Pushing the Communication Barrier in 2PC using Lookup Tables

Ghada Dessouky*, Farinaz Koushanfar[†], Ahmad-Reza Sadeghi*, Thomas Schneider*, Shaza Zeitouni*, and <u>Michael Zohner</u>*

*Technische Universität Darmstadt [†]University of California, San Diego

Secure 2PC

TECHNISCHE UNIVERSITÄT DARMSTADT

Secure 2PC

TECHNISCHE UNIVERSITÄT DARMSTADT

Secure 2PC

TECHNISCHE UNIVERSITÄT DARMSTADT

This work: semi-honest (passive) security

UNIVERSITAT DARMSTADT

Sugar Beet Auction [BCD+09]

TECHNISCHE UNIVERSITÄT DARMSTADT

Sugar Beet Auction [BCD+09]

Face Recognition [EFG+09]

TECHNISCHE UNIVERSITÄT DARMSTADT

Generic Secure 2PC

TECHNISCHE UNIVERSITÄT DARMSTADT

Two prominent techniques: Yao's protocol and GMW

Both evaluate Boolean circuits securely

- XOR gates are "free"
- AND gates cost sym. crypto / comm.

Difference: round complexity

- Yao is constant round
- GMW requires interaction per AND gate

Practical Improvements

TECHNISCHE UNIVERSITÄT DARMSTADT

Speed of 2PC Implementations

Currently: 3 million ANDs/s per thread, however:

- We have hit a comm. lower-bound per AND for Yao [ZRE15]
- Run-time for GMW often is mostly network latency

Lookup Tables

Our Contributions

Develop lookup table (LUT)-based protocols

Tool support for generating LUT circuits

Evaluation and comparison

(Paper: improve building blocks & comm. for GMW)

Lookup Table Protocols

TECHNISCHE UNIVERSITÄT DARMSTADT

100N Oblivious Transfer

TECHNISCHE UNIVERSITÄT DARMSTADT

Bob obliviously obtains one of N messages s.t.

- Alice does not learn Bob's choice $\,c\,$
- Bob does not learn Alice's other messages

Most efficient protocol 100N OT: [KK13]

Intuition of the Protocols

TECHNISCHE UNIVERSITÄT DARMSTADT

Use [KK13] 100N OT to perform table lookups

LUT Protocols

We develop two LUT protocols based on [KK13] OT

- Online Phase LUT (OP-LUT)
- Setup Phase LUT (SP-LUT)

Generating LUT Circuits

Tool Support for LUTs

TECHNISCHE UNIVERSITÄT DARMSTADT

Generating LUT circuits is difficult and error-prone

Automation is required

Idea: FPGAs internally operate on single output LUTs

• Use ABC logic syntesis to generate single output LUTs

Add post-processing to improve efficiency

Combining LUTs

FPGAs only support single output LUTs

We combine LUTs with similar inputs to improve efficiency

SP-LUT Communication: 512 bits

SP-LUT Communication: 380 bits

Extracting XORs

Since XORs are free, we can extract them

Example
$$z = (x \stackrel{?}{=} y)$$

Comparison

TECHNISCHE UNIVERSITÄT DARMSTADT

Communication

- Mostly: SP-LUT < GMW < OP-LUT < Yao
- Boolean circuits perform better for sequential structures
- LUT circuits perform best for tree based structures

Communication

Mostly: SP-LUT < GMW < OP-LUT < Yao

- Boolean circuits perform better for sequential structures
- LUT circuits perform best for tree based structures

Communication

Mostly: SP-LUT < GMW < OP-LUT < Yao

- Boolean circuits perform better for sequential structures
- LUT circuits perform best for tree based structures

Interaction Rounds

- Yao is constant round
- Mostly: SP-LUT < OP-LUT < GMW
- Exception: Multiplication with Ripple-carry addition

Interaction Rounds

- Yao is constant round
- Mostly: SP-LUT < OP-LUT < GMW
- Exception: Multiplication with Ripple-carry addition

Empirical Evaluation

TECHNISCHE UNIVERSITÄT DARMSTADT

AES encryption of 1000 blocks using 4 threads

- LAN (1 GBit network, 0.2 ms latency)
- WAN (28 MBit network, 122ms latency)

Conclusion

TECHNISCHE UNIVERSITÄT DARMSTADT

Communication is bottleneck in 2PC

Developed LUT protocols based on 100N OT

Tool chain for compiling LUT circuits

Showed that LUT protocols can improve communication

Thank you for your attention

From 1002 OT to 100N OT

Our Results

TECHNISCHE UNIVERSITÄT DARMSTADT

Michael Zohner - Pushing the Communication Barrier in 2PC

100N OT Extension [KK13]

TECHNISCHE

UNIVERSITÄT DARMSTADT

Michael Zohner - Pushing the Communication Barrier in 2PC

From 1002 OT to 100N OT

- TECHNISCHE UNIVERSITÄT DARMSTADT
- 100N OT can be obtained from logN 1002 OTs.
- Example 1004:

From 100N OT to 1002 OT

 Surprising insight: reducing 100N OT to single bit 1002 OT saves communication

Best for N=16: Requires 320 bits instead of 512 bits