
Efficient Private Statistics with Succinct Sketches

Luca Melis, George Danezis, and Emiliano De Cristofaro
Department of Computer Science, University College London

{luca.melis.14, g.danezis, e.decristofaro}@ucl.ac.uk

Abstract—Large-scale collection of contextual information is
often essential in order to gather statistics, train machine learning
models, and extract knowledge from data. The ability to do
so in a privacy-preserving way – i.e., without collecting fine-
grained user data – enables a number of additional compu-
tational scenarios that would be hard, or outright impossible,
to realize without strong privacy guarantees. In this paper, we
present the design and implementation of practical techniques
for privately gathering statistics from large data streams. We
build on efficient cryptographic protocols for private aggregation
and on data structures for succinct data representation, namely,
Count-Min Sketch and Count Sketch. These allow us to reduce
the communication and computation complexity incurred by each
data source (e.g., end-users) from linear to logarithmic in the size
of their input, while introducing a parametrized upper-bounded
error that does not compromise the quality of the statistics. We
then show how to use our techniques, efficiently, to instantiate
real-world privacy-friendly systems, supporting recommendations
for media streaming services, prediction of user locations, and
computation of median statistics for Tor hidden services.

I. INTRODUCTION

The increasing amount of contextual information collected
by multitudes of always-on, always-connected devices makes
it increasingly possible to extract value and knowledge from
statistical data. For instance, Google analyzes GPS locations
reported by mobile devices to calculate the speed along a road
and generate live traffic maps (Google Traffic), and search data
to estimate and predict flu activity (Google Flu Trends). Alas,
the large-scale collection of user data raises serious privacy,
confidentiality, and liability concerns. This motivates the need
for efficient and scalable techniques allowing providers to
privately gather statistics, and to use such statistics to train
models and facilitate predictions. Our work is actually inspired
by a few real-world problems:

P1 Online streaming services routinely collect statistics about
videos watched by their users, and provide them with
personalized suggestions, typically, using recommender
systems. In particular, we will focus on recommendations
for BBC’s iPlayer [1], an online platform offering free
streaming of TV programs.

P2 Urban planning committees, as well as mass transport op-
erators, are keen on gathering statistics about movements

and commuting paths, aiming to improve transportation
services and predict future trends, e.g., to respond to
anomalies and disruptions on short notice [57, 60].

P3 The Tor network [28] needs to collect traffic statistics
such as the number of, and traffic generated by, hidden
services, in order to fine tune design decisions and con-
vince their funders of the value of the network [32].

In general, we are interested in scenarios where providers
need to train models based on aggregate statistics gathered
from many data sources, and our goal is to do so without
disclosing fine-grained information about single sources. In
theory, we could turn to existing cryptographic protocols for
privacy-friendly aggregation: using homomorphic encryption
or secret sharing untrusted aggregators can collect encrypted
readings but only decrypt the sum [9, 13, 15, 33, 47, 61].
However, these tools require each data source to perform a
number of cryptographic operations, and transmit a number
of ciphertexts, linear in the size of their input, which makes
them impractical when sources contribute large streams. For
instance, in scenario P1, we need to collect distributions of “co-
views” (i.e., pairs of videos watched by the same user) in order
to perform recommendations based on K-Nearest Neighbor
(KNN) algorithms [25]: even when only hundreds of programs
are available, each user would have to encrypt and transmit a
matrix of hundreds of thousands of values.

Also, differential privacy could be used to let aggregators
add noise to datasets so that other parties may perform
statistical queries while the probability of identifying single
records is minimized [23]. However, differential privacy alone
would not protect the privacy of single data sources w.r.t.
the aggregators themselves. Although recent work such as
RAPPOR [34] supports, via input perturbation, differentially-
private statistics collection with an untrusted aggregator, it
actually requires millions of users in order to obtain reasonably
accurate answers.

Our insight is to combine privacy-preserving aggregation
with data structures supporting succinct data representation,
namely, Count-Min Sketch [22] and Count Sketch [16] (intro-
duced in Section II-B). Private aggregation is performed over
the sketches, rather than the raw inputs. Despite an upper-
bounded error in the aggregate is introduced, this allows us to
reduce communication and computational complexity (for the
cryptographic operations) from linear to logarithmic in the size
of the inputs. We then use the resulting private statistics tools to
instantiate protocols and build systems addressing applications
P1–P3 discussed above, where the error does not affect the
overall quality of the computation.

More precisely, in Section III, we present a privacy-
preserving recommender system allowing online streaming ser-
vices like BBC’s iPlayer to support recommendations without

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23175

tracking their users. Users’ browsers encrypt and transmit a
succinct representation of the co-view matrix (i.e., pairs of
videos they have watched) so that the BBC can only decrypt
the aggregate matrix (i.e., how many users have watched a
given pair). This is broadcast back to the users and used to
derive recommendations. Next, in Section IV, we introduce
an Android application enabling users to report to a service
provider their locations over time, in a privacy-preserving way,
i.e., so that only aggregate statistics are disclosed. We then
show that these can be used to train a model geared to predict
future movements. Finally, in Section V, we build a system for
privately computing statistics of Tor hidden services, aiming
to address the conflict between the importance to collect (and
publish) such statistics and the risk of harming the privacy of
individual Tor users. This addresses an open problem raised
by the Tor Project [39]. We show how to estimate median
statistics by collecting an encrypted frequency distribution of
the statistics across all Hidden Services Directories (HSDir).

We also discuss real-world deployment and present full-
blown implementations of our techniques, in JavaScript, An-
droid, and/or Python. Our design makes it extremely easy for
anyone to integrate our techniques – as simple as installing
a package from a public repository. User-side deployment is
transparent too, as client-side code can run in the browser
(in JavaScript), thus requiring no additional software to be
installed or technical understanding of the cryptographic layer.

Our techniques are not limited to one particular model:
on the contrary, we can support different trust, robustness, and
deployment models. Although our three applications all gather
statistics via private sketch aggregation, they do differ in a few
key characteristics. The privacy-friendly recommendation and
location prediction systems (cf. Section III–IV) build atop a
privacy-preserving aggregation scheme where private keys sum
up to zero [47, 61], and use the aggregator itself as a bulletin
board to distribute users’ public keys. We implement them
in JavaScript to support seamless web application deployment
and portability to multiple browsers as well as Android.
On the other hand, our first-of-its-kind protocol for median
statistics of Tor hidden services (cf. Section V) uses additively
homomorphic threshold decryption, relying on a set of non-
colluding authorities. It is developed in Python so that it can
be integrated on Tor Hidden Service Directories. We also show
how to integrate differential privacy guarantees by adding noise
to leaked intermediate values during the median estimation
process which does not involve non-linear operations.

Paper organization. The rest of the paper is organized as
follows. Next section introduces relevant background informa-
tion, then, Section III and Section IV present, respectively, a
privacy-preserving recommender system for online broadcast-
ers and an Android-based private location prediction service.
Section V introduces a system for privately computing the me-
dian statistics of Tor hidden services. After reviewing related
work in Section VI, the paper concludes with Section VII.

II. PRELIMINARIES

A. Cryptographic Background

Computational Diffie Hellman Assumption. Let G be a
cyclic group of order q (|q| = τ , for security parameter τ), with

generator g. We say that the Computational Diffie Hellman
(CDH) problem is hard if, for any probabilistic polynomial-
time algorithm A and random x, y drawn from Zq:

Pr [A(G, q, g, gx, gy) = gxy]

is negligible in the security parameter τ .

Decisional Diffie Hellman Assumption. Let G be a cyclic
group of order q (|q| = τ), with generator g. We say that the
Decisional Diffie Hellman (DDH) problem is hard if, for any
probabilistic polynomial-time algorithm A′ and random x, y, z
drawn from Zq:∣∣∣Pr [A′(G, q, g, gx, gy, gz) = 1]− Pr [A′(G, q, g, gx, gy, gxy) = 1]

∣∣∣
is negligible in the security parameter τ .

Pairwise Independent Hash Functions. Let H be a family of
random-looking hash functions mapping values from a domain
[D] to a range [R]. H is pairwise independent iff ∀x 6= y ∈ [D]
and ∀a1, a2 ∈ [R]: Prh∈H [h(x) = a1 ∧ h(y) = a2] =

1
R2 .

B. Count-Min Sketch and Count Sketch

Count-Min Sketch [22] is a data structure that can be used to
provide a succinct sublinear-space representation of multi-sets.
An interesting property is that they enable aggregation of the
multi-sets represented by two or more sketches using a linear
operation on the sketches themselves. Prior uses of Count-
Min Sketch include summarizing large amounts of frequency
data for sensing, networking, natural language processing, and
database applications [2].

Definition 1 (Count-Min Sketch). A Count-Min Sketch with
parameters (ε, δ) is a two-dimensional array (table) X , with
width w and depth d. Given parameters (ε, δ), set d = dlnT/δe
and w = de/εe, where T is the number of items to be counted.
Each entry of the table is initialized to zero. Then, d hash
functions hj : {0, 1}∗ → {0, 1}w, are chosen uniformly at
random from a pairwise-independent family H.

