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Why Share Keys?
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The private key Is never reconstructed!

& Who generates the shared key?
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Trusted Dealers
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Drawbacks:
e Single point of failure

 May have to destroy dealer afterwards




Distributed Generation
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Advantages:

* Nobody ever knows the entire key

* No single point of failure
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RSA Keys
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An n-bit modulus, N = pg
The encryption (public) key

The decryption (private) key

Sharingofd:d=d; +d,+d;

(&~ Can apply key without reconstructing d

d is the secret

porg - d




Distributed Generation’
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i, §; are N/2 bit integers
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N=(p,+p,+pPs) @ +0,+03) =pQ

Nobody ever knows p or Q!

(*Boneh-Franklin)




How Do They Compare?
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Non-Distributed:
* Pick prime p

 Pick prime q

e Multiply

Distributed:

e Pick N

 Hope N = pg is an RSA modulus
e Can’t test p and g separately

(&~ Distributed generation takes more iterations
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Main Results
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Initial time: 2.5 hours
(1024-bit key)

e Distributed Sieving x 10
e Multithreading X 6

e Load Balancing x 1.3

e Parallel Trial Division x 1.3

Final time: 1.5 minutes




Minding Your p’s and (’s
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« Bad N - probably divisible by 3or5or 7 or ...

 |dea: Ensure that N isn’t divisible by any small primes

& Distributed Sieving

« Can pick p,, g so that p, g are not divisible by small primes

... But nobody actually knows p or q!




Using Idle Time
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e Synchronous algorithm - synchronization delays
e Under-utilizing CPU — idle 80% of time

& Multithreading

6 threads optimal for 1024-bit key
e Almost 6 times faster!
(On 300Mhz Pentium II's running Solaris 2.6)




Costly Biprimality Test

R AUTRRT AT

 Biprimality test involves time-consuming calculation

 |dea: Only one server needs to do this

& Load Balancing

e A different server does test for each iteration

* Probabillistic load balancing




More Small Primes
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* What about small primes not covered by sieving?

e Trial division on N by small primes

& Parallel Trial Division

e Each server does trial division on different small primes




Private Key Generation
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* Implemented method for small €
* In RSA usually use a small e

e After N Is found, generate d,, d,, and d; so:

d+d,+d;=d

... But do this so that nobody ever knows d

* There is an additional way to share d

* Only a fraction of servers need to be active




Implementation: Config File
AR

Num Servers: 3
Key Lengt h:
Thr eads: 2

Tri al D v_End: 10000
Si eve: True
Test Mbde: True
Sequence_Nunbers: True
Transport: sslv3

Share I P Port O: 8080

Server | P_Addr _O: Ittc.stanford. edu

Server Sequence File O: com security/seqO

Server Cert O: com security/cert _s0. pem
Server Key O: com security/ key s0. pem




Implementation: COM
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» Abstraction layer
 Fault tolerance - non-blocking I/O
 Private, authenticated channels

e Based on SSLeay

» Authenticates share servers using a server certificate:

/| C=US/ ST=Cal i forni a/ O=Stanford Uni versity/
OU=I TTC Pr oj ect/ CN=[ SERVER 0]




Shared Key Storage
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e Stored as PEM-encoded ASN.1 format

Data Type Field
Integer Version

Integer
Integer
Integer

Integer

Integer




Performance
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Key Size

Threads

Primality
Tests

lterations

Total Time

Network
Traffic

512 bit
1024 bit
2048 bit

2
6
6

36
49
234

119
130
495

0.15 min
1.5 min
18 min

0.18 Mb
1.16 Mb
7.48 MDb

On three 300Mhz Pentium II's running Solaris 2.6

 Network bandwidth Is reasonable
e 1024-bit works well

e 2048-bit is reasonable




Effect of Number of Servers
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Time to generate a 1024-bit RSA key

4 5 WAN 1 CPU
Number of Servers

WAN:

e Two servers at Stanford
* One server at University of Wisconsin at Madison
o Difficult to find PC’s running Solaris
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Effect of Threads
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Minutes

SO L N W~ O O N

Threads Threads

e Synchronization/CPU tradeoff

 Minimize time with 6 threads

*Generating a 1024-bit RSA key




Effect of Distributed Sieving
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Iterations
Seconds

50 150 50
Sieve Bound Sieve Bound

» Sieve bound is largest prime sieved

e Larger sieve - fewer iterations

e Diminishing returns

*Generating a 512-bit RSA key




Conclusions
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(&~ Distributed key generation is practical:
* 1.5 minutes for 1024-bit key

(&~ Several practical improvements to algorithm
* Distributed Sieving
« Multithreading
 Load Balancing
 Parallel Trial Division

(&~ Optimized cryptographic algorithm

» Requires security proofs

http://theory. stanford. edu/ ~dabo/I TTC




