Experimenting with Shared
Generation of RSA Keys

[T ARTARC My

Michael Malkin
Thomas Wu
Dan Boneh

Stanford University
*Supported by DARPA

Why Share Keys?

TV ATIAC My

CA / d,
<+« (

2

<>

M

d,

The private key Is never reconstructed!

& Who generates the shared key?

2

Trusted Dealers

VTR ARTAR M

CA / - \ Trusted

<> d— Dealer

\d/

Drawbacks:
e Single point of failure

 May have to destroy dealer afterwards

Distributed Generation

VTR ARTAR M

Advantages:

* Nobody ever knows the entire key

* No single point of failure

Step 1 Step 2

“—>

N

RSA Keys

R AUTRRT AT

An n-bit modulus, N = pg
The encryption (public) key

The decryption (private) key

Sharingofd:d=d; +d,+d;

(&~ Can apply key without reconstructing d

d is the secret

porg - d

Distributed Generation’

SIATTATTH

. Y. - > Bipimdity @)

S| 92 Y Test

i, §; are N/2 bit integers

2 4
Py P> P3 ‘ N . P10, P> 0, P3 03
d; 0> Oz d, d, d,

N=(p,+p,+pPs) @ +0,+03) =pQ

Nobody ever knows p or Q!

(*Boneh-Franklin)

How Do They Compare?

R AUTRRT AT

Non-Distributed:
* Pick prime p

 Pick prime q

e Multiply

Distributed:

e Pick N

 Hope N = pg is an RSA modulus
e Can’t test p and g separately

(&~ Distributed generation takes more iterations

v

Main Results

| TR OTEAU Ry

Initial time: 2.5 hours
(1024-bit key)

e Distributed Sieving x 10
e Multithreading X 6

e Load Balancing x 1.3

e Parallel Trial Division x 1.3

Final time: 1.5 minutes

Minding Your p’s and (’s

| RTITATTAR Ay

« Bad N - probably divisible by 3or5or 7 or ...

 |dea: Ensure that N isn’t divisible by any small primes

& Distributed Sieving

« Can pick p,, g so that p, g are not divisible by small primes

... But nobody actually knows p or q!

Using Idle Time

| RTITATTAR Ay

e Synchronous algorithm - synchronization delays
e Under-utilizing CPU — idle 80% of time

& Multithreading

6 threads optimal for 1024-bit key
e Almost 6 times faster!
(On 300Mhz Pentium II's running Solaris 2.6)

Costly Biprimality Test

R AUTRRT AT

 Biprimality test involves time-consuming calculation

 |dea: Only one server needs to do this

& Load Balancing

e A different server does test for each iteration

* Probabillistic load balancing

More Small Primes

| RTITATTAR Ay

* What about small primes not covered by sieving?

e Trial division on N by small primes

& Parallel Trial Division

e Each server does trial division on different small primes

Private Key Generation

R AUTRRT AT

* Implemented method for small €
* In RSA usually use a small e

e After N Is found, generate d,, d,, and d; so:

d+d,+d;=d

... But do this so that nobody ever knows d

* There is an additional way to share d

* Only a fraction of servers need to be active

Implementation: Config File
AR

Num Servers: 3
Key Lengt h:
Thr eads: 2

Tri al D v_End: 10000
Si eve: True
Test Mbde: True
Sequence_Nunbers: True
Transport: sslv3

Share I P Port O: 8080

Server | P_Addr _O: Ittc.stanford. edu

Server Sequence File O: com security/seqO

Server Cert O: com security/cert _s0. pem
Server Key O: com security/ key s0. pem

Implementation: COM

R AUTRRT AT

» Abstraction layer
 Fault tolerance - non-blocking I/O
 Private, authenticated channels

e Based on SSLeay

» Authenticates share servers using a server certificate:

/| C=US/ ST=Cal i forni a/ O=Stanford Uni versity/
OU=I TTC Pr oj ect/ CN=[SERVER 0]

Shared Key Storage

R AUTRRT AT

e Stored as PEM-encoded ASN.1 format

Data Type Field
Integer Version

Integer
Integer
Integer

Integer

Integer

Performance

R AUTRRT AT

Key Size

Threads

Primality
Tests

lterations

Total Time

Network
Traffic

512 bit
1024 bit
2048 bit

2
6
6

36
49
234

119
130
495

0.15 min
1.5 min
18 min

0.18 Mb
1.16 Mb
7.48 MDb

On three 300Mhz Pentium II's running Solaris 2.6

 Network bandwidth Is reasonable
e 1024-bit works well

e 2048-bit is reasonable

Effect of Number of Servers
ARV TTATAT My

Time to generate a 1024-bit RSA key

4 5 WAN 1 CPU
Number of Servers

WAN:

e Two servers at Stanford
* One server at University of Wisconsin at Madison
o Difficult to find PC’s running Solaris

©
@
O]
-
e
l_
-
(]
o
(%))
c
o
=
@©
—
O]
=

Effect of Threads

R AUTRRT AT

Minutes

SO L N W~ O O N

Threads Threads

e Synchronization/CPU tradeoff

 Minimize time with 6 threads

*Generating a 1024-bit RSA key

Effect of Distributed Sieving

[T ARTARC My

Iterations
Seconds

50 150 50
Sieve Bound Sieve Bound

» Sieve bound is largest prime sieved

e Larger sieve - fewer iterations

e Diminishing returns

*Generating a 512-bit RSA key

Conclusions

R AUTRRT AT

(&~ Distributed key generation is practical:
* 1.5 minutes for 1024-bit key

(&~ Several practical improvements to algorithm
* Distributed Sieving
« Multithreading
 Load Balancing
 Parallel Trial Division

(&~ Optimized cryptographic algorithm

» Requires security proofs

http://theory. stanford. edu/ ~dabo/I TTC