Update Procedure. To update item i by a quantity ci, ci is
added to one element in each row, where the element in row j
is determined by the hash function hj . The update is denoted
as (i, ci). More precisely, to update the count for item i to
ci ∈ N, for each row j of X , set:

X[j, hj(i)]← X[j, hj(i)] + ci

Estimation Procedure. To estimate the count ĉi for item i, we
take the minimum of the estimates of ci from every row of X:

ĉi ← min
j
X[j, hj(i)]

Error Upper Bound. Given estimate ĉi, it holds:

1) ci ≤ ĉi
2) ĉi ≤ ci + ε

∑T
j=1 |cj | with probability 1− δ.

(where ci is the true counter).

Count Sketch [16] is a data structure which provides an
estimate for an item’s frequency in a stream. Count Sketch has
the same update procedure as Count-Min Sketch, but differs

2

in the estimation. Specifically, given the table X built on the
stream, the row estimate of ci (which is the counter of item i)
for row j is computed based on two buckets: X[i, hj(i)] and
X[i, h′j(i)], where h′j(i) is defined as:

h′j(i) :=

{
hj(i)− 1 if hj(i) mod 2 = 0

hj(i) + 1 if hj(i) mod 2 = 1

The estimate of ci for row j is then(
X[j, hj(i)]−X[j, h′j(i)]

)
To estimate the count ĉi for item i, we take the median of the
estimates of ci from every row of X:

ĉi ← median
j

(
X[j, hj(i)]−X[j, h′j(i)]

)
Both Count-Min and Count Sketch are linear: the element-
wise sum of the sketches representing two multi-sets yields
the sketch of their union.

C. Differential Privacy

Differentially private mechanisms allow a party publishing
a dataset to make sure that only a bounded amount of infor-
mation is leaked. Output perturbation mechanisms modify a
statistic on a dataset D, prior to its release, using a randomized
algorithm A, so that the output of A does not reveal too much
information about any particular row in D.

Definition 2 (ε-Differential privacy [30]). A randomized algo-
rithm A satisfies ε-differential privacy, if for any two neighbor
datasets D1 and D2 that differ only in one row, and for any
possible output R of A, it holds:

Pr [A(D1) = R] ≤ eε · Pr [A(D2) = R]

Note that ε here is used differently than in the Count-
Min Sketch’s definition. Although this somewhat overloads the
notation for ε, it is actually clear from the context if it relates
to the data structure or to the differential privacy setting.

Laplace Mechanism. In Section V, we use the differentially
private Laplace mechanism [31], which perturbs the output of
a function F . Given F , the Laplace mechanism transforms F
into a differentially private algorithm, by adding independent
and identically distributed (i.i.d.) noise (denoted as η) into each
output value of F . The noise η is sampled from a Laplace
distribution Lap(λ) with the following probability density
function: Pr[η = x] = 1

2λe
|x|λ. Dwork [30] proves that the

Laplace mechanism ensures ε-differential privacy if λ ≥ S(F)
ε ,

with S(F) denoting the sensitivity of F , defined as:

S(F) = max
D1,D2

||F (D1)− F (D2)||1

where || · ||1 denotes the L1 norm, and D1 and D2 are any two
neighbor datasets. Intuitively, S(F) measures the maximum
possible change in F ’s output when we modify one arbitrary
row in F ’s input.

D. ItemKNN-based Recommender Systems

Recommender systems are used to predict the utility of
a certain item for a particular user, based on their previous
ratings as well as those of other “similar” users [58]. Consider
a set of N users and a list of M items: for each user, a
rating can be associated to each item, based, e.g., on the
user’s explicit opinion about the item (e.g., 1 to 5 stars) or by
implicitly deriving it from purchase records or browser history.

Machine learning can be used to predict the expected rating
of an unrated item for a given user. The K-Nearest Neighbor
(KNN) classification algorithm finds the top-K nearest neigh-
bors for a given item, so that ratings associated with these are
combined to predict unknown ratings. In this paper, we use a
variant called ItemKNN [59]. The algorithm is trained using an
item-to-item similarity matrix (correlation matrix), where each
element expresses the similarity between a pair of items, and
the Cosine Similarity is computed between vectors of items
(e.g., user ratings for each item).

If ratings are binary values (e.g., viewed/not viewed), as in
one of our applications (see Section III), the Cosine Similarity
between items a and b is:

{Sim}ab =
Cab√
Ca · Cb

(1)

where Cab, Ca, and Cb denote, respectively, the number of
people who rated both a and b, a, and b. Given the similarity
matrix, we can identify the nearest neighbors for each item as
the items with the highest correlation values. The final model
then consists of the identity of the nearest neighbors and their
correlation values (or weights) which are used in the prediction
process, i.e., the items that should be recommended.

Note that, with ItemKNN, given the item-to-item matrix,
each user could independently compare their ratings with the
nearest neighbors of each item in the model. Upon finding a
match, the weight is added to the prediction score for that item.
The items are then ranked by their prediction scores and the
top K are taken as recommendations.

E. Exponential Weighted Moving Average (EWMA)

Exponential Weighted Moving Average (EWMA) mod-
els [62] can predict future values based on past values weighted
with exponentially decreasing weights toward older values.
Given a signal over time r(t), we indicate with r̃(t + 1) the
predicted value of r(t+ 1) given the past observations, r(t′),
at time t′ ≤ t. Predicted signal r̃(t+ 1) is estimated as:

r̃(t+ 1) =

t∑
t′=1

α(1− α)t−t
′
r(t′)

where α ∈ (0, 1) is the smoothing coefficient, and t′ = 1, . . . , t
indicates the training window, i.e., 1 corresponds to the oldest
observation while t is the most recent one.

In the rest of this work, we present efficient techniques
to estimate, in a private and distributed way, the training
datasets required for ItemKNN-based Recommender System,
Exponential Weighted Moving Average (EWMA) modeling,
as well as median and other frequency statistics. The mech-
anisms combine traditional linear aggregation with sketches,
for efficiency, and, when needed, differential privacy to limit
information leakage.

3

III. PRIVATE RECOMMENDER SYSTEMS FOR
STREAMING SERVICES

Media streaming services are becoming increasingly popu-
lar as numerous dedicated providers (e.g., Netflix, Amazon,
Hulu) as well as “traditional” broadcasting services (e.g.,
BBC, CNN, Al-Jazeera) offer digital access to TV shows,
movies, documentaries, and news. One of the providers’ goals
is often continuous user engagement, thus, new content should
periodically be suggested to users based on their interests.
These recommendations are usually provided by means of
recommender systems [3, 41] like ItemKNN (cf. Section II-D),
which typically require the full availability of users’ ratings,
whereas, we focus on a model where a provider like the BBC
provides recommendations to its users, e.g., on iPlayer, without
tracking their preferences and viewings. Note that iPlayer does
not actually require users to register or have an account, which
further motivates the need to protect users’ privacy.

A. Overview

We present a novel privacy-friendly recommender system
where the ItemKNN algorithm is trained using only aggregate
statistics. Aiming to build a global matrix of co-views (i.e.,
pairs of programs watched by the same user) in a privacy-
preserving way, we rely on (i) private data aggregation based
on secret sharing (inspired by the “low overhead protocol”
in [47]), and (ii) the Count-Min Sketch data structure to
reduce the computation/communication overhead, trading off
an upper-bounded error with increased efficiency.

Recommendations are derived, based on ItemKNN, as
follows: users’ interests are modeled as a (symmetric) item-
to-item matrix I = {0, 1}M×M , where Iab is set to 1 if the
user has watched both programs a and b and to 0 otherwise.
Iaa is set to 1 if the user has watched the program a. The
Cosine Similarity {Sim}ab between programs a and b can
be computed from item-to-item matrices using Equation 1.
The Cosine Similarity is then used by each user to derive
personalized recommendations as described in Section II-D.

System Model. Our system involves a tally (e.g., the BBC)
and a set of users, and no other trusted/semi-trusted authority:

1) Users, possibly organized in groups, compute their (se-
cret) blinding factors, based on the public keys of the
other users, in such a way that they all sum up to
zero. They encrypt their local Count-Min Sketch entries
(representing their co-view matrix) using these blinding
factors, and send the resulting ciphertexts to the tally.

2) The tally receives the encrypted Count-Min Sketch
from each user, aggregates the encrypted counts, and
decrypts the aggregates. These are broadcast back to the
users, who use them to recover an estimate of the global
similarity matrix and derive personalized ItemKNN-based
recommendations.

Notation. In the rest of this section, we denote with N the
number of users, with M the total number of items, and with
L = d · w the number of items in a Count-Min Sketch table.
Also, let G be a cyclic group of prime order q for which the
Computational Diffie-Hellman problem (CDH) is hard and g
be the generator of the same group. H : {0, 1}∗ → Zq denotes

a cryptographic hash function mapping strings of arbitrary
length to integers in Zq . Finally, “||” denotes the concatenation
operator and a ∈r A means that a is sampled at random from
A. We assume the system runs on input public parameters
G, g, q, where g generates a group of order q in G.

B. Protocol

We now present the details of our proposed protocol. Its
cryptographic layer is also summarized in Figure 1.

Setup. Each user Ui (i ∈ [1, N]) generates a private key xi ∈r
G, and computes and publishes public key yi = gxi mod q.
Public keys of all users are distributed to each other, using a
public bulletin board or the tally itself.

