
([SHULPHQWLQJ�ZLWK�6KDUHG
*HQHUDWLRQ�RI�56$�.H\V

Michael Malkin
Thomas Wu
Dan Boneh

Stanford University
*Supported by DARPA

2

CA

d

d1

d2

d3

FWho generates the shared key?

CA

The private key is never reconstructed!

3

Drawbacks:
• Single point of failure

• May have to destroy dealer afterwards

d1

d2

d3

CA Trusted
Dealer

4

Step 1 Step 2 Step 3

d1 d2

d3

Advantages:
• Nobody ever knows the entire key

• No single point of failure

N
e

5

d is the secret

p or q → d

An n-bit modulus, N = pq

The encryption (public) key

The decryption (private) key

N

e

d

Sharing of d : d = d1 + d2 + d3

F Can apply key without reconstructing d

6

(*Boneh-Franklin)

pi, qi are n/2 bit integers

p1
q1

p2
q2

p3
q3

N = (p1 + p2 + p3)· (q1 + q2 + q3) = pq

Biprimality
Test

Nobody ever knows p or q!

1

p1
q1

p2
q2

p3
q3

2

3

4
p1,q1

d1

p2,q2

d2

p3,q3

d3

N

7

Non-Distributed:
• Pick prime p

• Pick prime q

• Multiply

Distributed:
• Pick N

• Hope N = pq is an RSA modulus

• Can’t test p and q separately

F'LVWULEXWHG�JHQHUDWLRQ�WDNHV�PRUH�LWHUDWLRQV

8

• Distributed Sieving × 10

• Multithreading × 6

• Load Balancing × 1.3

• Parallel Trial Division × 1.3

Initial time: 2.5 hours
(1024-bit key)

Final time: 1.5 minutes

9

p q

• Bad N → probably divisible by 3 or 5 or 7 or …

• Idea: Ensure that N isn’t divisible by any small primes

F Distributed Sieving

• Can pick pi, qi so that p, q are not divisible by small primes

… But nobody actually knows p or q!

10

• Synchronous algorithm → synchronization delays

• Under-utilizing CPU — idle 80% of time

F Multithreading

• 6 threads optimal for 1024-bit key

• Almost 6 times faster!

 (On 300Mhz Pentium II’s running Solaris 2.6)

11

• Biprimality test involves time-consuming calculation

• Idea: Only one server needs to do this

F Load Balancing

• A different server does test for each iteration

• Probabilistic load balancing

12

• What about small primes not covered by sieving?

• Trial division on N by small primes

F Parallel Trial Division

• Each server does trial division on different small primes

13

• Implemented method for small e
• In RSA usually use a small e

• After N is found, generate d1, d2, and d3 so:

d1 + d2 + d3 = d

… But do this so that nobody ever knows d

• There is an additional way to share d

• Only a fraction of servers need to be active

14

,PSOHPHQWDWLRQ��&RQILJ�)LOH

Num_Servers: 3
Key_Length: Normal
Threads: 2

TrialDiv_End: 10000
Sieve: True
Test_Mode: True
Sequence_Numbers: True
Transport: sslv3

Share_IP_Port_0: 8080
Server_IP_Addr_0: ittc.stanford.edu
Server_Sequence_File_0: com_security/seq0
Server_Cert_0: com_security/cert_s0.pem
Server_Key_0: com_security/key_s0.pem

15

• Abstraction layer

• Fault tolerance - non-blocking I/O

• Private, authenticated channels

• Based on SSLeay

• Authenticates share servers using a server certificate:

 /C=US/ST=California/O=Stanford University/
 OU=ITTC Project/CN=[SERVER 0]

16

6KDUHG�.H\�6WRUDJH

• Stored as PEM-encoded ASN.1 format

Data Type Field
Integer Version
Integer N
Integer e
Integer k
Integer d 1

M M

Integer d k

17

On three 300Mhz Pentium II’s running Solaris 2.6

• Network bandwidth is reasonable

• 1024-bit works well

• 2048-bit is reasonable

Primality Network
Key Size Threads Tests Iterations Total Time Traffic

512 bit 2 36 119 0.15 min 0.18 Mb
1024 bit 6 49 130 1.5 min 1.16 Mb
2048 bit 6 234 495 18 min 7.48 Mb

18

(IIHFW�RI�1XPEHU�RI�6HUYHUV

0
1
2
3
4
5
6

M
in

ut
es

3 4 5 WAN 1 CPU

Number of Servers

Time to generate a 1024-bit RSA key

WAN:
• Two servers at Stanford
• One server at University of Wisconsin at Madison
• Difficult to find PC’s running Solaris

19

0

200

400

600

800

1000

1200

0 2 4 6 8

Threads

It
er

at
io

n
s

p
er

 T
h

re
ad

0

1

2

3

4

5

6

7

0 2 4 6 8

Threads

M
in

u
te

s
• Synchronization/CPU tradeoff

• Minimize time with 6 threads

*Generating a 1024-bit RSA key

20

(IIHFW�RI�'LVWULEXWHG�6LHYLQJ

*Generating a 512-bit RSA key

• Sieve bound is largest prime sieved

• Larger sieve → fewer iterations

• Diminishing returns

0

2000

4000

6000

8000

10000

12000

It
er

at
io

n
s

0 50 150

Sieve Bound

0

200

400

600

800

1000

1200

S
ec

o
n

d
s

0 50 150

Sieve Bound

21

F Distributed key generation is practical:
• 1.5 minutes for 1024-bit key

F Several practical improvements to algorithm
• Distributed Sieving

• Multithreading

• Load Balancing

• Parallel Trial Division

F Optimized cryptographic algorithm
• Requires security proofs

http://theory.stanford.edu/~dabo/ITTC

