
A Formal Framework for Network Security
Design Synthesis

Mohammad Ashiqur Rahman and Ehab Al-Shaer
Department of Software and Information Systems, University of North Carolina at Charlotte, United States

Emails: {mrahman4, ealshaer}@uncc.edu

I. INTRODUCTION

Today, most of the organizations are not only emphasizing
the enforcement of the security requirements but also requir-
ing satisfaction of different business constraints on usability
and security deployment cost. The organizational security
requirements can be indicated by isolation measures between
the hosts. The isolation patterns are defined based on dif-
ferent security devices and their capabilities. An isolation
pattern signifies the type of security resistance, e.g., traffic
filtering, trusted communication, payload traffic inspection,
hiding traffic source identity, etc. However, any security design
has to satisfy the business constraints of the organization,
which are represented in terms of usability and deployment
cost. The implementation of isolation measures significantly
affects these constraints. For example, the use of the encrypted
communication might reduce the usability, while the access
deny would give no usability. Moreover, the deployment of
a security device has a cost. Hence, it is required to find
security configurations by exploring different security design
alternatives that maintain the security and usability within an
expected level and an affordable cost.

The research on the security design synthesis is in a prema-
ture stage. In the work [1], the authors presented procedural
approaches of generating firewall configurations. However,
this work does not relate security device placements with the
topology and cannot do the optimal placements of security
devices in the network. In this paper, we present ConfigSynth,
an automated framework for synthesizing network security
configurations and physical placements of security devices,
using constraint satisfaction checking. This framework for-
mulates the security design synthesis problem from the given
network topology, security requirements, and business con-
straints. ConfigSynth is a novel framework that incorporates
the security device placements in the network topology within
the design in order to model the deployment cost, which is
crucial for a security architecture.

II. SECURITY DESIGN SYNTHESIS MODEL

ConfigSynth models the network topology as a graph. The
network model is defined as 〈N,L〉, where,

• N defines a finite set of network nodes including hosts and
routers. A host may execute one or more services, which
are accessed by different hosts. A service is denoted using
g ∈ G, where G is the set of all services. The term g(i, j)

defines the flow between a pair of hosts {i, j}, where i
is the source and j is the destination, under a service g.

• L ⊆ N × N is a finite set of links, which defines the
interconnections between the network hosts.

ConfigSynth formalizes different requirements and con-
straints which are the building-blocks for formulating the
configuration synthesis problem. The requirements can be
classified into two categories: (i) security requirements, and
(ii) business constraints. There are also invariant and user-
defined constraints on security implementations.

A. Formalizing Security Requirements: Isolation

The more a host is isolated from other hosts in the net-
work, the potential threat to security becomes less. We define
isolation as the restriction on the connectivity, i.e., network
communication. The communication between two hosts can be
restricted applying different security devices or systems, such
as firewall, IPSec, IDS, NAT, etc. For example, a firewall can
be placed to simply block some traffic flows (i.e., complete
isolation), while IPSec can be placed to ensure authenticated
transmission for the allowed flows (i.e., restriction based on
authorization) in a network segment. Both of these devices are
required to ensure authenticated and controlled traffic flow.
Isolation Patterns: Isolation patterns can be network level,
host level, or application level. In this research, we consider the
network level isolation, which includes the following patterns:

• Access deny. This is naturally enforced by a firewall.
• Trusted communication, i.e., authenticated and encrypted

communication (IPSec devices).
• Payload inspection. This is done by an intrusion detection

system (IDS).
• Source identity hiding. A network address translation

(NAT) device is applied in order to use different ad-
dress (typically a real IP address) instead of the original
address. With respect to security, it can give security
ensuring one way communication (i.e., outgoing only).

• Traffic forwarding through Proxy. For example, a reverse
proxy gives a layer of security in terms of traffic filtering
in the proxy instead of the server.

