
NDSS 2011

Automated Discovery of Parameter Pollution
Vulnerabilities in Web Applications	

Marco Balduzzi, Carmen Torrano Gimenez, 	

Davide Balzarotti, and Engin Kirda	

8th Feb 2011

The Web as We Know It

8th Feb 2011	
NDSS 2011, San Diego	

2	

  Has evolved from a collection of simple and static
pages to fully dynamic applications
 Applications are more complex than they used to be
 Many complex systems have web interfaces

  As a consequence:
 Web security has increased in importance (e.g.

OWASP)
 Attack against web apps constitute 60% of attacks on

the Internet
 Application being targeted for hosting drive-by-

download content or C&C servers

Increased Importance of Web Security

8th Feb 2011	
NDSS 2011, San Diego	

3	

  A lot of work done to detect injection type flaws:
 SQL Injection
 Cross Site Scripting
 Command Injection

  Injection vulnerabilities have been well-studied, and
tools exist
 Stored procedures
 Sanitization routines in languages (e.g., PHP)
 Static code analysis (e.g., Pixy)
 Dynamic techniques (e.g., Huang et al.)

HTTP Parameter Pollution (HPP)

8th Feb 2011	
NDSS 2011, San Diego	

4	

  A new class of Injection Vulnerability called HTTP
Parameter Pollution (HPP) is less known
 Has not received much attention
  First presented by di Paola and Carettoni at OWASP 2009

  Attack consists of injecting encoded query string
delimiters into existing HTTP parameters (e.g. GET/
POST)
  If application does not sanitize its inputs, HPP can be used to

launch client-side or server-side attacks
 Attacker may be able to override existing parameter values

and exploit variables out of a direct reach

Research Objectives

8th Feb 2011	
NDSS 2011, San Diego	

5	

  To create the first automated approach for
detecting HPP flaws
 Blackbox approach, consists of a set of tests and

heuristics
  To find out how prevalent HPP problems were on

the web
  Is the problem being exaggerated?
  Is this problem known by developers?
 Does this problem occur more in smaller sites than

larger sites?
 What is the significance of the problem?

HTTP Parameter Handling

8th Feb 2011	
NDSS 2011, San Diego	

6	

  During interaction with web application, client provides
parameters via different channels (GET or POST)
  http://www.site.com/login?login=alice

  What happens when the same parameter is provided
twice?
  http://www.site.com/login?login=alice&login=bob
  If parameter is provided twice, language determines which is

returned, e.g.:

HTTP Parameter Pollution

8th Feb 2011	
NDSS 2011, San Diego	

7	

  An HTTP Parameter Pollution (HPP) attack occurs
 When a malicious parameter Pinj, preceded by an

encoded query string delimiter (e.g. %26 for &), is
injected into an existing parameter Phost

  Typical client-side scenario:
 Web application for election and two candidates

HTTP Parameter Pollution

8th Feb 2011	
NDSS 2011, San Diego	

8	

  pool_id is vulnerable and Attacker creates URL:
  http://host/election.jsp?poll_id=4568%26candidate%3Dgreen

  The resulting page now contains two “polluted” links:
 

Vote for Mr. White

 
Vote for Mrs. Green

  If the developer expects to receive a single value
  JSP’s Request.getParameter(“candidate”)returns the 1st value

 The parameter precedence is consistent…
 Candidate Mrs. Green is always voted!

Parameter Pollution – More uses

8th Feb 2011	
NDSS 2011, San Diego	

9	

  Cross-channel pollution
 HPP attacks can also be used to override parameters

between different input channels (GET/POST/Cookie)
 Good security practice: accept parameters only from

where they are supposed to be supplied

  HPP to bypass CSRF tokens
 E-mail deletion attack against Yahoo Mail

System for HPP Detection

8th Feb 2011	
NDSS 2011, San Diego	

10	

  Main components: browser, crawler, two scanners

Main Components

8th Feb 2011	
NDSS 2011, San Diego	

11	

①  Instrumented browser fetches the webpages and
renders their content

  Full support for client-side scripts (e.g. Javascript) and
external resources (e.g. <embed>)

  Extracts all links and forms
②  Crawler communicates with browser, determines URLs

to visit and forms to submit. Passes the information to
two scanners:

③  P-Scan: Determines page behavior when two parameters
with the same name are injected

④  V-Scan: Tests and attempts to verify that site is vulnerable
to HPP

P-Scan: Analysis of the Parameter
Precedence

8th Feb 2011	
NDSS 2011, San Diego	

12	

  P-Scan
 Analyzes a page to determine the precedence of

parameters when multiple occurrences of the same
parameter are submitted

  Take parameter par1=val1, generate a similar value
par1=new_val
  Page0 (original): app.php?par1=val1

  Page1 (test 1) : app.php?par1=new_val

  Page2 (test 2) : app.php?par1=val1&par1=new_val

 How do we determine precedence? Naïve approach:
  Page0==Page2 -> precedence on First parameter
  Page1==Page2 -> precedence on Second parameter

P-Scan: Problem with the naïve
approach

8th Feb 2011	
NDSS 2011, San Diego	

13	

  In practice, naïve technique does not work well
 Applications are complex, much dynamic content

(publicity banners, RSS feeds, ads, etc.)
 Hence, we perform pre-filtering to eliminate dynamic

components (embedded content, applets, css
stylesheets, etc.)

 Remove all self-referencing URLs (as these change when
parameters are inserted)

 We then perform 4 different tests to determine
similarity

P-Scan: Other Tests

8th Feb 2011	
NDSS 2011, San Diego	

14	

  Identity test
  Is the tested parameter considered by the application?

