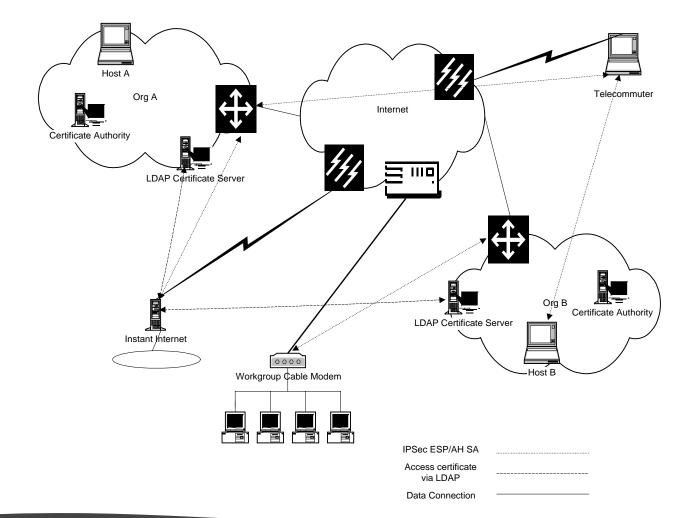


VPN and IPsec

Naganand Doraswamy Bay Architecture Lab

VPN's


What is a VPN?

Models of VPN

- Dial VPN
- Extended Intranets
- Extranets

Example Network

Deployment Issues

Edge Capability

- Proxy
- Authorization
- Identity (Username or Machine)

Multiple IPsec devices

- Chaining or Nesting
- Discovery

Deployment Issues (Cont...)

- IPsec PKI Requirements
 - Certificate
 - IPsec requirements
 - DN names (IPv4, IPv6, FQDN)
 - Name Constraints
 - Directory Requirements
 - Management Issues
 - Enrollment
 - OCSP (On-line Certificate Status Protocols)

Deployment Issues (Cont...)

- Policy
 - Central Vs. Distributed maintenance
 - Static Vs. Dynamic Discovery
 - Static
 - Difficult to know before hand the network topology in the destination domain
 - Problem with multiple firewalls
 - Traffic either has to be chained or tunneled
 - Dynamic
 - A mechanism to dynamically determine IPsec network topology
 - DNS, TEP, or other protocols
 - Complicated cases of two routers at the boundary

IPsec Implications

Filtering based on transport protocols field is not possible

— Web Caching

- Other mechanisms such as congestion looking at ports
- For existing firewalls to work, the encryption tunnel has to end at the firewall
- Speed

— Avoid encryption in the core and push it to edges

IPsec-ond

- Secure Multicast
- Dynamic Policy Discovery
- PKI related enhancements

Conclusions

- IPsec is fundamental in providing secure VPN services
- It is for real!

— In working group last call

- Lot of implementations
 - Both host and router vendors

