
2011 022011 02

HTTPOS:

Sealing Information Leaks with Browser-side

Obfuscation of Encrypted Flows

Daniel Xiapu Luo§§§§, Brent Peng Zhou§§§§, Edmond W. W. Chan§§§§

Wenke Lee†, Rocky K. C. Chang§§§§, Roberto Perdisci‡

The Hong Kong Polytechnic University§§§§

Georgia Institute of Technology†

University of Georgia‡

Encrypted
Tunnel/Channel

2

Privacy Leakage
Major Security Threat to Web Applications

Content

Motivation

Threat Model

HTTPOS Design

Implementation

Evaluation

Conclusion

3

Motivation

HTTPOS

4

Encryption is not enough to prevent
Privacy Leakage

To avoid privacy leakage
(e.g., padding at the sever side)

Methods with better scalability and flexibility
Browser-side solution

Challenges and Contributions

5

Challenges in a browser-side solution:

�Can’t modify the server’s behavior directly

�Encrypted tunnels at different layers have different features

�Performance degradation

HTTPOS Contributions:

�Provide a comprehensive and configurable suite of traffic
transformation techniques

�Protect privacy for four popular scenarios

�Reduce performance degradation

Content

Motivation

Threat Model

HTTPOS Design

Implementation

Evaluation

Conclusion

6

Attack Scenarios

Web Sites

Wireless

Access Point

Encrypted

Wireless ChannelClient

Attacker

HTTPOS

Web Sites

Encrypted IP Tunnel
Client

Attacker

Tunnel Entry

Point

Tunnel Exit

Point

Web Sites

Encrypted TCP Tunnel
Client

Attacker

Tunnel Entry

Point

Tunnel Exit

Point

HTTPOS

Encrypted HTTP Tunnel
Client

Attacker

Web Pages

HTTPOSHTTPOS

7

Attacker’s
goal

Visibility of
HTTP header

Visibility of
TCP header

Visibility of
Destination IP

HTTPOS’s
location

Wireless

IP Tunnel

TCP Tunnel

HTTPS

Web Site

Web Site

Web Site

Web Page

Client

Client/Tunnel

Entry

Client/Tunnel

Entry

Client

Targeted Traffic Analysis Attacks

P1P4

P2P3

P1 P2 P3

t1 t2 t3
P4

t4

P5

P6P5
t5 t6

P6

Object 1 Object 2

8

Attack Name Features Methods

SSWRPQ (SP’02)

BLJL (PET’05)

LL-JC (CCS’06)

CWWZ (SP’10)

The number and size of web objects

Inter-arrival time between packets and packet size

Tuples of (flow direction, packet size)

Sequence of tuples (flow direction, packet size)

Jaccard Coefficient

Cross Correlation

Jaccard Coefficient

Sequence Comparison

Naïve BayesianTuples of (flow direction, packet size)LL-NBC (CCS’06)

Content

Motivation

Threat Model

HTTPOS Design

Implementation

Evaluation

Conclusion

9

Two Defence Strategies in HTTPOS

10

Diffusion Strategy:

�Generate features that never appear in the training data set

Confusion Strategy:

�Make features in flow A similar to those in flow B

Basic Methods in HTTPOS

PacketWeb Object
Part

1
Part2

Request1Request2Request 1+2

Server A

Server B

Real Request

Useless Request

Object

Useless
Object

?

11

Object1 Object2

Protocol Method Effectiveness

TCP MSS Packet Size etc.

TCP ADWIN Packet Size etc.

HTTP Range Packet Size, Object Size etc.

HTTP Pipelining Packet Size, Object Size etc.

HTTP Useless Request Packet Size, Object Size etc.

OSes
(NO. of
Servers)

ADVg=2000
MSSL=256

MSSL=Default
ADVL=256

ADVL=MSSL

MSSL=256

Windows(388) 89.43% 95.36% 99.48%

Linux(3875) 98.63% 99.32% 99.94%

AIX(19) 100.0% 94.73% 100.0%

Solaris(71) 100.0% 97.18% 100.0%

FreeBSD(224) 99.55% 99.10% 100.0%

BIG-IP(380) 99.21% 99.47% 100.0%

Others(3888) 96.38% 97.38% 99.76%

TCP Features Measurement Result

12

Top 2,000 Web Sites from www.Alexa.com

143,333 URLs from 8,845 Web Servers

Google web servers
(# of servers)

Pipelining

sffe(38) 100.0%

DFE/largefile(109) 100.0%

GSE(24) 100.0%

codesite(2) 100.0%

Others(58) 100.0%

Google web
servers

(# of URLs)
Range Range + Pipelining

sffe(2580) 99.88% 99.88%

DFE/largefile(461) 100.0% 100.0%

GSE(906) 48.59% 48.59%

codesite(335) 0% 0%

Others(340) 0% 0%

Web servers
(# of URLs)

Range Range + Pipelining

Apache(59698) 89.02% 68.80%

IIS(22485) 85.03% 73.38%

nginx(18714) 83.16% 70.74%

lighttpd(5506) 82.64% 67.51%

Others(36930) 66.74% 53.98%

Web servers
(# of servers)

Pipelining

Apache(4249) 63.90%

IIS(1738) 77.00%

nginx(1103) 75.16%

lighttpd(367) 74.70%

Others(1388) 65.13%

HTTP Features Measurement Result

13

HTTPOS’s Operation

No
Yes

No

Yes

Yes

No

URL

In cache?

Collect URL
information and store

them into cache

Method Based on ADV

Inject Useless Request

Get URL information

Support
Range?

Method Based on
MSS + ADV

Support
Pipelining?

Method Based on
Pipelining + Range

Method Based on
Multiple Connections +

Range

End

Performance
Improvement

14

Content

Motivation

Threat Model

HTTPOS

Implementation

Evaluation

Conclusion

15

Implementation

16

Scenario HTTPOS Implementation

Wireless Channel
IPSec Tunnel

HTTP proxy

SSH Tunnel

HTTPS Channel

SOCKS v4 proxy

HTTPs proxy

iptables libnetfilter_queue

TCP Layer:

HTTP Layer:

Content

Motivation

Threat Model

HTTPOS

Implementation

Evaluation

Conclusion

17

Evasion Evaluation through IPSec Tunnel

Evasion Capability by HTTPOS

18

Evading CWWZ Attack through HTTPS Channel

19

Single Method Performance

20

Impacts on the performance of Internet browsing

Overall Performance in IPSec Tunnel

Overall Performance in SSH Tunnel
21

Evade Attack

SSWRPQ

BLJL

LL-JC & LL-NBC

Impacts on the performance of Google Search

Overall Performance in Wireless Channel

22

Evade Attack

CWWZ

Injection Delay

Request-to-Response Time

Request-to-Response Time

Processing Time

With HTTPOS

Without HTTPOS

Original Request

Injected Request

ACK packet

Response

Response

Original Request

Content

Motivation

Threat Model

HTTPOS

Implementation

Evaluation

Conclusion

23

Limitations

24

Privacy leakage from SSL/TLS record length analysis

URLs supporting Range can be divided into randomly overlap partials

URL does not support any features required by HTTPOS

Useless requests can raise the bar for the CWWZ attack

Conclusion and Future Work

25

Browser-side techniques
sufficient and practice to avoid privacy leakage from encrypted HTTP flows

HTTPOS

Protect your own privacy on demand

Future Work
�Further mitigating impact of HTTPOS on performance
�Sealing privacy leakages in other web applications

ThanksThanks

26