ConfigSynth allows network administrators to define iso-
lation patterns considering different security devices (primi-
tive isolation) and their combinations (composite isolation),
along with their relative order based on the capabilities and
functionalities of the devices. A set of isolation patterns is



TABLE I
ISOLATION PATTERNS AND SECURITY DEVICES

Id (d) Device Name Isolation Pattern Isolation (k)
1 Firewall Access Deny 1
2 IPSec Trusted Communication 2
3 IDS Payload Inspection 3
4 NAT Source Identity Hiding 4
2 &4 IPSec & NAT Traffic Forwarding through

Proxy with trusted commu-
nication

5

shown in Table I. Each pattern is represented using an ID,
k. We formalize the isolation measures (i.e., the security
configurations) as a set of rules, {IR1, IR2, .., IRn}, where
each isolation rule IRr is defined as follows:

IRr : yki,j(g),where, i, j ∈ H and g ∈ G

The variable, yki,j(g) indicates that corresponding k’th iso-
lation pattern is required to be deployed between the host pair
{i, j} for service g. Note that a host can represent a group of
hosts that have the same properties (e.g., OS, services, etc.),
the same level of users, and reside in the same subnet.
Isolation Pattern and Security Device: Usually, an isolation
pattern is related to a particular type of security device. This
one-to-one matching is true for primitive isolation patterns. In
case of a composite isolation pattern, it is required to deploy
more than one security device. The following equation models
the relationship between an isolation pattern and associated
security device(s):

∀i,j,g, yki,j(g) ⇒ xd
i,j(g) (1)

Equation (1) specifies that if k’th isolation is selected for
g(i, j) flow, the d’th (type of) security device is required to
be deployed between the host pair {i, j} (i.e., on the route
of the flow). A particular value of d denotes a particular
type of security device. For example, as shown in Table I,
d = 1 represents a firewall security device. If k’th pattern
is a composite isolation pattern, multiple security devices are
required to implement the isolation pattern. Hence, in this case,
multiple xd

i,j(g)s are true.
Score of an Isolation Pattern: We define the isolation score
(also named as rank) of the kth isolation pattern between
a pair of hosts {i, j} under the network service g by the
parameter Lk

i,j(g). The score of an isolation pattern denotes
its isolation capability compared to others. The scores can be
given by the administrator explicitly or be computed based
on the relative orders of the isolation patterns according to
their isolation capabilities. In the latter case, a simple formal
model is developed based on the given partial order between
different isolation patterns. The model generates a complete
relative order by assigning a score to each isolation pattern.
It is plausible to assume the same score (Lk) for a particular
isolation pattern irrespective of hosts and services.

The isolation scores are normalized according to a specified
range, e.g., a scale of 0−1. Note that this scoring of isolation
patterns is relative and security requirements based on this
scoring system reflects the same relative meaning.
Isolation of a Host: The decision variables yki,j(g), for all k,
represent isolation patterns between a pair of hosts {i, j}

for the flow g(i, j). These decision variables and associated
isolation weights Lk

i,j(g) are used to formally define the total
isolation (Ii,j) of j with respect to the incoming traffic from i.
Ii,j is formalized as follows:

Ii,j =

∑
g

∑
k y

k
i,j(g)× Lk

i,j(g)∑
g

∑
k y

k
i,j(g)× 1

The equation indicates that the isolation between a pair
of hosts {i, j} is the sum of the isolation measures taken
for different services between these hosts. The equation also
indicates that the isolation is normalized by dividing the
sum by the maximum possible isolation (i.e., the maximum
isolation for a flow g(i, j) is 1 in the scale of 0−1). We
consider the similar normalization throughout the model. For
the ease of presenting the equations, we do not show the
normalization factors (i.e., the denominators at the right hand
side of the equations) for the rest of the paper. The total
isolation score of a host j is defined in (2).

Ij =
∑

i !=j

Ii,j (2)

Equation (3) represents the overall isolation in the network
(i.e., the network isolation) considering all of the hosts.

I =
∑

i

Ii (3)

B. Formalizing Business Constraints: Usability
Business constraints play a significant role in synthesizing

usable and cost-effective security configurations in a network.
For example, a higher isolation can provide strong defense in
the network, but the usability of the network might reduce
to a level which is unacceptable to the organization. In
ConfigSynth, we formalize the synthesis problem under two
business constraints: (i) usability and (ii) deployment cost. In
this subsection, we discuss the formalization of the usability.

The usability of the network depends on the ranks of the
service flows between the hosts in the network. The rank of
a service flow denotes the demand of the flow. Each service
flow g(i, j) is associated with a rank, ai,j(g). These ranks
are expected to be given in the form of a relative order by
the administrator based on the organizational demand. Partial
information can be given, from which a complete relative order
can be derived, as it has been shown in the case of the isolation
patterns. The usability of a service g in a host j is formalized
as follows:

Sj(g) =
∑

i

∑

k

bki,j(g)× ai,j(g)

The application of an isolation pattern to a flow can affect
the usability of the flow. The parameter bki,j(g) represents
the usability of the flow g(i, j) due to applying the k iso-
lation pattern between {i, j}. We assume that the usability
depends on the isolation pattern, not on the host-pair (i.e.,
bki,j(g) = bk(g)). The value of bk(g) can be determined based
on the prior knowledge of network security by considering
the time or effort required to get a service access under an



isolation measure. The usability Sj with respect to a host
j represents the accumulated usability considering all of the
services running in the host.