As discussed later in this section, users might be orga-
nized in groups in order to facilitate aggregation. To ease
presentation, we discuss the protocol steps for a single group
of users, as combining aggregates from different groups is
trivial and can be done, in the clear, by the tally.

Count-Min Sketch construction. We assume each
user Ui holds an input vector of data points
I = {Ic ∈ N, c = 1, . . . , T}, which represents Ui’s co-view
matrix (i.e., T = M ·M/2). First, Ui initializes a Count-Min
Sketch table Xi with all zero entries. In the following, we
represent Ui’s Count-Min Sketch table Xi ∈ Nd×w as a vector
of length L = d · w. Then, Ui encodes I in the Count-Min
Sketch using the update procedure described in Section II-B,
where the following pairwise-independent hash function is
employed:

h(x) = ((ax+ b) mod p) mod w

for a 6= 0, b random integers modulo a random prime p. At
the end of this step, Ui has built a Count-Min Sketch table
Xi = {Xi`}L`=1 (with L = d · w as per Definition 1).

Encryption. To participate in the privacy-preserving sketch
aggregation, each user Ui first needs to generate blinding
factors. At round s, for each ` = 1, . . . , L, user Ui computes:

ki` =

N∑
j=1
j 6=i

H(yxi
j ||`||s) · (−1)

i>j mod q

where
(−1)i>j :=

{
−1 if i > j

1 otherwise

Note that the sum of all ki` ’s equals to zero:
N∑
i=1

ki` =

N∑
i=1

N∑
j=1
j 6=i

H(yxi
j ||`||s) · (−1)

i>j = 0

Then, for each entry Xi` , Ui encrypts Xi` as bi` = Xi` +
ki` mod 232, as only 32 bits of bi` are enough for our
application, and sends the resulting ciphertext to the tally.

Aggregation. The tally receives the ciphertexts from the N
users and (obliviously) aggregates the sketches. Specifically,
for ` = 1, . . . , L, it computes:

C` =

N∑
i=1

bi` =

N∑
i=1

ki` +

N∑
i=1

Xi` =

N∑
i=1

Xi` mod 232

4

User Ui (i ∈ [1, N]) Tally

(1) xi ∈r G, yi := gxi mod q
yi -

(2) ∀` = 1, . . . , L, ki` :=
∑
j 6=i

H(yxi
j ||`||s) · (−1)i>j mod 232 �

{yj}j∈[1,N]

∀` = 1, . . . , L, bi` := Xi` + ki` mod 232
{bi`}

L
`=1 - (3) Fault recovery (if needed)

� Uon

(4) ∀` k′i` :=
∑
j 6=i,
j 6∈Uon

H(yxi
j ||`||s) · (−1)i>j mod 232

{
k′i`
}L
`=1 - (5) ∀` = 1, . . . , L, C ′` :=

(∑
i∈Uon

bi` −
∑

i∈Uon

k′i`

)
mod 232

Figure 1: Cryptographic layer of our private recommender system for online streaming services. At setup (1), users compute their secret
share and send their public key to the tally, who broadcasts them to the other users. During the encryption phase (2), each user computes
the blinding factors, encrypts their Count-Min Sketch and sends it to the tally. In case not all users have sent the data, the tally broadcasts
Uon, the subset of users that did (3). These compute new blinding factors and send them to the tally (4). Aggregate sketches are then
recovered by the tally (5).

where C` denotes the `-th item in the aggregate Count-Min
Sketch table. {C`}L`=1, are broadcast back to the users (but
can obviously be used locally at the tally too), who use
them to recover an estimate of the global matrix and derive
personalized recommendations via the ItemKNN algorithm.

Fault Tolerance. If, during the aggregation phase, only a
subset of users report their values bi` to the tally, the sum
of the ki` ’s is no longer equal to zero and the aggregate items
C` cannot be decrypted. However, it is possible to recover as
follows: Let Uon denote the list of users who have submitted
the data in the aggregation phase. The tally sends Uon to
each Ui ∈ Uon. Then, Ui computes, for each ` = 1, . . . , L,

k′i` =

N∑
j=1

j 6=i,j 6∈Uon

H(yxi
j ||`||s) · (−1)

i>j mod q

and sends these values back to the tally.

Assuming all users in Uon submit the values k′i` , the
tally can recover the entries in the aggregate sketches (for
users in Uon) by computing:

C ′` =

(∑
i∈Uon

bi` −
∑
i∈Uon

k′i`

)
mod 232

Groups. Although the protocol can cope with faults, we should
nonetheless minimize the probability of missed contributions.
Moreover, as discussed in Section III-D, the protocol’s com-
plexity also depends on the number of users and, in the case
of iPlayer, there can be peaks of hundreds of thousands of
users per hour1. Consequently, we need to organize users
into reasonably sized groups. As mentioned earlier, combining
aggregates from different groups is straightforward and can be
done, in the clear, by the tally.

We argue that a good choice is between 100 and 1,000
users per group, as also supported by our empirical evaluation
presented later. There could be a few different ways to form
groups: for instance, the tally could group users in physical
proximity and/or select users that are watching/listening a
video with at least a couple of minutes left to watch. Also
note that users not involved in the protocol (or having limited

1http://downloads.bbc.co.uk/mediacentre/iplayer/iplayer-performance-may15.pdf

“history”) can get recommendations too as the tally can still
provide them with the global co-view matrix, which, even
though it does not include their own contribution, can be used
by the ItemKNN algorithm to derive recommendations.

Security Analysis. The security of our scheme, in the honest-
but-curious model, is straightforwardly guaranteed by that of
the “low overhead” private aggregation scheme by Kursawe
et al. [47], which is secure under the CDH assumption. We
modify it to cope with users faults and to aggregate Count-Min
Sketch entries, rather than the actual data, and this does not
affect the privacy properties of the scheme. In case of passive
collusions between users, the confidentiality of the data
provided by the non-colluding users is still preserved. Finally,
note that malicious active users could report fake values
in order to invalidate the final aggregation values, however,
protocol’s integrity could be preserved using verifiable tools
such as zero-knowledge proofs and commitments, an extension
we leave as part of future work, along with considering a
malicious tally.

C. Prototype Implementation

We have implemented the tally’s functionalities as a web
application running on the server-side JavaScript environment
Node.js (or Node for short).2 We also use Express.js3 to orga-
nize our application into a Model View Controller (MVC) web
architecture and Socket.io4 to set up bidirectional web-socket
connections. Integrating our solution is as simple as installing
a Node module through the Node Package Manager (NPM)
and importing it from any web application, thus requiring no
familiarity with the inner workings of the cryptographic and
aggregation layers.

The module for user’s functionalities is modeled as the
client-side of the web application and can be run as simple
JavaScript code embedded on a HTML page. Therefore, it re-
quires no deployment or installation of any additional software
by the users, but runs directly in the browser, transparently,
when users visit tally’s website. Our JavaScript imple-
mentation is also compatible with smartphone browsers (e.g.,
the Android version of Chrome), nevertheless, we have also

2https://nodejs.org/
3http://expressjs.com/
4http://socket.io/

5

http://downloads.bbc.co.uk/mediacentre/iplayer/iplayer-performance-may15.pdf
https://nodejs.org/
http://expressjs.com/
http://socket.io/

100 200 300 400 500 600 700 800 900 1000
Number of users (N)

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Encryption

(a) Client

100 200 300 400 500 600 700 800 900 1000
Number of users (N)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Aggregation

(b) Server

Figure 2: Execution time for increasing number of users (with 700 programs).

implemented a stand-alone Android application using Apache
Cordova.5 The source code of both our browser and Android
app is available upon request, so that developers can simply
import and extend our code for their own applications.

Cryptographic Operations. The cryptographic layer of the
protocol is also written in JavaScript, using the Ed25519
curve [8] implementation available from Elliptic.js,6 which
supports 256-bit points and provides security comparable to
a 128-bit security parameter. SHA-256 is used for (crypto-
graphic) hashing operations.

D. Performance Evaluation

We now analyze the performance of our system, both an-
alytically (reporting asymptotic complexities) and empirically.

Asymptotic Complexities. The setup phase carried out by the
user requires O(N) random group points (where N is the
number of total users) and O(N) messages need to be sent
for all the users to distribute the public keys. To generate
the blinding factors, each user then needs to perform O(N)
exponentiations in G and O(L ·N) hashing operations. Count-
Min Sketch encryption (at user’s side) requires O(L) integer
additions in Zq , one for each of the L = O(log(M2)) Count-
Min Sketch entries, while communication complexity amounts
to O(L) 32-bits integers for each user. To complete the
aggregation, the tally computes O(L ·N) linear operations.

The use of the Count-Min Sketch significantly speeds up
the efficiency of the system. In fact, without them, each user
would need to perform O(N(M2)) hashing operations and
send O(M2) 32-bit integers, while the tally would need to
compute O(N(M2)) operations.

