safe

Primes
0 1 p-1

HTTPS 11M 14% 0.6% 3% 5%
IKEv1 2.6M 13% * 28% 27%
IKEv2 1.3M 14% * 0% 0%

SSH 11M ≈ 0% 3% 25% 33%

*: Did not scan: 0 causes unpatched Libre/Openswan to restart IKE daemon.



Hosts don’t validate group order.

Hosts accepting. . .

DHE Hosts
Non-Safe

Primes
0 1 p-1 g3/g7

HTTPS 11M 14% 0.6% 3% 5% ≈ 100%
IKEv1 2.6M 13% * 28% 27% 99%
IKEv2 1.3M 14% * 0% 0% 97%

SSH 11M ≈ 0% 3% 25% 33% N/A

*: Did not scan: 0 causes unpatched Libre/Openswan to restart IKE daemon.



Libraries don’t validate group order.
Similar findings to [DCE 2017 (up next!)]

Library
(TLS)

Validation

Mozilla NSS g ≤ 2
OpenJDK g ≤ 2
OpenSSL 1.0.2 None*
BouncyCastle g ≤ 2
Cryptlib g ≤ 2
libTomCrypt None
CryptoPP None
Botan None
GnuTLS g ≤ 2

I “The server obtains the DH
parameters via a PKCS#3 file which
does not contain any subgroup
information. This file format is the
defacto standard across all crypto
libraries.”

I OpenSSL vulnerable to full
Lim-Lee key recovery attack for
RFC 5114 primes

I Amazon Load Balancer vulnerable
to partial key recovery attack

*: before CVE-2016-0701 in Jan ’16



Misconceptions

Academics

“There are many good reasons
for using smaller subgroups,
including efficiency and the fact
that this setting matches the
theoretical security analyses of
cryptosystems.”

Implementors

“safe primes (...) have quite
some undesirable properties.
They don’t have a subgroup with
size of the selected security
parameter and that requires
them to use very large keys.”

Fact: Short exponents with safe primes and with small subgroups
are both well-studied



Disconnects

Academics

“(...) it is only necessary to
validate cryptographic
parameters properly - but this is
very well-known.”

Implementors

“I bet there are TLS clients (and
other DH users) out there that
use those values, and we would
break them (...) functionality
trumps security every day, and
twice on Tuesdays.”

Countermeasures may be known, but are not always implemented



Takeaways

I Standards writers:
I Software developers have different priorities
I The fewer checks required, the better! (Murphy’s Law)

I Software developers:
I Take care when it comes to cryptographic validation
I Project Wycheproof: test crypto libraries against known

attacks (https://github.com/google/wycheproof)

I Sysadmins:
I Test your servers with our tools!

(https://github.com/eniac/crypscan)

Questions?

https://github.com/google/wycheproof
https://github.com/eniac/crypscan


Takeaways

I Standards writers:
I Software developers have different priorities
I The fewer checks required, the better! (Murphy’s Law)

I Software developers:
I Take care when it comes to cryptographic validation
I Project Wycheproof: test crypto libraries against known

attacks (https://github.com/google/wycheproof)

I Sysadmins:
I Test your servers with our tools!

(https://github.com/eniac/crypscan)

Questions?

https://github.com/google/wycheproof
https://github.com/eniac/crypscan


Takeaways

I Standards writers:
I Software developers have different priorities
I The fewer checks required, the better! (Murphy’s Law)

I Software developers:
I Take care when it comes to cryptographic validation
I Project Wycheproof: test crypto libraries against known

attacks (https://github.com/google/wycheproof)

I Sysadmins:
I Test your servers with our tools!

(https://github.com/eniac/crypscan)

Questions?

https://github.com/google/wycheproof
https://github.com/eniac/crypscan


Takeaways

I Standards writers:
I Software developers have different priorities
I The fewer checks required, the better! (Murphy’s Law)

I Software developers:
I Take care when it comes to cryptographic validation
I Project Wycheproof: test crypto libraries against known

attacks (https://github.com/google/wycheproof)

I Sysadmins:
I Test your servers with our tools!

(https://github.com/eniac/crypscan)

Questions?

https://github.com/google/wycheproof
https://github.com/eniac/crypscan


References

Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice
David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick
Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger,
Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin
VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin, Paul
Zimmermann. CCS 2015. weakdh.org

Indiscreet Logs: Persistent Diffie-Hellman Backdoors in TLS
Kristen Dorey, Nicholas Chang-Fong, Aleksander Essex. NDSS
2017

weakdh.org


Measuring small subgroup attacks
against Diffie-Hellman

Luke Valenta∗, David Adrian†, Antonio Sanso‡, Shaanan Cohney∗,
Joshua Fried∗, Marcella Hastings∗, J. Alex Halderman†, Nadia Heninger∗

∗University of Pennsylvania
†University of Michigan

‡Adobe

February 28, 2017