Sj =
∑

g

Sj(g)

The overall usability of the network (i.e., the network
usability) is represented by (4).

U =
∑

j

Sj (4)

C. Formalizing Business Constraints: Deployment Cost
The deployment of a security device incurs costs and an

organization often has an afford limit for deploying security
measures. The number of security devices depends not only
on the isolation measures but also on the topology. There
are usually similar types of isolation between multiple host-
pairs and these host-pairs can share one or more links for
communication. In this case, placing a single security device
at one of the shared links may ensure the desired isolation.
Therefore, modeling correct and optimal placements of the se-
curity devices considering the network topology, the isolation
patterns, and the budget is very challenging.
Modeling Flow Routes: ConfigSynth requires the flow routes
between the hosts for determining the placements of the
security devices satisfying the isolation measures. A flow
route, F z

i,j is defined as a set of links {li,j,z,1, li,j,z,2, ...} ⊆ L,
that form a path from a source i to a destination j. As multiple
routes are possible between a pair of hosts, z indicates the
index of the flow route (i.e., the z’th route), between the host-
pair {i, j}. The term |F z

i,j | denotes the path length, i.e., the
number of hops or links in the path. Fi,j denotes all of the
flow routes possible from i to j.

Fi,j ⇒
∧

z

F z
i,j

ConfigSynth finds the flow routes for a host pair by applying
a path searching algorithm on the network topology.
Formalizing Device Placements: Equation (1) specifies the
security devices which are required to employ an isolation
pattern. The placements of the security devices on the flow
routes are modeled from these specifications.

If an isolation pattern, e.g., ’access deny’, is selected for
the traffic from a host i to a host j, then it is required to
block the traffic through all possible flow routes between
{i, j}. Equation (1) specifies a firewall to be deployed for
implementing an ’access deny’ isolation pattern. Hence, there
should be a firewall deployed at least on a link of each flow
route. We formalize the placement of a security device d for
a particular pair of hosts as follows:

xd
i,j(g) ⇒ ∀z∃tldi,j,z,t (5)

In the equation, ldi,j,z,t represents that a security device of
type d is deployed on the link li,j,z,t. Note that if there is a
security device, e.g., firewall, on the flow route for a host pair,
this does not imply that the flow access between the pair is

denied. It is denied only if the ’access deny’ isolation pattern
is specified for the host pair.

For the deployment of the security devices, the deployment
cost is computed as the summation of the costs of all of
the devices deployed in different links. We define Cd as the
average deployment cost of the security device d. Now, if ld

denotes whether a security device d is deployed on the link
l ∈ L, the total deployment cost C is computed as follows:

C =
∑

l

∑

d

ld × Cd,where ld ⇒ ∃i,j,z,t, ldi,j,z,t (6)

D. Modeling Constraints
The main objective of our configuration synthesis problem is

to maximize the security in the network by satisfying various
security requirements as well as the organization’s business
constraints. Thus, the synthesis problem is formalized as the
satisfaction of following three threshold based constraints in
selecting the security measures (i.e., isolation patterns) on the
network flows.

TC : (I ≥ ThI) ∧ (U ≥ ThU ) ∧ (C ≤ ThC) (7)

In the equation, ThI , ThU and ThC represent the slider
values, i.e., the constraints on the network isolation, usability,
and deployment cost, respectively. The network isolation and
the network usability must be greater than or equal to their
respective threshold values, ThI and ThU . The deployment
cost must also be within the budget, ThC .

III. CONCLUSION

In this paper, we present an automated framework, Con-
figSynth, for synthesizing correct and cost-effective network
security configurations. It formally models the network topol-
ogy, security requirements in terms of isolation, and the
organizational business constraints in terms of usability and
deployment cost, along with different invariant and user-
defined constraints. Then, the framework formalizes the se-
curity design synthesis problem as the conjunction of all the
requirements and constraints.

REFERENCES

[1] B. Zhang and E. Al-Shaer. Synthesizing distributed firewall configurations
considering risk, usability and cost constraints. In CNSM, 2011.

[2] L. de Moura and N. Bjørner. Satisfiability modulo theories: An appetizer.
In Brazilian Symposium on Formal Methods, 2009.