Computation Overhead. We have also simulated the ex-
ecution of our private recommender system and measured
execution times (averaged over 100 iterations) for all opera-
tions. Simulations have been performed on a machine running
Ubuntu Trusty (Ubuntu 14.04.2 LTS), equipped with a 2.4 GHz
CPU i5-520M and 4GB RAM.
5https://cordova.apache.org/
6https://github.com/indutny/elliptic

In Figure 2, we plot running times of protocol’s client-
and server-side for an increasing number of users, fixing the
number of programs to 700 (the average number of programs
available on iPlayer) and the sketch parameters to ε = δ = 0.01
(see Definition 1). Using this setting, the number of rows d
and columns w of the Count-Min Sketch amounts to d =
18 , w = 272 leading to a Count-Min Sketch of size L =
d · w = 18 · 272 = 4,896. Running times grow linearly in the
number of users. As illustrated in Figure 2(a), the encryption,
performed by each user (see step (2) in Figure 1), takes 2.7
seconds with 100 users and 27 seconds with 1,000 users,
while Figure 2(b) reveals that tally completes the aggregation
(step (5) in Figure 1) in 78ms (resp., 780ms) with 100 (resp.,
1,000) users.

We then measure the execution time for an increasing
number of programs and a fixed number of users, i.e., 1,000.
Figure 3(a) illustrates running times’ logarithmic growth for
encryption, ranging from 21 seconds with 100 programs to 28
seconds with 1,000 programs. Figure 3(b) illustrates tally’s
execution times for the aggregation, which approximately
range from 600ms to 800ms. Note that the “stair” effect of
the plots in Figure 3 is due to the fact that the Count-Min
Sketch size can be the same with close numbers of programs.

Without the compression factor of the Count-Min Sketch,
the running times for both user and tally would grow
linearly in the size of the co-view matrix (i.e., M · M/2),
yielding remarkably slower executions. As illustrated in Fig-
ure 4(a), with 1,000 users and 1,000 programs, running time
for each user amounts to almost 50 minutes instead of 28
seconds using the sketch, whereas, the aggregation at the
tally completes in almost one and a half minute (versus less
than one second using Count-Min Sketch). Finally, execution
time of the ItemKNN operations carried out at user’s side,
with 700 programs, amounts to 850ms for each user.

Communication Overhead. In Table I, we report the amount
of bytes exchanged between all parties for different number
of users and Count-Min Sketch sizes, fixing the number of
programs to 700. Note that, without the compressing factor of
the sketch, with 700 programs, each user would have to send
960KB instead of 20KB.

6

https://cordova.apache.org/
https://github.com/indutny/elliptic

100 200 300 400 500 600 700 800 900 1000
Number of programs (M)

21

22

23

24

25

26

27

28

29

30

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Encryption

(a) Client

100 200 300 400 500 600 700 800 900 1000
Number of programs (M)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Aggregation

(b) Server

Figure 3: Execution time for increasing number of programs (with 1,000 users).

100 200 300 400 500 600 700 800 900 1000
Number of programs (M)

0

500

1000

1500

2000

2500

3000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Encryption w/o sketch

(a) Client

100 200 300 400 500 600 700 800 900 1000
Number of programs (M)

0

10

20

30

40

50

60

70

80

90

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Aggregation w/o sketch

(b) Server

Figure 4: Execution time for increasing number of programs (with 1,000 users) without Count-Min Sketch.

#Users Bytes Sketch Size Bytes
(Tally to User) (User to Tally)

100 3,200 4,896 19,584
200 6,400 2,448 9,792
300 9,600 1,638 6,552
400 12,800 1,224 4,896
500 16,000 972 3,888
600 19,200 810 3,240
700 22,400 702 2,808
800 25,600 612 2,448
900 28,800 540 2,160

1000 32,000 486 1,944

TABLE I: Bytes exchanged by user and tally for different #users
and size of the Count-Min Sketch, considering 700 programs.

Accuracy Estimation. Finally, we evaluate the accuracy loss
due to the use of Count-Min Sketch, specifically, over the most
50 frequent items, using a synthetic dataset sampled from a
zipfian distribution simulating a million users. We set the
Count-Min Sketch parameters to be ε = 0.01 and δ = 0.01 as
we have measured an acceptable accuracy loss level introduced
by the Count-Min Sketch (see below). Once again, we fix
the number of programs to M = 700, leading to a Count-
Min Sketch of size L = 4,896. Figure 5(a) shows that the
Count-Min Sketch estimation over the most 50 frequent items

is almost indistinguishable from the true population.

We also plot, in Figure 5(b), the average error, defined as
|ĉi − ci|/

∑
j |cj |, over the most 50 frequent items with an

increasing number of users, while fixing M = 700, δ = 0.01
(yielding a total number of items to update on the Count-Min
Sketch of T =M ·M/2 = 245,000) and three choices of the ε
parameter, i.e., 0.01, 0.05, and 0.1. The average error decreases
with more users and smaller values of ε. Standard deviation
values are infinitesimal, thus, we do not include them in the
plot as they would not be visible.

IV. PRIVATE AGGREGATE LOCATION PREDICTION

The rapid proliferation of smartphones, with 2 billion
estimated users by the year 2016 [26], makes it increasingly
easy (and appealing) to track users’ locations and movements
using sensors like GPS and WiFi. This contextual information
can be extremely useful to train machine learning algorithms
and predict future events, paving the way for anticipatory
mobile computing [57]. Location and movement models can be
used, e.g., for traffic mitigation, road monitoring, and hazard
detection [44], as well as to guide decision frameworks to
respond to anomalies and disruptions on short notice.

Pervasive location sensing, however, raises important pri-
vacy concerns as single individuals’ movements can easily be

7

(a) True vs estimated counters (b) Average error for different values of ε

Figure 5: Visualizing the accuracy of the Count-Min Sketch for the most 50 frequent items (with 700 programs and sketch size 4,896).

tracked and sensitive information could be exposed. If home
and work locations can be deduced from anonymized location
traces, single individuals can be uniquely re-identified [38].
Moreover, location patterns have been shown to leak personal
information, e.g., taxi drivers’ religion and individuals’ visits
to gentleman’s clubs.7

In this section, we instantiate a smartphone application
enabling users to report, to a service provider (tally),
their locations over time. Users’ privacy is protected as only
aggregate (over many users) location statistics are disclosed.
We then show how these statistics can be used to train a model
and predict future movements, and support private computation
and prediction of “heat maps” relying on the aggregate counts
of people in a given area over a period of time.

System Model. We operate in the same model as our privacy-
friendly recommender system (cf. Section III-B), involving a
tally that privately aggregates location statistics contributed
from a set of users, and re-use the same cryptographic layer.
Once again, we support efficient computation of private statis-
tics using (i) Count-Min Sketch’s succinct data representation
and (ii) privacy-preserving aggregation with users’ blinding
factors summing up to zero.

Overview. We assume a 2-D space territory R is par-
titioned into a grid of |S| = p × p cells (S =
{S[1, 1], S[1, 2], . . . , S[p, p]}), and t finite intervals (time slots)
[tj−1, tj], where j ∈ N+. Let S(tj)

i be the grid containing, for
each cell, the number of times the user Ui has logged her
position (using a GPS measurement) within that particular cell
over t ∈ [tj−1, tj]. User Ui, for each time slot [tj−1, tj], builds
the grid S(tj)

i with locations logged over time, maps the grid
into a Count-Min Sketch, and sends the encrypted sketch to
the tally. This aggregates and decrypts them, reconstructing
the grid containing the (estimated) aggregate locations.

The location statistics can be used to display ‘heat maps”
(e.g., a graphical representation of congestion), or to perform
time-series based prediction over a sequence of heat maps.
Using an Exponential Weighted Moving Average (EWMA)
model (see Section II-E), we can predict the future popularity

7See http://on.mash.to/1ByncHD and https://goo.gl/Ta5JYG.

Figure 6: Number of taxi locations over time.

of a cell, by relying on the past (approximated) observations for
that cell. Other machine learning techniques, e.g., Multivariate
Support Vector Machines or Logistic Regression, could also
be used for the prediction, but we consider it to be beyond the
scope of this paper to investigate new predictors.

The San Francisco Cabs Dataset. To evaluate the feasibility
of our intuition, we use a publicly available dataset containing
mobility traces of San Francisco taxi cabs.8 The dataset
contains 11 million GPS coordinates, generated by 536 taxis
over almost a month in May 2008. We group the taxi locations
in time slots of one hour, leading to a total of 575 epochs.
Figure 6 shows the presence of weekly and daily patterns in
the number of taxi locations over time (i.e. hourly time slots)
and peaks of roughly 25,000 total hourly contributions.

Succinct Data Representation. We investigate whether suc-
cinct data representation could be applied to the problem of
collecting location statistics, and measure the accuracy loss in-
troduced by the Count-Min Sketch’s compact representation. In
Figure 7, we plot the average error defined as |ĉi−ci|/

∑
j |cj |

and the relative standard deviation over the most 100 popular
cells for each time slot, while fixing ε = δ = 0.01 and the
total number of cells to |S| = 100 × 100 (yielding a Count-
Min Sketch of size L = 3, 808). Observe that the average error

8http://cabspotting.org/

8

http://on.mash.to/1ByncHD
https://goo.gl/Ta5JYG
http://cabspotting.org/

Figure 7: Average error introduced by the Count-Min Sketch on the
aggregate statistics for the top-100 locations.