  Page0=Page1=Page2

  Base test
  Test assumes that the pre-filtering works perfectly (seldom the

case)
  Join test

 Are the 2 values combined somehow together?
  Fuzzy test

  It is designed to cope with dynamic pages
  Similarity between pages
  Based on the Gestalt Pattern Matching algorithm

V-Scan: Testing for HPP vulnerabilities

8th Feb 2011	
NDSS 2011, San Diego	

15	

  For every page, URL-encoded parameter is injected
  E.g., “%26foo%3Dbar”
  Then check if the “&foo=bar” string is included inside

the URLs of links or forms in the answer page

  V-Scan starts by extracting the list PURL=[PU1,PU2,…
PUn] of the parameters that are present in the page
URL, and the list Pbody=[PB1,PB2,…PUm] of the
parameters that are present in links or forms
contained in the page body

V-Scan: Testing for HPP vulnerabilities

8th Feb 2011	
NDSS 2011, San Diego	

16	

  PA = PURL ∩ PBody : set of parameters that appear
unmodified in the URL and in the page content (links,
forms)

  PB = p | p ∈ PURL ∧ p /∈ PBody : URL
parameters that do not appear in the page. Some
of these parameters may appear in the page under
a different name

  PC = p | p /∈ PURL ∧ p ∈ PBody : set of
parameters that appear somewhere in the page,
but that are not present in the URL

V-Scan: Special Cases

8th Feb 2011	
NDSS 2011, San Diego	

17	

  E.g., one of the URL parameters (or part of it) is
used as the entire target of a link

  Similar issues with printing, sharing functionalities

  To reduce false positives, we use heuristics
 E.g., the injected parameter does not start with http://
  Injection without URL-encoding

Implementation – The PAPAS tool

8th Feb 2011	
NDSS 2011, San Diego	

18	

  PAPAS: Parameter Pollution Analysis System
  http://papas.iseclab.org

  The components communicate via TCP/IP sockets
  The browser component has been implemented as a Firefox

extension
 Advantage: We can see exactly how pages are rendered

(cope with client-side scripts)
  PAPAS is fully customizable:

  Three modes are supported
  Fast mode, extensive mode, assisted mode

  E.g., scanning depth, number of performed injections, page
loading timeouts, etc.

Limitations

8th Feb 2011	
NDSS 2011, San Diego	

19	

  PAPAS does not support the crawling of links
embedded in active content
 E.g., flash

  PAPAS currently only focuses on client-side exploits
where user needs to click on a link
 HPP is also possible on the server side – but this is more

difficult to detect
 Analogous to detecting stored XSS

Ethical Considerations

8th Feb 2011	
NDSS 2011, San Diego	

20	

  Only client-side attacks. The server-side have the
potential to cause harm

  We provided the applications with innocuous
parameters (&foo=bar). No malicious code.

  Limited scan time (15min) and activity
  We immediately informed, when possible, the

security engineers of the affected applications
 Thankful feedback

Evaluation – the Fun Part ;)

8th Feb 2011	
NDSS 2011, San Diego	

21	

  Two sets of experiments:
①  We used PAPAS to scan a set of popular

websites (Alexa TOP 5000)
 The aim: To quickly scan as many websites as

possible and to see how common HPP flaws are
  In 13 days, we scanned 5016 websites, more than

149,000 unique web pages

②  We then analyzed some of the sites we
identified to be HPP vulnerable in more detail

Evaluation – The Dataset

8th Feb 2011	
NDSS 2011, San Diego	

22	

  Tested categories

Evaluation – Parameter Precedence

8th Feb 2011	
NDSS 2011, San Diego	

23	

  Inconsistent: the website has been developed using a
combination of heterogeneous technologies (e.g. PHP
and Perl)

  This is perfectly safe if the developer is aware of the
HPP threat… this is not always the case

Evaluation – HPP Vulnerabilities

8th Feb 2011	
NDSS 2011, San Diego	

24	

  PAPAS discovered that about 1500 (30%) websites
contained at least one page vulnerable to HTTP
Parameter Injection
  The tool was able to inject an encoded parameter

  Vulnerable != Exploitable
  Is the parameter precedence consistent?

  702 applications are exploitable
  The injected parameter either overrides the value of an

existing one or is accepted as “new parameter”

Evaluation

8th Feb 2011	
NDSS 2011, San Diego	

25	

  False positives: 10 applications (1.12%) use the injected
parameter as entire target for one link
 Variation of the special case we saw in slide 18 (V-Scan:

special cases)

Some Case Studies

8th Feb 2011	
NDSS 2011, San Diego	

26	

  We investigated some of the websites in more
detail
 Facebook, Google, Symantec, Microsoft, PayPal…
 We notified security officers and some of the problems

were fixed
 Several shopping cart applications could be

manipulated to change the price of an item
 Some banks were vulnerable and we could play

around with parameters
 Facebook: share component
 Google: search engine results could be manipulated

Conclusion

8th Feb 2011	
NDSS 2011, San Diego	

27	

①  We presented the first technique and system to
detect HPP vulnerabilities in web applications.
•  We call it PAPAS, http://papas.iseclab.org

②  We conducted a large-scale study of the Internet
•  5,000 webapps

③  Our results suggest that Parameter Pollution is a
largely unknown, and wide-spread problem

We hope our work will help raise awareness about HPP!

Questions?

Contact: Marco Balduzzi <balduzzi@iseclab.org>	

28	

http://papas.iseclab.org	

