
Transforming and Taming Privacy-Breaching Android Applications

Mu Zhang Heng Yin
Syracuse University

{muzhang, heyin}@syr.edu

Privacy concerns in the Android platform are increasing.
Previous studies [1]–[5] have exposed that both benign
and malicious Apps are stealthily leaking users’ private
information to remote servers. By design, Android security
model is based on permissions. At install time, an App
requests a set of permissions. In order to use this App, the
user has to grant all the requested permissions, or refuse to
install it. Once granted, permissions are not revocable. The
Android system can thus no longer prevent an App from
misusing permissions and violating the user’s privacy.

Prior research efforts have been made to ameliorate the
privacy leakage problem. Some earlier solutions extended
Android’s install-time constraints and enriched Android
permissions [6], [7]. Some aimed at enforcing permissions
in a finer-grained manner and in a more flexible way [8]–
[11]. In addition, some efforts were also made to improve
isolation on various levels, so that each isolated component
could be assigned with a different set of permissions [12]–
[14].

In principle, all these solutions enforce various poli-
cies at individual checkpoints. These approaches deploy
checkpoints at certain execution points. Fundamentally,
privacy leakage is an information flow security problem.
To directly address this problem, Hornyack et al. pro-
posed AppFence to enforce information flow policies at
runtime [3]. With support of TaintDroid [2], AppFence
keeps track of the propagation of private information. Once
privacy leakage is detected, AppFence either blocks the
leakage at the sink or shuffle the information from the
source.

Though effective in terms of blocking privacy leakage,
AppFence has several limitations: 1) Due to the taint track-
ing on every single Dalvik bytecode execution, AppFence
incurs significant performance overhead; 2) As firmware
modification is required, deploying it on large amount of
Android devices can be challenging.

To address these limitations, we propose a bytecode
transformation approach to effectively defeating privacy
leakage in Android applications. Given an unknown
Android App, we first perform application-wide static
dataflow analysis to identify potential taint propagation
chops for information leakage. Then to keep track of taint
propagation and prevent the actual information leakage,
we insert bytecode instructions along the taint propaga-
tion chops. To further improve performance, we apply
a series of optimization methods to remove redundant
and unnecessary instrumentation bytecode. As a result,

we transform an App with potential privacy leakage into
a more secured App, in which privacy leakage is dis-
abled. Compared to dynamic taint analysis approach like
AppFence, our bytecode transformation approach has the
following advantages: 1) the deployment of our approach
is simple, as we only transform the original App to
enforce certain information flow policies and no firmware
modification is needed; 2) the performance overhead of our
approach is minimal, due to the static dataflow analysis in
advance and numerous optimizations that are applied to
the instrumentation code.

We implement a prototype in 16 thousand lines of Java
code, based on the Java bytecode optimization framework
Soot [15]. We leverage Soot’s capability to perform static
dataflow analysis and bytecode instrumentation. We eval-
uate our tool on 16 real-world privacy-breaching Android
Apps. Our experiments show that transformed program
runs correctly after instrumentation, while privacy leakage
is effectively eliminated.

REFERENCES

[1] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A
study of android application security,” in Proceedings of
the 20th Usenix Security Symposium, August 2011.

[2] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on
smartphones,” in Proceedings of OSDI, 2010.

[3] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wether-
all, “These aren’t the droids you’re looking for: retrofitting
android to protect data from imperious applications,” in
Proceedings of CCS, 2011.

[4] Y. Zhou and X. Jiang, “Dissecting android malware: Char-
acterization and evolution,” in Proceedings of the 33rd IEEE
Symposium on Security and Privacy, May 2012.

[5] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you,
get off of my market: Detecting malicious apps in official
and alternative android markets,” in Proceedings of NDSS,
February 2012.

[6] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel,
“Semantically rich application-centric security in android,”
in Proceedings of ACSAC, 2009.

[7] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight
mobile phone application certification,” in Proceedings of
CCS, 2009.



[8] M. Conti, V. T. N. Nguyen, and B. Crispo, “Crepe: context-
related policy enforcement for android,” in Proceedings of
the 13th International Conference on Information Security,
2011.

[9] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming
information-stealing smartphone applications (on android),”
in Proceedings of the 4th international conference on Trust
and trustworthy computing, 2011.

[10] M. Nauman, S. Khan, and X. Zhang, “Apex: extending
android permission model and enforcement with user-
defined runtime constraints,” in Proceedings of the 5th ACM
Symposium on Information, Computer and Communications
Security, 2010.

[11] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan,
“Mockdroid: trading privacy for application functionality
on smartphones,” in Proceedings of the 12th Workshop on
Mobile Computing Systems and Applications, 2011.

[12] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and
M. Peter, “L4android: a generic operating system frame-
work for secure smartphones,” in Proceedings of the 1st
ACM workshop on Security and Privacy in Smartphones
and Mobile Devices, 2011.

[13] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh,
“Cells: a virtual mobile smartphone architecture,” in Pro-
ceedings of SOSP, 2011.

[14] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Sepa-
rating smartphone advertising from applications,” in Pro-
ceedings of the 20th Usenix Security Symposium, August
2012.

[15] Soot: a java optimization framework. [Online]. Available:
http://www.sable.mcgill.ca/soot/

2

http://www.sable.mcgill.ca/soot/

	References