Figure 8: Mean absolute error in the prediction for different values
of prediction algorithm’s parameter α.

is infinitesimal for every time slots.

Heat Map Prediction. Next, we focus on predicting future
heat maps using the EWMA algorithm introduced in Sec-
tion II-E. We start by evaluating the accuracy of EWMA-
based prediction relying on the aggregates collected without
using the Count-Min Sketch. We perform the prediction over a
subset of 12 consecutive epochs having the maximum number
of reported locations, giving the past 24 hours observations
as input to the EWMA algorithm. Figure 8 plots the Mean
Absolute Error (MAE) in the prediction compared to the
ground truth over the most 100 popular cells, considering
different values of α, i.e., EWMA’s smoothing coefficient
(cf. Section II-E). The plot shows that, in almost all slots,
lower values of α lead to more accurate results.

We then perform the prediction over the approximate heat
maps, i.e., using the sketches. We focus on the same time
slot, and fix α = 0.1. Figure 9 shows the error introduced
by the Count-Min Sketch in the prediction, for each time
slot considered, with respect to the prediction based on the
“real” heat maps. We observe that this error, while fluctuating,
is appreciably low for every prediction, thus confirming the
feasibility of our techniques for the problem of privately
predicting future heat maps.

Once again, we have implemented our techniques in Java-
Script, with the server-side running as a Node module, and

Figure 9: Mean absolute error introduced by the Count-Min Sketch
on the prediction accuracy.

client-side running as an open-source Android application built
using Apache Cordova. Source code is available upon request.
Note that, due to space limitations, a performance evaluation
of our implementations is not presented in this version as it
would anyway mirror the one presented in Section III.

V. GATHERING STATISTICS ON TOR HIDDEN SERVICES

The privacy-preserving collection of statistics using effi-
cient data structures, seeking a trade-off between accuracy and
efficiency, has also interesting applications in non-user facing
settings such as collecting network statistics from servers or
routers. In this section, we present a novel mechanism geared
to privately gather statistics in the context of the Tor anonymity
network [28]. The Tor project has recently received funding to
improve monitoring of load and usage of Tor hidden services.9
This motivates them to extract aggregate statistics about the
number of hidden service descriptors from multiple Hidden
Service Directory authorities. In order to ensure robustness,
the Tor project has determined that the median – rather than
the mean – of these volumes should be calculated, which is
beyond privacy-friendly statistics approaches like Privex [32].

In this section, we first describe the protocol for estimating
median statistics using Count Sketch, then, we present the
design and deployment of its prototype implementation, along
with its performance evaluation.

A. Private Median Estimation using Count Sketch

We rely on the Count Sketch [16] data structure, which
closely resembles Count-Min Sketch, used in Sections III–IV.
Recall from Section II-B that building a Count Sketch follows
the same process as a Count-Min Sketch, thus leading to a
d · w table of positive integer values, whereas, the estimation
of an item’s frequency is slightly different: for each row, di,
a hash function is applied to the item leading to a column
wj . An unbiased estimator of the frequency of the item is the
value at this position minus the value at an adjacent position
– and the median of those estimators is the final estimated
frequency. What is key to the success of our techniques is that
the estimate of the frequency of specific values, as well as
sets of values, is a simple linear sum of Count Sketch entries;

9https://www.torproject.org/docs/hidden-services.html.en

9

https://www.torproject.org/docs/hidden-services.html.en

computing it does not require non-linear (e.g., min) operations
as for the Count-Min Sketch.

For this application, we build on privacy-preserving data
aggregation based on threshold public-key encryption, specif-
ically, an Additively Homomorphic Elliptic-Curve variant of
El Gamal (AH-ECC) [7], summarized below. This allows us
to seamlessly tolerate missing contributions – following an
approached first proposed by Jawurek et al. [45].

AH-ECC consists of the following three algorithms (using a
multiplicative notation):

1) KeyGen(1τ): Given a security parameter τ , choose an
elliptic curve E and (g1, g2) public generators on E,
generating a group of order q. Choose a random private
key x ∈ Zq , define the public key as pk = g1

x, and output
public parameters (E, g1, g2, pk) and private key x.

2) Encrypt(m, pk): The message m is encrypted by comput-
ing two elliptic curve points as (A,B) := (g1

r, pkrg2
m),

where r ∈ Zq is selected at random. The ciphertext is
thus the tuple of points (A,B).

3) Decrypt(A,B, x): Decryption is performed by computing
the element BA−x = g2

m. We can achieve constant
time decryption by pre-computing a table of discrete
logarithms which is then used to recover m from g2

m

(this solution is practical for small values of m).

AH-ECC is additively homomorphic since an element-wise
multiplication of ciphertexts yields an encryption of their sum.

Setup. Our system relies on a set of authorities that can jointly
decrypt a ciphertext from the AH-ECC additively homomor-
phic public-key cryptosystem. During setup, each authority
generates their public and private key and a group public key
is computed by multiplying all the authorities’ public keys.
Note that we operate in a distributed system setting (i.e., the
Tor network), therefore, similar to PrivEx [32], one can easily
instantiate decryption authorities.

Protocol. Using Count Sketch, we can collect a number of
private readings from Hidden Service Directories (HSDir), and
compute an approximation of the median. Each HSDir builds
a Count Sketch, inserts its private values into it, encrypts it,
and sends it to the authorities. These aggregate all sketches
by homomorphically adding them element-wise, yielding an
encrypted sketch summarizing the set of all HSDir values.

Once the authorities have computed the aggregate sketch,
an interactive divide-and-conquer algorithm is applied to es-
timate the median given the range of its possible values is
known. At each iteration, the number of sample values in the
range is known, starting with the full range and all values
received. The range is then halved and the sum of all elements
falling in the first half of the range is jointly decrypted. If the
median falls within first half of the range it is retained for
the next iteration, otherwise the second half of the range is
considered at the next iteration. The process stops once the
range is a single element. Following the master theorem [21],
we know that this process converges in O(log n) steps, for n
elements in the domain of the values/median. Due to frequency
estimations for the ranges using Count Sketches that provide
noisy estimates, we expect this median to be close, but possibly

not exactly the same as the true sample median, depending on
the Count Sketch parameters δ and ε.

Output Privacy. Note that this process is not “perfectly”
private in a traditional secure computation setting, as the
volume of reported values falling within the intermediate
ranges considered is leaked. This may be dealt with in two
ways: (1) the leakage may be considered acceptable and
the algorithm run as described, or (2) the technique can be
enhanced to provide differential privacy by adding noise to
each intermediate value.

Differentially Private Estimates. The sensitivity [31] of the
estimates in any range of values using the Count Sketch is at
most d, since each HSDir contribution increases by at most
1 in at most d values into the d · w Count Sketch table.
Therefore, we can achieve ε-differential privacy if we add, to
each decrypted value, noise from a Laplace distribution with
mean zero and variance ξ · d/ε, where ξ is the number of
decrypted intermediate results and ε the differential privacy
parameter. However, doing so may result in the divide-and-
conquer algorithm mis-estimating the range in which the
median lies, and results in further mistakes in the final median
estimate. (As discussed in Section II-C, although we use ε
to denote a parameter for both Count Sketch and differential
privacy, it is clear from the context which one it relates to.)

B. Implementation and Evaluation

We implement and evaluate the proposed scheme aiming
to: (i) estimate the trade-off between size of the sketch and the
accuracy of the median computation, (ii) evaluate the cost of
cryptographic computation and communication overheads, and
(iii) assess the trade-off between the accuracy of the median
and the quality of protection that may be achieved through the
differentially private mechanism.

For our evaluation, we instantiate AH-ECC using the NIST-
P224 curve as provided by the OpenSSL library and its
optimizations by Käsper [46]. Our implementation of the cryp-
tographic core of the private median scheme amounts to 300
lines of Python code using the petlib OpenSSL wrapper10, and
another 350 lines of Python include unit tests and measurement
code. All experiments have been performed on a Xubuntu
Trusty (Ubuntu 14.04.2 LTS) Linux VM, running on a 64 bit
Windows 7 host (CPU i7-4700MQ, 2.4Ghz, 16GB RAM). Our
Python implementation is easily pluggable as part of the Tor
infrastructure and does not require changes within the Tor (C-
based) core functionalities.

We first illustrate the performance and accuracy of es-
timating the median using this technique with both sketch
parameters ε and δ equal to either 0.25 or 0.05 against the
London Atlas Dataset11 in Table II (see Appendix). The error
rate is computed as the absolute value of difference between
the estimated and true median divided by the true median.

Further results are presented on an experimental setup that
uses as a reference problem the median estimation in a set of
1,200 sample values, drawn from a mixture distribution: 1,000
values from a Normal distribution with mean 300 and variance
10https://github.com/gdanezis/petlib
11http://data.london.gov.uk/dataset/ward-profiles-and-atlas

10

https://github.com/gdanezis/petlib
http://data.london.gov.uk/dataset/ward-profiles-and-atlas

0.50.350.250.150.10.050.0250.01
(epsilon, delta) parameter of Count-Sketch

0

20

40

60

80

100

120

140
%

Median Estimation - Error vs. Size

Error (%)
Size (%)

Figure 10: Count Sketch size versus estimation quality.

