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Privacy Leakage
Major Security Threat to Web Applications 
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Motivation

HTTPOS
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Encryption is not enough to prevent
Privacy Leakage

To avoid privacy leakage
(e.g., padding at the sever side)

Methods with better scalability and flexibility
Browser-side solution 



Challenges and Contributions
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Challenges in a browser-side solution:

�Can’t modify the server’s behavior directly

�Encrypted tunnels at different layers have different features

�Performance degradation

HTTPOS Contributions:

�Provide a comprehensive and configurable suite of traffic 
transformation techniques

�Protect privacy for four popular scenarios

�Reduce performance degradation
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Attack Scenarios
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Targeted Traffic Analysis Attacks
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Attack Name Features Methods

SSWRPQ (SP’02)

BLJL (PET’05)

LL-JC (CCS’06)

CWWZ (SP’10)

The number and size of web objects

Inter-arrival time between packets and packet size

Tuples of (flow direction, packet size)

Sequence of tuples (flow direction, packet size)

Jaccard Coefficient

Cross Correlation

Jaccard Coefficient

Sequence Comparison

Naïve BayesianTuples of (flow direction, packet size)LL-NBC (CCS’06)
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Two Defence Strategies in HTTPOS
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Diffusion Strategy:

�Generate features that never appear in the training data set

Confusion Strategy:

�Make features in flow A similar to those in flow B



Basic Methods in HTTPOS
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Object1 Object2

Protocol Method Effectiveness

TCP                    MSS                              Packet Size etc.

TCP                 ADWIN                          Packet Size etc.

HTTP                Range               Packet Size, Object Size  etc.

HTTP            Pipelining           Packet Size, Object Size  etc.

HTTP       Useless Request      Packet Size, Object Size  etc.



OSes
(NO. of 
Servers)

ADVg=2000
MSSL=256

MSSL=Default
ADVL=256

ADVL=MSSL

MSSL=256

Windows(388) 89.43% 95.36% 99.48%

Linux(3875) 98.63% 99.32% 99.94%

AIX(19) 100.0% 94.73% 100.0%

Solaris(71) 100.0% 97.18% 100.0%

FreeBSD(224) 99.55% 99.10% 100.0%

BIG-IP(380) 99.21% 99.47% 100.0%

Others(3888) 96.38% 97.38% 99.76%

TCP Features Measurement Result
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Top 2,000 Web Sites from www.Alexa.com

143,333 URLs from 8,845 Web Servers



Google web servers
(# of servers)

Pipelining

sffe(38) 100.0%

DFE/largefile(109) 100.0%

GSE(24) 100.0%

codesite(2) 100.0%

Others(58) 100.0%

Google web 
servers

(# of URLs)
Range Range + Pipelining

sffe(2580) 99.88% 99.88%

DFE/largefile(461) 100.0% 100.0%

GSE(906) 48.59% 48.59%

codesite(335) 0% 0%

Others(340) 0% 0%

Web servers
(# of URLs)

Range Range + Pipelining

Apache(59698) 89.02% 68.80%

IIS(22485) 85.03% 73.38%

nginx(18714) 83.16% 70.74%

lighttpd(5506) 82.64% 67.51%

Others(36930) 66.74% 53.98%

Web servers
(# of servers)

Pipelining

Apache(4249) 63.90%

IIS(1738) 77.00%

nginx(1103) 75.16%

lighttpd(367) 74.70%

Others(1388) 65.13%

HTTP Features Measurement Result
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HTTPOS’s Operation
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Implementation
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Scenario HTTPOS Implementation

Wireless Channel
IPSec Tunnel

HTTP proxy

SSH Tunnel

HTTPS Channel

SOCKS v4 proxy

HTTPs proxy

iptables libnetfilter_queue

TCP Layer:

HTTP Layer:
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Evasion Evaluation through IPSec Tunnel

Evasion Capability by HTTPOS 
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Evading CWWZ Attack through HTTPS Channel

****
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Single Method Performance
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Impacts on the performance of Internet browsing

Overall Performance in IPSec Tunnel

Overall Performance in SSH Tunnel
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Evade Attack

SSWRPQ

BLJL

LL-JC & LL-NBC



Impacts on the performance of Google Search

Overall Performance in Wireless Channel
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Evade Attack

CWWZ

Injection Delay

Request-to-Response Time

Request-to-Response Time

Processing Time

With HTTPOS

Without HTTPOS

Original Request

Injected Request

ACK packet

Response

Response
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Limitations
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Privacy leakage from SSL/TLS record length analysis 

URLs supporting Range can be divided into randomly overlap partials

URL does not support any features required by HTTPOS

Useless requests can raise the bar for the CWWZ attack



Conclusion and Future Work
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Browser-side techniques
sufficient and practice to avoid privacy leakage from encrypted HTTP flows

HTTPOS

Protect your own privacy on demand

Future Work
�Further mitigating impact of HTTPOS on performance 
�Sealing privacy leakages in other web applications



ThanksThanks

26