25, and 200 values drawn from a Normal distribution with
mean 500 and variance 200. This reference problem closely
matches the settings of the Tor project both in terms of the
range of vales (assumed to be within [0, 1000]) and the number
of samples [32].

Quality vs. Size. Figure 10 illustrates the trade-off between
the quality of the estimation of the median algorithm and the
size overhead of the Count Sketch. The size overhead (green
slim line) is computed as the number of encrypted elements
in the sketch as compared with the number of elements in the
range of the median (1,000 for our reference problem). The
estimation accuracy (blue broader line) is represented as the
fraction of the absolute deviation of the estimate from the real
value over the real sample median (light blue region represents
the standard deviation of the mean over 40 experiments for
each datapoint). Thus both qualities can be represented as
percentages.

The trade off between the size of the sketch and the
accuracy of the estimate is evident: as the sketch size reaches
a smaller fraction of the total possible number of values, the
error becomes larger than the range of the median. Thus, Count
Sketch with parameters ε, δ < 0.025 are unnecessary, since
they do not lead to a reduction of the information that needs
to be transmitted from each client to the authorities; conversely,
for 0.15 < ε, δ the estimate of the median deviates by more
than 20% of its true value making it highly unreliable.

For all subsequent experiments, we consider a Count
Sketch with values ε = δ = 0.05, leading to d = 3 and
w = 55. As outlined in Figure 10, this represents a good
trade-off between the size of the Count Sketch (16.5% of
transmitting all values) and the error.

True Size and Performance. When implemented using NIST-
P224 curves, the reference Count Sketch may be serialized in
10,898 bytes. Each Count Sketch takes 0.001 sec to encrypt
at each HSDir, and it takes 1.456 seconds to aggregate 1,200
sketches at each authority (0.001 sec per sketch). As expected,
from the range of the reference problem, 10 decryption it-
erations are sufficient to converge to the median (therefore
ξ = 10). The number of homomorphic additions for each
decryption round is linear in the range of the median and their

Inf 10 5.0 1.0 0.5 0.1 0.05 0.01
Differential Privacy parameter (epsilon)

101

102

103

Ab
so

lu
te

 E
rro

r (
m

ea
n

&
st

d.
 o

f m
ea

n)

Median Estimation - Quality vs. Protection

Figure 11: Quality versus differential privacy protection.

total computational cost is the same order of magnitude as
a full Count Sketch encryption. It is clear from these figures
that the computational overhead of the proposed technique is
eminently practical, and the bandwidth overhead acceptable.

Quality vs. Differential Privacy Protection. Figure 11 il-
lustrates the trade-off between the quality of the median
estimation and the quality of differential privacy protection.
The x-axis represents the ε parameter of the differentially
private system, and the y-axis the absolute error between
the estimate and the true sample median. Differential privacy
with parameter ε = 0.5 can be provided without significantly
affecting the quality of the median estimate. However, for
ε < 0.5 the volume of the error grows exponentially (note the
log scale of the x-axis). While the exact value of a meaningful
ε parameter is often debated in the literature, we conclude that
the mechanism only provides a limited degree of protection,
and no ability to readily tune up protection: utility degrades
very rapidly as the security parameter ε decreases.

VI. RELATED WORK

This section reviews prior work on privacy-preserving
techniques applied to data aggregation, recommender systems,
machine learning, participatory sensing, as well as efficient
data structures for succinct representation.

A. Privacy-Preserving Aggregation

Kursawe et al. [47] introduce a few cryptographic con-
structions to aggregate energy consumptions in the context
of smart metering, relying on Diffie-Hellman, bilinear maps,
and a “low overhead” protocol where meters’ encryption keys
sum up to zero. Our schemes for the private recommender
system (Section III) and location prediction (Section IV) rely
on a protocol inspired by [47]’s “low overhead” protocol, but
perform private aggregation using succinct data representation
rather than the raw inputs. Using Count-Min Sketch [22], we
reduce computation and communication overhead incurred by
each user from linear to logarithmic in the size of the input.
We also show how to recover from node failures, i.e., in our
schemes, the aggregator can still retrieve the statistics (and
train models) even when a subset of users go offline or fail to
report data.

11

Castelluccia et al. [13] propose a new homomorphic
encryption to allow intermediate wireless sensor nodes to
aggregate encrypted data gathered from other nodes. Shi et
al. [61] combine private aggregation with differential privacy
supporting the aggregation of encrypted perturbed readings
reported by the meters. Individual amounts of random noise
cancel each other out during aggregation, except for a spe-
cific amount that guarantees computational differential privacy.
Their protocol is also so that encryption keys sum up to zero
but, unlike ours, requires solving a discrete logarithm and the
presence of a trusted dealer. Jawurek et al. [45] propose a
privacy-friendly aggregation scheme with robustness against
missing user inputs, by including additional authorities that
facilitate the protocol but do not learn any secrets or inputs.
However, at least one of the authorities has to be honest,
i.e., if all collude, the protocol does not provide any privacy
guarantee. Chan et al. [15] also provides fault tolerance by
extending [61]’s protocol, however, with a poly-logarithmic
penalty. Additional, more loosely related, private aggregation
schemes include [9, 13, 33].

A combination of homomorphic encryption and differential
privacy has been explored by Chen et al. [19], allowing third
parties to gather web analytics. Users encrypt their data using
the data aggregator public key and send them to a proxy,
who adds noise to the ciphertexts and forwards the results to
the data aggregator. The latter computes the aggregates after
decrypting each individual contribution. However, this scheme
introduces a large overhead both in terms of communication
(one KB per single bit of user data) and computation (one
public key operation per single bit). In the same line of
work, Akkus et al. [4] propose a system providing differential
privacy guarantees. Their scheme scales better than [19] as it
requires users to encrypt fewer bits per query, but still relies
on expensive public-key crypto operations. In [18], the authors
propose a scheme based on a similar trust model as [19]
but with an enhanced scalability by using simple exclusive-or
(XOR) operations rather than public key operations. However,
their proposal still relies on honest-but-curious servers that do
not collude with each other.

Erlingsson et al. [34] introduce RAPPOR, which enables
the collection of browser statistics on values and strings
provided by a large number of clients (e.g. homepage settings,
running processes, etc.), including categories, frequencies,
and histograms. RAPPOR supports privacy-preserving data-
collection mechanism by relying on randomized responses
via input perturbation, aiming to guarantee local differential
privacy for individual reports. This, however, requires millions
of users in order to obtain approximate answers to queries.

Finally, Elahi et al. [32] present a protocol for privately
computing mean statistics on Tor traffic. They introduce two
ad-hoc protocols relying, respectively, on secret sharing and
distributed decryption. By contrast, our application for gath-
ering private statistics for Tor enables the computation of the
median statistics on traffic generated by Tor hidden services
– which constituted an open problem [39] – by relying on
additively homomorphic encryption and differential privacy.

B. Privacy-preserving Recommender Systems

McSherry and Mironov [51] propose a privacy-preserving
recommender system that relies on trusted computing, while

Cissée and Albayrak [20] use differential privacy to add
privacy guarantees to a few algorithms presented during the
Netflix Prize competition. Our private recommender system
differs from theirs as we do not rely on trusted computing or
differential privacy, but leverage a privacy-friendly aggregation
cryptographic protocol and Count-Min Sketch.

Homomorphic encryption based techniques have also been
used to perform other machine learning operations on en-
crypted data, including matrix factorization [56], linear classi-
fiers [11, 40], and decision trees [12]. Building a cloud-based
model from multiple user datasets has been also addressed
in [49], which explores the feasibility of Fully Homomorphic
Encryption (FHE) based techniques. However, at the moment,
FHE operations are still prohibitively expensive.

C. Participatory Sensing

Mood et al. [54] propose a privacy-preserving participa-
tory sensing application which allows users to locate nearby
friends without disclosing exact locations, via secure function
evaluation [65], but do not address the problem of scaling
to large streams/number of users. De Cristofaro and Sori-
ente [27] introduce a privacy-enhanced distributed querying
infrastructure for participatory and urban sensing systems.
Work in [24] and [43] provide either k-anonymity [63] and
l-diversity [50] to guarantee anonymity of users through Mix
Network techniques [17]. However, their techniques are not
provably-secure and they only provide partial confidentiality.
Then, [36] suggest data perturbation in a known community
for computing statistics and protecting anonymity. Trusted
Platform Modules (TPMs) are instead used in [37] and [29] to
protect integrity and authenticity of user contents.

In a way, we also address the problem of participatory
sensing privacy by proposing a scalable and provable secure
technique for collecting user-generated streams of data involv-
ing a large number of users.

D. Privacy and Succinct Data Representation

Mir et al. [52] present an efficient scheme guaranteeing
differential privacy of data analyses (even when the internal
memory of the algorithm may be compromised), using a
data structure similar to the Count-Min Sketch to estimate
heavy hitters. Work in [14, 42] address the problem of finding
heavy hitters’ histograms while preserving privacy using a
differentially private protocol. Then, [6] addresses the case
where individual users randomize their own data and then send
differentially private reports to an untrusted server handling
reports aggregation. Other proposals combine differential pri-
vacy and Count-Min Sketch to obtain aggregate information
about vehicle traffic [53] as well as summaries of sparse
databases [23].

Ashok et al. [5] present a privacy-preserving protocol for
computing the set-union cardinality among several parties
using Bloom filters [10]. However, their proposal is insecure,
as shown by [64], who also introduces a novel Bloom filter
based protocol for set-union and set-intersection cardinality.
Lin et al. [48] improve the performance of [55]’s protocol
for private proximity testing by reducing the problem to
simple equality testing (instead of the more expensive private-
preserving threshold set intersection). They use a concise

12

representation of “location tags”, by generating, via shingling,
concise sketches—in their context, short strings representing
the set of broadcast messages received.

In summary, to the best of our knowledge, our work is
the first to show how to combine Count-Min Sketch and
privacy-friendly data aggregation to build a private estimated
model used for recommendations as well as prediction of
future locations. Also, our scheme for Tor hidden services
statistics, which combines Count Sketch, additively homomor-
phic threshold decryption, and differential privacy, is the first
to tackle the problem of efficiently computing the median
statistics.

VII. CONCLUSION

This paper presented efficient techniques for privately and
efficiently collecting statistics by relying on private data ag-
gregation protocols and succinct data structures. These allowed
us to reduce the communication and computation complexity
incurred by each data source from linear to logarithmic in the
size of the input but only introduced a limited, upper-bounded
error in the quality of the statistics.

Our techniques support different trust, robustness, and de-
ployment models and can be applied to a number of interesting
real-world problems where aggregate statistics can be used to
train models. We presented the design and deployment of a pri-
vate recommender system for streaming services and a private
location prediction service. Our server-side implementation
as a JavaScript web application allows developers to easily
incorporate it in their projects, while user-side is supported
both in the browser (thus requiring users to install no additional
software) and in Android. We also designed and implemented
(in Python) a scheme for computing the median statistics of
Tor hidden services in a privacy-friendly way.

As part of future work, we plan to apply our private
recommender system to the BBC news apps for Android,
conduct a test deployment of the private location prediction
service with a local mass transit operator, and extend our
protocols to privately consolidate data shared by different
sources [35]. We are also working on releasing a compre-
hensive framework supporting large-scale privacy-preserving
aggregation as a service.

Acknowledgements. We would like to thank Chris Newell
and Michael Smethurst from the BBC and Aaron Johnson
from US Naval Research Labs for motivating our work, re-
spectively, on privacy-preserving recommendation and median
statistics in Tor. We are also grateful to Mirco Musulesi, Licia
Capra, and Apostolos Pyrgelis for providing feedback and
useful comments. Luca Melis and Emiliano De Cristofaro are
supported by a Xerox’s University Affairs Committee award
on “Secure Collaborative Analytics.” and “H2020-MSCA-ITN-
2015” Project Privacy&Us (ref. 675730). George Danezis is
supported in part by EPSRC Grant “EP/M013286/1” and
H2020 Grant PANORAMIX (ref. 653497).

REFERENCES

[1] BBC iPlayer. http://www.bbc.co.uk/iplayer.
[2] Count-Min Sketch and its applications. https://sites.

google.com/site/countminsketch/, 2015.

[3] G. Adomavicius and A. Tuzhilin. Toward the next gen-
eration of recommender systems: A survey of the state-
of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering, 2005.

[4] I. E. Akkus, R. Chen, M. Hardt, P. Francis, and J. Gehrke.
Non-tracking Web Analytics. In ACM CCS, 2012.

[5] V. G. Ashok and R. Mukkamala. A Scalable and Efficient
Privacy Preserving Global Itemset Support Approxima-
tion Using Bloom Filters. In DBSEC, 2014.

[6] R. Bassily and A. Smith. Local, Private, Efficient Proto-
cols for Succinct Histograms. In STOC, 2015.

[7] J. Benaloh. Dense probabilistic encryption. In SAC, 1994.
[8] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.

Yang. High-speed High-Security Signatures. In CHES,
2011.

[9] I. Bilogrevic, J. Freudiger, E. De Cristofaro, and E. Uzun.
What’s the Gist? Privacy-Preserving Aggregation of User
Profiles. In ESORICS, 2014.

[10] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7),
1970.

[11] J. W. Bos, K. Lauter, and M. Naehrig. Private predictive
analysis on encrypted medical data. Journal of Biomed-
ical Informatics, 2014.

[12] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine
learning classification over encrypted data. Technical re-
port, Cryptology ePrint Archive Report 2014/331, 2014.

[13] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient ag-
gregation of encrypted data in wireless sensor networks.
In Mobiquitous, 2005.

[14] T.-H. H. Chan, M. Li, E. Shi, and W. Xu. Differentially
private continual monitoring of heavy hitters from dis-
tributed streams. In PETS, 2012.

[15] T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving
stream aggregation with fault tolerance. In FC, 2012.

[16] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In ICALP, 2002.

[17] D. L. Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
ACM, 24(2), 1981.

[18] R. Chen, I. E. Akkus, and P. Francis. SplitX: High-
performance Private Analytics. In SIGCOMM, 2013.

[19] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke.
Towards statistical queries over distributed private user
data. In NSDI, 2012.

[20] R. Cissée and S. Albayrak. An agent-based approach for
privacy-preserving recommender systems. In IFAAMAS,
2007.

[21] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein.
Introduction to algorithms. MIT Press Cambridge, 2001.

[22] G. Cormode and S. Muthukrishnan. An Improved Data
Stream Summary: The Count-Min Sketch and Its Appli-
cations. Journal of Algorithms, 2005.

[23] G. Cormode, C. Procopiuc, D. Srivastava, and T. T. Tran.
Differentially private summaries for sparse data. In ICDT,
2012.

[24] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin,
and N. Triandopoulos. AnonySense: Privacy-aware
people-centric sensing. In Mobisys, 2008.

[25] T. M. Cover and P. E. Hart. Nearest Neighbor Pattern
Classification. IEEE Transactions on Information Theory,
1967.

13

http://www.bbc.co.uk/iplayer
https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/

[26] S. Curtis. Telegraph – Quarter of the world
will be using smartphones in 2016. http://www.
telegraph.co.uk/technology/mobile-phones/11287659/
Quarter-of-the-world-will-be-using-smartphones-in-2016.
html.

[27] E. De Cristofaro and C. Soriente. Extended capabilities
for a privacy-enhanced participatory sensing infrastruc-
ture. IEEE TIFS, 8(12):2021–2033, 2013.

[28] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation Onion Router. Technical report, DTIC
Document, 2004.

[29] A. Dua, N. Bulusu, W. Feng, and W. Hu. Towards
trustworthy participatory sensing. In HotSec, 2009.

[30] C. Dwork. Differential Privacy. In ICALP, 2006.
[31] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cali-

brating Noise to Sensitivity in Private Data Analysis. In
TCC, 2006.

[32] T. Elahi, G. Danezis, and I. Goldberg. PrivEx: Private
Collection of Traffic Statistics for Anonymous Commu-
nication Networks. In ACM CCS, 2014.

[33] Z. Erkin and G. Tsudik. Private Computation of Spatial
and Temporal Power Consumption with Smart Meters. In
ACNS, 2012.

[34] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Ran-
domized Aggregatable Privacy-Preserving Ordinal Re-
sponse. In ACM CCS, 2014.

[35] J. Freudiger, E. De Cristofaro, and A. Brito. Controlled
Data Sharing for Collaborative Predictive Blacklisting. In
DIMVA, 2015.

[36] R. Ganti, N. Pham, Y. Tsai, and T. Abdelzaher. PoolView:
stream privacy for grassroots participatory sensing. In
SenSys, 2008.

[37] P. Gilbert, L. Cox, J. Jung, and D. Wetherall. Toward
trustworthy mobile sensing. In HotMobile, 2010.

[38] P. Golle and K. Partridge. On the Anonymity of
Home/Work Location Pairs. In Pervasive computing,
2009.

[39] D. Goulet, A. Johnson, G. Kadianakis, and
K. Loesing. Hidden-Service statistics Reported by
Relays. https://research.torproject.org/techreports/
hidden-service-stats-2015-04-28.pdf, 2015.

[40] T. Graepel, K. Lauter, and M. Naehrig. ML confidential:
Machine Learning on Encrypted Data. In ICISC, 2012.

[41] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl. Evaluating Collaborative Filtering Recommender
Systems. ACM Transactions on Information Systems,
2004.

[42] J. Hsu, S. Khanna, and A. Roth. Distributed Private
Heavy Hitters. In ICALP, 2012.

[43] K. Huang, S. Kanhere, and W. Hu. Preserving privacy
in participatory sensing systems. Computer Communica-
tions, 33(11), 2010.

[44] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen,
M. Goraczko, A. Miu, E. Shih, H. Balakrishnan,
and S. Madden. CarTel: A Distributed Mobile Sensor
Computing System. In SenSys, 2006.

[45] M. Jawurek and F. Kerschbaum. Fault-Tolerant Privacy-
Preserving Statistics. In PETS, 2012.

[46] E. Käsper. Fast Elliptic Curve Cryptography in OpenSSL.
In FC, 2012.

[47] K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-
friendly Aggregation for the Smart-grid. In PETS, 2011.

[48] Z. Lin, D. F. Kune, and N. Hopper. Efficient Private
Proximity Testing with GSM Location Sketches. In FC,
2012.

[49] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-
The-Fly Multiparty Computation on the Cloud via Multi-
Key Fully Homomorphic Encryption. In STOC, 2012.

[50] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venki-
tasubramaniam. l-diversity: Privacy beyond k-anonymity.
ACM TKDD, 1(1), 2007.

[51] F. McSherry and I. Mironov. Differentially Private
Recommender Systems: Building Privacy Into the Net.
In KDD, 2009.

[52] D. Mir, S. Muthukrishnan, A. Nikolov, and R. N. Wright.
Pan-Private Algorithms via Statistics on Sketches. In
PODS, 2011.

[53] A. Monreale, W. Wang, F. Pratesi, S. Rinzivillo, D. Pe-
dreschi, G. Andrienko, and N. Andrienko. Privacy-
Preserving Distributed Movement Data Aggregation. In
Geographic Information Science at the Heart of Europe,
2013.

[54] B. Mood, D. Gupta, K. Butler, and J. Feigenbaum. Reuse
it or lose it: more efficient secure computation through
reuse of encrypted values. In ACM CCS, 2014.

[55] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,
and D. Boneh. Location Privacy via Private Proximity
Testing. In NDSS, 2011.

[56] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye,
N. Taft, and D. Boneh. Privacy-Preserving Matrix Fac-
torization. In ACM CCS, 2013.

[57] V. Pejovic and M. Musolesi. Anticipatory Mobile Com-
puting: A Survey of the State of the Art and Research
Challenges. ACM Computing Surveys, 2015.

[58] P. Resnick and H. R. Varian. Recommender Systems.
Communications of the ACM, 1997.

[59] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-
based Collaborative Filtering Recommendation Algo-
rithms. In WWW, 2001.

[60] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and
A. T. Campbell. NextPlace: A Spatio-Temporal Pre-
diction Framework for Pervasive Systems. In Pervasive
Computing, 2011.

[61] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and
D. Song. Privacy-Preserving Aggregation of Time-Series
Data. In NDSS, 2011.

[62] F. Soldo, A. Le, and A. Markopoulou. Predictive
blacklisting as an implicit recommendation system. In
INFOCOM, 2010.

[63] L. Sweeney. k-Anonymity: A model for Protecting
Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
2002.

[64] J. Tillmanns. Privately computing set-union and set-
intersection cardinality via bloom filters. In ACISP, 2015.

[65] A. C.-C. Yao. Protocols for secure computations. In
FOCS, volume 82, 1982.

14

http://www.telegraph.co.uk/technology/mobile-phones/11287659/Quarter-of-the-world-will-be-using-smartphones-in-2016.html
http://www.telegraph.co.uk/technology/mobile-phones/11287659/Quarter-of-the-world-will-be-using-smartphones-in-2016.html
http://www.telegraph.co.uk/technology/mobile-phones/11287659/Quarter-of-the-world-will-be-using-smartphones-in-2016.html
http://www.telegraph.co.uk/technology/mobile-phones/11287659/Quarter-of-the-world-will-be-using-smartphones-in-2016.html
https://research.torproject.org/techreports/hidden-service-stats-2015-04-28.pdf
https://research.torproject.org/techreports/hidden-service-stats-2015-04-28.pdf

Median (ε, δ = 0.25) Error (%) Median (ε, δ = 0.05) Error (%) Truth
Population - 2015 15143.2 11.3 13215.4 2.8 13600.0
Children aged 0-15 - 2015 2970.8 12.1 2627.6 0.8 2650.0
Working-age (16-64) - 2015 9592.0 2.0 8843.2 5.9 9400.0
Older people aged 65+ - 2015 1284.6 11.4 1345.0 7.2 1450.0
% All Children aged 0-15 - 2015 21.9 10.7 20.1 1.3 19.8
% All Working-age (16-64) - 2015 70.7 5.0 68.8 2.2 67.3
% All Older people aged 65+ - 2015 15.2 37.1 12.0 7.8 11.1
Mean Age - 2013 38.6 8.8 36.9 3.8 35.5
Median Age - 2013 37.7 10.8 35.7 5.1 34.0
Area - Square Kilometres 0.6 68.1 1.6 16.9 1.9
Population density (persons per sq km) - 2013 10231.3 44.8 5792.9 18.0 7067.0
% BAME - 2011 45.6 26.3 35.7 1.0 36.1
% Not Born in UK - 2011 40.1 7.6 40.1 7.6 37.3
% English is First Language of no one in househ... 16.9 41.7 11.8 0.9 11.9
General Fertility Rate - 2013 73.3 14.4 66.8 4.1 64.1
Male life expectancy -2009-13 84.1 5.7 79.6 0.0 79.6
Female life expectancy -2009-13 87.0 3.5 84.9 0.9 84.1
Rate of All Ambulance Incidents per 1,000 popul... 52.5 54.9 98.6 15.3 116.3
Rates of ambulance call outs for alcohol relate... 0.1 78.0 1.0 74.0 0.6
Number Killed or Seriously Injured on the roads... 3.0 1.3 3.5 16.7 3.0
In employment (16-64) - 2011 6532.8 7.0 5843.7 4.2 6103.0
Employment rate (16-64) - 2011 68.5 2.0 70.8 1.3 69.9
Rate of new registrations of migrant workers - ... 42.9 10.7 34.5 11.1 38.8
Number of properties sold - 2013 169.3 1.4 149.8 10.3 167.0
Modelled Household median income estimates 2011/12 31802.6 2.2 29589.3 9.0 32509.0
Number of Household spaces - 2011 5619.1 5.4 5025.9 5.7 5332.0
% detached houses - 2011 2.4 44.7 1.6 62.2 4.3
% semi-detached houses - 2011 29.0 70.6 16.7 1.5 17.0
% terraced houses - 2011 29.4 39.8 21.1 0.6 21.0
% Flat, maisonette or apartment - 2011 53.1 15.1 49.7 7.9 46.1
% Households Owned - 2011 57.3 18.4 53.3 10.2 48.4
% Households Social Rented - 2011 26.0 27.5 19.9 2.4 20.4
% Households Private Rented - 2011 30.9 26.5 26.6 9.1 24.4
% dwellings in council tax bands A or B - 2011 21.2 79.9 10.4 12.2 11.8
% dwellings in council tax bands C, D or E - 2011 63.7 7.5 71.6 3.9 68.9
% dwellings in council tax bands F, G or H - 2011 0.3 96.7 1.4 82.6 8.1
Claimant Rate of Incapacity Benefit - 2014 1.8 80.0 0.9 10.0 1.0
Claimant Rate of Income Support - 2014 4.4 119.6 2.3 16.8 2.0
Claimant Rate of Employment Support Allowance -... 6.9 65.3 4.7 13.0 4.2
Rate of JobSeekers Allowance (JSA) Claimants - ... 5.0 34.6 3.1 16.6 3.7
% dependent children (0-18) in out-of-work hous... 22.2 19.6 19.1 2.6 18.6
% of households with no adults in employment wi... 8.7 67.2 5.3 1.2 5.2
% of lone parents not in employment - 2011 51.9 11.2 47.5 1.6 46.7
(ID2010) - Rank of average score (within London... 366.3 17.4 301.6 3.3 312.0
(ID2010) % of LSOAs in worst 50% nationally - 2010 -6.4 107.7 99.2 19.5 83.0
Average GCSE capped point scores - 2013 369.0 6.0 349.4 0.4 348.0
Unauthorised Absence in All Schools (%) - 2013 1.7 53.5 0.8 26.2 1.1
% with no qualifications - 2011 20.8 19.1 18.8 7.2 17.5
% with Level 4 qualifications and above - 2011 44.4 25.1 39.1 10.1 35.5
A-Level Average Point Score Per Student - 2012/13 715.3 5.7 668.4 1.3 676.9
A-Level Average Point Score Per Entry; 2012/13 215.0 3.1 210.8 1.1 208.5
Crime rate - 2013/14 1163.6 1598.7 47.8 30.3 68.5
Violence against the person rate - 2013/14 1.2 92.5 10.5 35.6 16.3
Robbery rate - 2013/14 1.6 31.8 0.1 94.7 2.3
Theft and Handling rate - 2013/14 -3.5 113.7 11.4 55.6 25.6
Criminal Damage rate - 2013/14 9.1 43.8 5.9 6.6 6.3
Drugs rate - 2013/14 -9.3 321.4 2.8 33.8 4.2
% area that is open space - 2014 30.1 28.3 19.3 17.9 23.5
Cars per household - 2011 1.6 99.4 0.5 35.0 0.8
Average Public Transport Accessibility score - ... 6.8 99.6 4.4 28.9 3.4
% travel by bicycle to work - 2011 12.0 343.9 3.0 12.5 2.7
Turnout at Mayoral election - 2012 38.1 11.5 35.0 2.3 34.2

TABLE II: Median estimation with 22 ciphertexts (d = 2, w = 11, ε, δ = 0.25) and 165 ciphertexts (d = 3, w = 55, ε, δ = 0.05) on the
London Atlas Dataset.

15

